summaryrefslogtreecommitdiffstats
path: root/media/libsoundtouch/src/InterpolateLinear.cpp
blob: 9533e79b79f6603967194c1bc46e24c06047d287 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
////////////////////////////////////////////////////////////////////////////////
/// 
/// Linear interpolation algorithm.
///
/// Author        : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
//  SoundTouch audio processing library
//  Copyright (c) Olli Parviainen
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2.1 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public
//  License along with this library; if not, write to the Free Software
//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
//
////////////////////////////////////////////////////////////////////////////////

#include <assert.h>
#include <stdlib.h>
#include "InterpolateLinear.h"

using namespace soundtouch;

//////////////////////////////////////////////////////////////////////////////
//
// InterpolateLinearInteger - integer arithmetic implementation
// 

/// fixed-point interpolation routine precision
#define SCALE    65536


// Constructor
InterpolateLinearInteger::InterpolateLinearInteger() : TransposerBase()
{
    // Notice: use local function calling syntax for sake of clarity, 
    // to indicate the fact that C++ constructor can't call virtual functions.
    resetRegisters();
    setRate(1.0f);
}


void InterpolateLinearInteger::resetRegisters()
{
    iFract = 0;
}


// Transposes the sample rate of the given samples using linear interpolation. 
// 'Mono' version of the routine. Returns the number of samples returned in 
// the "dest" buffer
int InterpolateLinearInteger::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
{
    int i;
    int srcSampleEnd = srcSamples - 1;
    int srcCount = 0;

    i = 0;
    while (srcCount < srcSampleEnd)
    {
        LONG_SAMPLETYPE temp;
    
        assert(iFract < SCALE);

        temp = (SCALE - iFract) * src[0] + iFract * src[1];
        dest[i] = (SAMPLETYPE)(temp / SCALE);
        i++;

        iFract += iRate;

        int iWhole = iFract / SCALE;
        iFract -= iWhole * SCALE;
        srcCount += iWhole;
        src += iWhole;
    }
    srcSamples = srcCount;

    return i;
}


// Transposes the sample rate of the given samples using linear interpolation. 
// 'Stereo' version of the routine. Returns the number of samples returned in 
// the "dest" buffer
int InterpolateLinearInteger::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
{
    int i;
    int srcSampleEnd = srcSamples - 1;
    int srcCount = 0;

    i = 0;
    while (srcCount < srcSampleEnd)
    {
        LONG_SAMPLETYPE temp0;
        LONG_SAMPLETYPE temp1;
    
        assert(iFract < SCALE);

        temp0 = (SCALE - iFract) * src[0] + iFract * src[2];
        temp1 = (SCALE - iFract) * src[1] + iFract * src[3];
        dest[0] = (SAMPLETYPE)(temp0 / SCALE);
        dest[1] = (SAMPLETYPE)(temp1 / SCALE);
        dest += 2;
        i++;

        iFract += iRate;

        int iWhole = iFract / SCALE;
        iFract -= iWhole * SCALE;
        srcCount += iWhole;
        src += 2*iWhole;
    }
    srcSamples = srcCount;

    return i;
}


int InterpolateLinearInteger::transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
{
    int i;
    int srcSampleEnd = srcSamples - 1;
    int srcCount = 0;

    i = 0;
    while (srcCount < srcSampleEnd)
    {
        LONG_SAMPLETYPE temp, vol1;
    
        assert(iFract < SCALE);
        vol1 = (LONG_SAMPLETYPE)(SCALE - iFract);
        for (int c = 0; c < numChannels; c ++)
        {
            temp = vol1 * src[c] + iFract * src[c + numChannels];
            dest[0] = (SAMPLETYPE)(temp / SCALE);
            dest ++;
        }
        i++;

        iFract += iRate;

        int iWhole = iFract / SCALE;
        iFract -= iWhole * SCALE;
        srcCount += iWhole;
        src += iWhole * numChannels;
    }
    srcSamples = srcCount;

    return i;
}


// Sets new target iRate. Normal iRate = 1.0, smaller values represent slower 
// iRate, larger faster iRates.
void InterpolateLinearInteger::setRate(double newRate)
{
    iRate = (int)(newRate * SCALE + 0.5);
    TransposerBase::setRate(newRate);
}


//////////////////////////////////////////////////////////////////////////////
//
// InterpolateLinearFloat - floating point arithmetic implementation
// 
//////////////////////////////////////////////////////////////////////////////


// Constructor
InterpolateLinearFloat::InterpolateLinearFloat() : TransposerBase()
{
    // Notice: use local function calling syntax for sake of clarity, 
    // to indicate the fact that C++ constructor can't call virtual functions.
    resetRegisters();
    setRate(1.0);
}


void InterpolateLinearFloat::resetRegisters()
{
    fract = 0;
}


// Transposes the sample rate of the given samples using linear interpolation. 
// 'Mono' version of the routine. Returns the number of samples returned in 
// the "dest" buffer
int InterpolateLinearFloat::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
{
    int i;
    int srcSampleEnd = srcSamples - 1;
    int srcCount = 0;

    i = 0;
    while (srcCount < srcSampleEnd)
    {
        double out;
        assert(fract < 1.0);

        out = (1.0 - fract) * src[0] + fract * src[1];
        dest[i] = (SAMPLETYPE)out;
        i ++;

        // update position fraction
        fract += rate;
        // update whole positions
        int whole = (int)fract;
        fract -= whole;
        src += whole;
        srcCount += whole;
    }
    srcSamples = srcCount;
    return i;
}


// Transposes the sample rate of the given samples using linear interpolation. 
// 'Mono' version of the routine. Returns the number of samples returned in 
// the "dest" buffer
int InterpolateLinearFloat::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
{
    int i;
    int srcSampleEnd = srcSamples - 1;
    int srcCount = 0;

    i = 0;
    while (srcCount < srcSampleEnd)
    {
        double out0, out1;
        assert(fract < 1.0);

        out0 = (1.0 - fract) * src[0] + fract * src[2];
        out1 = (1.0 - fract) * src[1] + fract * src[3];
        dest[2*i]   = (SAMPLETYPE)out0;
        dest[2*i+1] = (SAMPLETYPE)out1;
        i ++;

        // update position fraction
        fract += rate;
        // update whole positions
        int whole = (int)fract;
        fract -= whole;
        src += 2*whole;
        srcCount += whole;
    }
    srcSamples = srcCount;
    return i;
}


int InterpolateLinearFloat::transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
{
    int i;
    int srcSampleEnd = srcSamples - 1;
    int srcCount = 0;

    i = 0;
    while (srcCount < srcSampleEnd)
    {
        float temp, vol1, fract_float;
    
        vol1 = (float)(1.0 - fract);
		fract_float = (float)fract;
        for (int c = 0; c < numChannels; c ++)
        {
			temp = vol1 * src[c] + fract_float * src[c + numChannels];
            *dest = (SAMPLETYPE)temp;
            dest ++;
        }
        i++;

        fract += rate;

        int iWhole = (int)fract;
        fract -= iWhole;
        srcCount += iWhole;
        src += iWhole * numChannels;
    }
    srcSamples = srcCount;

    return i;
}