1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! Types and traits used to access the DOM from style calculation.
#![allow(unsafe_code)]
#![deny(missing_docs)]
use crate::applicable_declarations::ApplicableDeclarationBlock;
use crate::context::SharedStyleContext;
#[cfg(feature = "gecko")]
use crate::context::{PostAnimationTasks, UpdateAnimationsTasks};
use crate::data::ElementData;
use crate::media_queries::Device;
use crate::properties::{AnimationDeclarations, ComputedValues, PropertyDeclarationBlock};
use crate::selector_parser::{AttrValue, Lang, PseudoElement, SelectorImpl};
use crate::shared_lock::{Locked, SharedRwLock};
use crate::stylist::CascadeData;
use crate::traversal_flags::TraversalFlags;
use crate::values::AtomIdent;
use crate::values::computed::Display;
use crate::{LocalName, Namespace, WeakAtom};
use atomic_refcell::{AtomicRef, AtomicRefMut};
use dom::ElementState;
use selectors::matching::{QuirksMode, VisitedHandlingMode};
use selectors::sink::Push;
use selectors::Element as SelectorsElement;
use servo_arc::{Arc, ArcBorrow};
use std::fmt;
use std::fmt::Debug;
use std::hash::Hash;
use std::ops::Deref;
pub use style_traits::dom::OpaqueNode;
/// Simple trait to provide basic information about the type of an element.
///
/// We avoid exposing the full type id, since computing it in the general case
/// would be difficult for Gecko nodes.
pub trait NodeInfo {
/// Whether this node is an element.
fn is_element(&self) -> bool;
/// Whether this node is a text node.
fn is_text_node(&self) -> bool;
}
/// A node iterator that only returns node that don't need layout.
pub struct LayoutIterator<T>(pub T);
impl<T, N> Iterator for LayoutIterator<T>
where
T: Iterator<Item = N>,
N: NodeInfo,
{
type Item = N;
fn next(&mut self) -> Option<N> {
loop {
let n = self.0.next()?;
// Filter out nodes that layout should ignore.
if n.is_text_node() || n.is_element() {
return Some(n);
}
}
}
}
/// An iterator over the DOM children of a node.
pub struct DomChildren<N>(Option<N>);
impl<N> Iterator for DomChildren<N>
where
N: TNode,
{
type Item = N;
fn next(&mut self) -> Option<N> {
let n = self.0.take()?;
self.0 = n.next_sibling();
Some(n)
}
}
/// An iterator over the DOM descendants of a node in pre-order.
pub struct DomDescendants<N> {
previous: Option<N>,
scope: N,
}
impl<N> Iterator for DomDescendants<N>
where
N: TNode,
{
type Item = N;
#[inline]
fn next(&mut self) -> Option<N> {
let prev = self.previous.take()?;
self.previous = prev.next_in_preorder(self.scope);
self.previous
}
}
/// The `TDocument` trait, to represent a document node.
pub trait TDocument: Sized + Copy + Clone {
/// The concrete `TNode` type.
type ConcreteNode: TNode<ConcreteDocument = Self>;
/// Get this document as a `TNode`.
fn as_node(&self) -> Self::ConcreteNode;
/// Returns whether this document is an HTML document.
fn is_html_document(&self) -> bool;
/// Returns the quirks mode of this document.
fn quirks_mode(&self) -> QuirksMode;
/// Get a list of elements with a given ID in this document, sorted by
/// tree position.
///
/// Can return an error to signal that this list is not available, or also
/// return an empty slice.
fn elements_with_id<'a>(
&self,
_id: &AtomIdent,
) -> Result<&'a [<Self::ConcreteNode as TNode>::ConcreteElement], ()>
where
Self: 'a,
{
Err(())
}
/// This document's shared lock.
fn shared_lock(&self) -> &SharedRwLock;
}
/// The `TNode` trait. This is the main generic trait over which the style
/// system can be implemented.
pub trait TNode: Sized + Copy + Clone + Debug + NodeInfo + PartialEq {
/// The concrete `TElement` type.
type ConcreteElement: TElement<ConcreteNode = Self>;
/// The concrete `TDocument` type.
type ConcreteDocument: TDocument<ConcreteNode = Self>;
/// The concrete `TShadowRoot` type.
type ConcreteShadowRoot: TShadowRoot<ConcreteNode = Self>;
/// Get this node's parent node.
fn parent_node(&self) -> Option<Self>;
/// Get this node's first child.
fn first_child(&self) -> Option<Self>;
/// Get this node's last child.
fn last_child(&self) -> Option<Self>;
/// Get this node's previous sibling.
fn prev_sibling(&self) -> Option<Self>;
/// Get this node's next sibling.
fn next_sibling(&self) -> Option<Self>;
/// Get the owner document of this node.
fn owner_doc(&self) -> Self::ConcreteDocument;
/// Iterate over the DOM children of a node.
#[inline(always)]
fn dom_children(&self) -> DomChildren<Self> {
DomChildren(self.first_child())
}
/// Returns whether the node is attached to a document.
fn is_in_document(&self) -> bool;
/// Iterate over the DOM children of a node, in preorder.
#[inline(always)]
fn dom_descendants(&self) -> DomDescendants<Self> {
DomDescendants {
previous: Some(*self),
scope: *self,
}
}
/// Returns the next node after this one, in a pre-order tree-traversal of
/// the subtree rooted at scoped_to.
#[inline]
fn next_in_preorder(&self, scoped_to: Self) -> Option<Self> {
if let Some(c) = self.first_child() {
return Some(c);
}
let mut current = *self;
loop {
if current == scoped_to {
return None;
}
if let Some(s) = current.next_sibling() {
return Some(s);
}
debug_assert!(current.parent_node().is_some(), "Not a descendant of the scope?");
current = current.parent_node()?;
}
}
/// Get this node's parent element from the perspective of a restyle
/// traversal.
fn traversal_parent(&self) -> Option<Self::ConcreteElement>;
/// Get this node's parent element if present.
fn parent_element(&self) -> Option<Self::ConcreteElement> {
self.parent_node().and_then(|n| n.as_element())
}
/// Get this node's parent element, or shadow host if it's a shadow root.
fn parent_element_or_host(&self) -> Option<Self::ConcreteElement> {
let parent = self.parent_node()?;
if let Some(e) = parent.as_element() {
return Some(e);
}
if let Some(root) = parent.as_shadow_root() {
return Some(root.host());
}
None
}
/// Converts self into an `OpaqueNode`.
fn opaque(&self) -> OpaqueNode;
/// A debug id, only useful, mm... for debugging.
fn debug_id(self) -> usize;
/// Get this node as an element, if it's one.
fn as_element(&self) -> Option<Self::ConcreteElement>;
/// Get this node as a document, if it's one.
fn as_document(&self) -> Option<Self::ConcreteDocument>;
/// Get this node as a ShadowRoot, if it's one.
fn as_shadow_root(&self) -> Option<Self::ConcreteShadowRoot>;
}
/// Wrapper to output the subtree rather than the single node when formatting
/// for Debug.
pub struct ShowSubtree<N: TNode>(pub N);
impl<N: TNode> Debug for ShowSubtree<N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "DOM Subtree:")?;
fmt_subtree(f, &|f, n| write!(f, "{:?}", n), self.0, 1)
}
}
/// Wrapper to output the subtree along with the ElementData when formatting
/// for Debug.
pub struct ShowSubtreeData<N: TNode>(pub N);
impl<N: TNode> Debug for ShowSubtreeData<N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "DOM Subtree:")?;
fmt_subtree(f, &|f, n| fmt_with_data(f, n), self.0, 1)
}
}
/// Wrapper to output the subtree along with the ElementData and primary
/// ComputedValues when formatting for Debug. This is extremely verbose.
#[cfg(feature = "servo")]
pub struct ShowSubtreeDataAndPrimaryValues<N: TNode>(pub N);
#[cfg(feature = "servo")]
impl<N: TNode> Debug for ShowSubtreeDataAndPrimaryValues<N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "DOM Subtree:")?;
fmt_subtree(f, &|f, n| fmt_with_data_and_primary_values(f, n), self.0, 1)
}
}
fn fmt_with_data<N: TNode>(f: &mut fmt::Formatter, n: N) -> fmt::Result {
if let Some(el) = n.as_element() {
write!(
f,
"{:?} dd={} aodd={} data={:?}",
el,
el.has_dirty_descendants(),
el.has_animation_only_dirty_descendants(),
el.borrow_data(),
)
} else {
write!(f, "{:?}", n)
}
}
#[cfg(feature = "servo")]
fn fmt_with_data_and_primary_values<N: TNode>(f: &mut fmt::Formatter, n: N) -> fmt::Result {
if let Some(el) = n.as_element() {
let dd = el.has_dirty_descendants();
let aodd = el.has_animation_only_dirty_descendants();
let data = el.borrow_data();
let values = data.as_ref().and_then(|d| d.styles.get_primary());
write!(
f,
"{:?} dd={} aodd={} data={:?} values={:?}",
el, dd, aodd, &data, values
)
} else {
write!(f, "{:?}", n)
}
}
fn fmt_subtree<F, N: TNode>(f: &mut fmt::Formatter, stringify: &F, n: N, indent: u32) -> fmt::Result
where
F: Fn(&mut fmt::Formatter, N) -> fmt::Result,
{
for _ in 0..indent {
write!(f, " ")?;
}
stringify(f, n)?;
if let Some(e) = n.as_element() {
for kid in e.traversal_children() {
writeln!(f, "")?;
fmt_subtree(f, stringify, kid, indent + 1)?;
}
}
Ok(())
}
/// The ShadowRoot trait.
pub trait TShadowRoot: Sized + Copy + Clone + Debug + PartialEq {
/// The concrete node type.
type ConcreteNode: TNode<ConcreteShadowRoot = Self>;
/// Get this ShadowRoot as a node.
fn as_node(&self) -> Self::ConcreteNode;
/// Get the shadow host that hosts this ShadowRoot.
fn host(&self) -> <Self::ConcreteNode as TNode>::ConcreteElement;
/// Get the style data for this ShadowRoot.
fn style_data<'a>(&self) -> Option<&'a CascadeData>
where
Self: 'a;
/// Get the list of shadow parts for this shadow root.
fn parts<'a>(&self) -> &[<Self::ConcreteNode as TNode>::ConcreteElement]
where
Self: 'a,
{
&[]
}
/// Get a list of elements with a given ID in this shadow root, sorted by
/// tree position.
///
/// Can return an error to signal that this list is not available, or also
/// return an empty slice.
fn elements_with_id<'a>(
&self,
_id: &AtomIdent,
) -> Result<&'a [<Self::ConcreteNode as TNode>::ConcreteElement], ()>
where
Self: 'a,
{
Err(())
}
}
/// The element trait, the main abstraction the style crate acts over.
pub trait TElement:
Eq + PartialEq + Debug + Hash + Sized + Copy + Clone + SelectorsElement<Impl = SelectorImpl>
{
/// The concrete node type.
type ConcreteNode: TNode<ConcreteElement = Self>;
/// A concrete children iterator type in order to iterate over the `Node`s.
///
/// TODO(emilio): We should eventually replace this with the `impl Trait`
/// syntax.
type TraversalChildrenIterator: Iterator<Item = Self::ConcreteNode>;
/// Get this element as a node.
fn as_node(&self) -> Self::ConcreteNode;
/// A debug-only check that the device's owner doc matches the actual doc
/// we're the root of.
///
/// Otherwise we may set document-level state incorrectly, like the root
/// font-size used for rem units.
fn owner_doc_matches_for_testing(&self, _: &Device) -> bool {
true
}
/// Whether this element should match user and author rules.
///
/// We use this for Native Anonymous Content in Gecko.
fn matches_user_and_author_rules(&self) -> bool {
true
}
/// Returns the depth of this element in the DOM.
fn depth(&self) -> usize {
let mut depth = 0;
let mut curr = *self;
while let Some(parent) = curr.traversal_parent() {
depth += 1;
curr = parent;
}
depth
}
/// Get this node's parent element from the perspective of a restyle
/// traversal.
fn traversal_parent(&self) -> Option<Self> {
self.as_node().traversal_parent()
}
/// Get this node's children from the perspective of a restyle traversal.
fn traversal_children(&self) -> LayoutIterator<Self::TraversalChildrenIterator>;
/// Returns the parent element we should inherit from.
///
/// This is pretty much always the parent element itself, except in the case
/// of Gecko's Native Anonymous Content, which uses the traversal parent
/// (i.e. the flattened tree parent) and which also may need to find the
/// closest non-NAC ancestor.
fn inheritance_parent(&self) -> Option<Self> {
self.parent_element()
}
/// The ::before pseudo-element of this element, if it exists.
fn before_pseudo_element(&self) -> Option<Self> {
None
}
/// The ::after pseudo-element of this element, if it exists.
fn after_pseudo_element(&self) -> Option<Self> {
None
}
/// The ::marker pseudo-element of this element, if it exists.
fn marker_pseudo_element(&self) -> Option<Self> {
None
}
/// Execute `f` for each anonymous content child (apart from ::before and
/// ::after) whose originating element is `self`.
fn each_anonymous_content_child<F>(&self, _f: F)
where
F: FnMut(Self),
{
}
/// Return whether this element is an element in the HTML namespace.
fn is_html_element(&self) -> bool;
/// Return whether this element is an element in the MathML namespace.
fn is_mathml_element(&self) -> bool;
/// Return whether this element is an element in the SVG namespace.
fn is_svg_element(&self) -> bool;
/// Return whether this element is an element in the XUL namespace.
fn is_xul_element(&self) -> bool {
false
}
/// Return the list of slotted nodes of this node.
fn slotted_nodes(&self) -> &[Self::ConcreteNode] {
&[]
}
/// Get this element's style attribute.
fn style_attribute(&self) -> Option<ArcBorrow<Locked<PropertyDeclarationBlock>>>;
/// Unset the style attribute's dirty bit.
/// Servo doesn't need to manage ditry bit for style attribute.
fn unset_dirty_style_attribute(&self) {}
/// Get this element's SMIL override declarations.
fn smil_override(&self) -> Option<ArcBorrow<Locked<PropertyDeclarationBlock>>> {
None
}
/// Get the combined animation and transition rules.
///
/// FIXME(emilio): Is this really useful?
fn animation_declarations(&self, context: &SharedStyleContext) -> AnimationDeclarations {
if !self.may_have_animations() {
return Default::default();
}
AnimationDeclarations {
animations: self.animation_rule(context),
transitions: self.transition_rule(context),
}
}
/// Get this element's animation rule.
fn animation_rule(
&self,
_: &SharedStyleContext,
) -> Option<Arc<Locked<PropertyDeclarationBlock>>>;
/// Get this element's transition rule.
fn transition_rule(
&self,
context: &SharedStyleContext,
) -> Option<Arc<Locked<PropertyDeclarationBlock>>>;
/// Get this element's state, for non-tree-structural pseudos.
fn state(&self) -> ElementState;
/// Whether this element has an attribute with a given namespace.
fn has_attr(&self, namespace: &Namespace, attr: &LocalName) -> bool;
/// Returns whether this element has a `part` attribute.
fn has_part_attr(&self) -> bool;
/// Returns whether this element exports any part from its shadow tree.
fn exports_any_part(&self) -> bool;
/// The ID for this element.
fn id(&self) -> Option<&WeakAtom>;
/// Internal iterator for the classes of this element.
fn each_class<F>(&self, callback: F)
where
F: FnMut(&AtomIdent);
/// Internal iterator for the part names of this element.
fn each_part<F>(&self, _callback: F)
where
F: FnMut(&AtomIdent),
{
}
/// Internal iterator for the attribute names of this element.
fn each_attr_name<F>(&self, callback: F)
where
F: FnMut(&AtomIdent);
/// Internal iterator for the part names that this element exports for a
/// given part name.
fn each_exported_part<F>(&self, _name: &AtomIdent, _callback: F)
where
F: FnMut(&AtomIdent),
{
}
/// Whether a given element may generate a pseudo-element.
///
/// This is useful to avoid computing, for example, pseudo styles for
/// `::-first-line` or `::-first-letter`, when we know it won't affect us.
///
/// TODO(emilio, bz): actually implement the logic for it.
fn may_generate_pseudo(&self, pseudo: &PseudoElement, _primary_style: &ComputedValues) -> bool {
// ::before/::after are always supported for now, though we could try to
// optimize out leaf elements.
// ::first-letter and ::first-line are only supported for block-inside
// things, and only in Gecko, not Servo. Unfortunately, Gecko has
// block-inside things that might have any computed display value due to
// things like fieldsets, legends, etc. Need to figure out how this
// should work.
debug_assert!(
pseudo.is_eager(),
"Someone called may_generate_pseudo with a non-eager pseudo."
);
true
}
/// Returns true if this element may have a descendant needing style processing.
///
/// Note that we cannot guarantee the existence of such an element, because
/// it may have been removed from the DOM between marking it for restyle and
/// the actual restyle traversal.
fn has_dirty_descendants(&self) -> bool;
/// Returns whether state or attributes that may change style have changed
/// on the element, and thus whether the element has been snapshotted to do
/// restyle hint computation.
fn has_snapshot(&self) -> bool;
/// Returns whether the current snapshot if present has been handled.
fn handled_snapshot(&self) -> bool;
/// Flags this element as having handled already its snapshot.
unsafe fn set_handled_snapshot(&self);
/// Returns whether the element's styles are up-to-date for |traversal_flags|.
fn has_current_styles_for_traversal(
&self,
data: &ElementData,
traversal_flags: TraversalFlags,
) -> bool {
if traversal_flags.for_animation_only() {
// In animation-only restyle we never touch snapshots and don't care
// about them. But we can't assert '!self.handled_snapshot()'
// here since there are some cases that a second animation-only
// restyle which is a result of normal restyle (e.g. setting
// animation-name in normal restyle and creating a new CSS
// animation in a SequentialTask) is processed after the normal
// traversal in that we had elements that handled snapshot.
if !data.has_styles() {
return false;
}
if !data.hint.has_animation_hint_or_recascade() {
return true;
}
// FIXME: This should ideally always return false, but it is a hack
// to work around our weird animation-only traversal
// stuff: If we're display: none and the rules we could match could
// change, we consider our style up-to-date. This is because
// re-cascading with and old style doesn't guarantee returning the
// correct animation style (that's bug 1393323). So if our display
// changed, and it changed from display: none, we would incorrectly
// forget about it and wouldn't be able to correctly style our
// descendants later.
if data.styles.is_display_none() && data.hint.match_self() {
return true;
}
return false;
}
if self.has_snapshot() && !self.handled_snapshot() {
return false;
}
data.has_styles() && !data.hint.has_non_animation_invalidations()
}
/// Returns whether the element's styles are up-to-date after traversal
/// (i.e. in post traversal).
fn has_current_styles(&self, data: &ElementData) -> bool {
if self.has_snapshot() && !self.handled_snapshot() {
return false;
}
data.has_styles() &&
// TODO(hiro): When an animating element moved into subtree of
// contenteditable element, there remains animation restyle hints in
// post traversal. It's generally harmless since the hints will be
// processed in a next styling but ideally it should be processed soon.
//
// Without this, we get failures in:
// layout/style/crashtests/1383319.html
// layout/style/crashtests/1383001.html
//
// https://bugzilla.mozilla.org/show_bug.cgi?id=1389675 tracks fixing
// this.
!data.hint.has_non_animation_invalidations()
}
/// Flag that this element has a descendant for style processing.
///
/// Only safe to call with exclusive access to the element.
unsafe fn set_dirty_descendants(&self);
/// Flag that this element has no descendant for style processing.
///
/// Only safe to call with exclusive access to the element.
unsafe fn unset_dirty_descendants(&self);
/// Similar to the dirty_descendants but for representing a descendant of
/// the element needs to be updated in animation-only traversal.
fn has_animation_only_dirty_descendants(&self) -> bool {
false
}
/// Flag that this element has a descendant for animation-only restyle
/// processing.
///
/// Only safe to call with exclusive access to the element.
unsafe fn set_animation_only_dirty_descendants(&self) {}
/// Flag that this element has no descendant for animation-only restyle processing.
///
/// Only safe to call with exclusive access to the element.
unsafe fn unset_animation_only_dirty_descendants(&self) {}
/// Clear all bits related describing the dirtiness of descendants.
///
/// In Gecko, this corresponds to the regular dirty descendants bit, the
/// animation-only dirty descendants bit, and the lazy frame construction
/// descendants bit.
unsafe fn clear_descendant_bits(&self) {
self.unset_dirty_descendants();
}
/// Returns true if this element is a visited link.
///
/// Servo doesn't support visited styles yet.
fn is_visited_link(&self) -> bool {
false
}
/// Returns true if this element is in a native anonymous subtree.
fn is_in_native_anonymous_subtree(&self) -> bool {
false
}
/// Returns the pseudo-element implemented by this element, if any.
///
/// Gecko traverses pseudo-elements during the style traversal, and we need
/// to know this so we can properly grab the pseudo-element style from the
/// parent element.
///
/// Note that we still need to compute the pseudo-elements before-hand,
/// given otherwise we don't know if we need to create an element or not.
///
/// Servo doesn't have to deal with this.
fn implemented_pseudo_element(&self) -> Option<PseudoElement> {
None
}
/// Atomically stores the number of children of this node that we will
/// need to process during bottom-up traversal.
fn store_children_to_process(&self, n: isize);
/// Atomically notes that a child has been processed during bottom-up
/// traversal. Returns the number of children left to process.
fn did_process_child(&self) -> isize;
/// Gets a reference to the ElementData container, or creates one.
///
/// Unsafe because it can race to allocate and leak if not used with
/// exclusive access to the element.
unsafe fn ensure_data(&self) -> AtomicRefMut<ElementData>;
/// Clears the element data reference, if any.
///
/// Unsafe following the same reasoning as ensure_data.
unsafe fn clear_data(&self);
/// Whether there is an ElementData container.
fn has_data(&self) -> bool;
/// Immutably borrows the ElementData.
fn borrow_data(&self) -> Option<AtomicRef<ElementData>>;
/// Mutably borrows the ElementData.
fn mutate_data(&self) -> Option<AtomicRefMut<ElementData>>;
/// Whether we should skip any root- or item-based display property
/// blockification on this element. (This function exists so that Gecko
/// native anonymous content can opt out of this style fixup.)
fn skip_item_display_fixup(&self) -> bool;
/// In Gecko, element has a flag that represents the element may have
/// any type of animations or not to bail out animation stuff early.
/// Whereas Servo doesn't have such flag.
fn may_have_animations(&self) -> bool;
/// Creates a task to update various animation state on a given (pseudo-)element.
#[cfg(feature = "gecko")]
fn update_animations(
&self,
before_change_style: Option<Arc<ComputedValues>>,
tasks: UpdateAnimationsTasks,
);
/// Creates a task to process post animation on a given element.
#[cfg(feature = "gecko")]
fn process_post_animation(&self, tasks: PostAnimationTasks);
/// Returns true if the element has relevant animations. Relevant
/// animations are those animations that are affecting the element's style
/// or are scheduled to do so in the future.
fn has_animations(&self, context: &SharedStyleContext) -> bool;
/// Returns true if the element has a CSS animation. The `context` and `pseudo_element`
/// arguments are only used by Servo, since it stores animations globally and pseudo-elements
/// are not in the DOM.
fn has_css_animations(
&self,
context: &SharedStyleContext,
pseudo_element: Option<PseudoElement>,
) -> bool;
/// Returns true if the element has a CSS transition (including running transitions and
/// completed transitions). The `context` and `pseudo_element` arguments are only used
/// by Servo, since it stores animations globally and pseudo-elements are not in the DOM.
fn has_css_transitions(
&self,
context: &SharedStyleContext,
pseudo_element: Option<PseudoElement>,
) -> bool;
/// Returns true if the element has animation restyle hints.
fn has_animation_restyle_hints(&self) -> bool {
let data = match self.borrow_data() {
Some(d) => d,
None => return false,
};
return data.hint.has_animation_hint();
}
/// The shadow root this element is a host of.
fn shadow_root(&self) -> Option<<Self::ConcreteNode as TNode>::ConcreteShadowRoot>;
/// The shadow root which roots the subtree this element is contained in.
fn containing_shadow(&self) -> Option<<Self::ConcreteNode as TNode>::ConcreteShadowRoot>;
/// Return the element which we can use to look up rules in the selector
/// maps.
///
/// This is always the element itself, except in the case where we are an
/// element-backed pseudo-element, in which case we return the originating
/// element.
fn rule_hash_target(&self) -> Self {
if self.is_pseudo_element() {
self.pseudo_element_originating_element()
.expect("Trying to collect rules for a detached pseudo-element")
} else {
*self
}
}
/// Executes the callback for each applicable style rule data which isn't
/// the main document's data (which stores UA / author rules).
///
/// The element passed to the callback is the containing shadow host for the
/// data if it comes from Shadow DOM.
///
/// Returns whether normal document author rules should apply.
///
/// TODO(emilio): We could separate the invalidation data for elements
/// matching in other scopes to avoid over-invalidation.
fn each_applicable_non_document_style_rule_data<'a, F>(&self, mut f: F) -> bool
where
Self: 'a,
F: FnMut(&'a CascadeData, Self),
{
use crate::rule_collector::containing_shadow_ignoring_svg_use;
let target = self.rule_hash_target();
if !target.matches_user_and_author_rules() {
return false;
}
let mut doc_rules_apply = true;
// Use the same rules to look for the containing host as we do for rule
// collection.
if let Some(shadow) = containing_shadow_ignoring_svg_use(target) {
doc_rules_apply = false;
if let Some(data) = shadow.style_data() {
f(data, shadow.host());
}
}
if let Some(shadow) = target.shadow_root() {
if let Some(data) = shadow.style_data() {
f(data, shadow.host());
}
}
let mut current = target.assigned_slot();
while let Some(slot) = current {
// Slots can only have assigned nodes when in a shadow tree.
let shadow = slot.containing_shadow().unwrap();
if let Some(data) = shadow.style_data() {
if data.any_slotted_rule() {
f(data, shadow.host());
}
}
current = slot.assigned_slot();
}
if target.has_part_attr() {
if let Some(mut inner_shadow) = target.containing_shadow() {
loop {
let inner_shadow_host = inner_shadow.host();
match inner_shadow_host.containing_shadow() {
Some(shadow) => {
if let Some(data) = shadow.style_data() {
if data.any_part_rule() {
f(data, shadow.host())
}
}
// TODO: Could be more granular.
if !inner_shadow_host.exports_any_part() {
break;
}
inner_shadow = shadow;
},
None => {
// TODO(emilio): Should probably distinguish with
// MatchesDocumentRules::{No,Yes,IfPart} or
// something so that we could skip some work.
doc_rules_apply = true;
break;
},
}
}
}
}
doc_rules_apply
}
/// Returns true if one of the transitions needs to be updated on this element. We check all
/// the transition properties to make sure that updating transitions is necessary.
/// This method should only be called if might_needs_transitions_update returns true when
/// passed the same parameters.
#[cfg(feature = "gecko")]
fn needs_transitions_update(
&self,
before_change_style: &ComputedValues,
after_change_style: &ComputedValues,
) -> bool;
/// Returns the value of the `xml:lang=""` attribute (or, if appropriate,
/// the `lang=""` attribute) on this element.
fn lang_attr(&self) -> Option<AttrValue>;
/// Returns whether this element's language matches the language tag
/// `value`. If `override_lang` is not `None`, it specifies the value
/// of the `xml:lang=""` or `lang=""` attribute to use in place of
/// looking at the element and its ancestors. (This argument is used
/// to implement matching of `:lang()` against snapshots.)
fn match_element_lang(&self, override_lang: Option<Option<AttrValue>>, value: &Lang) -> bool;
/// Returns whether this element is the main body element of the HTML
/// document it is on.
fn is_html_document_body_element(&self) -> bool;
/// Generate the proper applicable declarations due to presentational hints,
/// and insert them into `hints`.
fn synthesize_presentational_hints_for_legacy_attributes<V>(
&self,
visited_handling: VisitedHandlingMode,
hints: &mut V,
) where
V: Push<ApplicableDeclarationBlock>;
/// Returns element's local name.
fn local_name(&self) -> &<SelectorImpl as selectors::parser::SelectorImpl>::BorrowedLocalName;
/// Returns element's namespace.
fn namespace(&self)
-> &<SelectorImpl as selectors::parser::SelectorImpl>::BorrowedNamespaceUrl;
/// Returns the size of the element to be used in container size queries.
/// This will usually be the size of the content area of the primary box,
/// but can be None if there is no box or if some axis lacks size containment.
fn query_container_size(&self, display: &Display) -> euclid::default::Size2D<Option<app_units::Au>>;
}
/// TNode and TElement aren't Send because we want to be careful and explicit
/// about our parallel traversal. However, there are certain situations
/// (including but not limited to the traversal) where we need to send DOM
/// objects to other threads.
///
/// That's the reason why `SendNode` exists.
#[derive(Clone, Debug, PartialEq)]
pub struct SendNode<N: TNode>(N);
unsafe impl<N: TNode> Send for SendNode<N> {}
impl<N: TNode> SendNode<N> {
/// Unsafely construct a SendNode.
pub unsafe fn new(node: N) -> Self {
SendNode(node)
}
}
impl<N: TNode> Deref for SendNode<N> {
type Target = N;
fn deref(&self) -> &N {
&self.0
}
}
/// Same reason as for the existence of SendNode, SendElement does the proper
/// things for a given `TElement`.
#[derive(Debug, Eq, Hash, PartialEq)]
pub struct SendElement<E: TElement>(E);
unsafe impl<E: TElement> Send for SendElement<E> {}
impl<E: TElement> SendElement<E> {
/// Unsafely construct a SendElement.
pub unsafe fn new(el: E) -> Self {
SendElement(el)
}
}
impl<E: TElement> Deref for SendElement<E> {
type Target = E;
fn deref(&self) -> &E {
&self.0
}
}
|