summaryrefslogtreecommitdiffstats
path: root/servo/components/style/values/generics/calc.rs
blob: 24b0cf23a326e3106adcf43c89abb948fb812a79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */

//! [Calc expressions][calc].
//!
//! [calc]: https://drafts.csswg.org/css-values/#calc-notation

use num_traits::{Float, Zero};
use smallvec::SmallVec;
use std::fmt::{self, Write};
use std::ops::{Add, Div, Mul, Rem, Sub};
use std::{cmp, mem};
use style_traits::{CssWriter, ToCss};

/// Whether we're a `min` or `max` function.
#[derive(
    Clone,
    Copy,
    Debug,
    Deserialize,
    MallocSizeOf,
    PartialEq,
    Serialize,
    ToAnimatedZero,
    ToResolvedValue,
    ToShmem,
)]
#[repr(u8)]
pub enum MinMaxOp {
    /// `min()`
    Min,
    /// `max()`
    Max,
}

/// Whether we're a `mod` or `rem` function.
#[derive(
    Clone,
    Copy,
    Debug,
    Deserialize,
    MallocSizeOf,
    PartialEq,
    Serialize,
    ToAnimatedZero,
    ToResolvedValue,
    ToShmem,
)]
#[repr(u8)]
pub enum ModRemOp {
    /// `mod()`
    Mod,
    /// `rem()`
    Rem,
}

/// The strategy used in `round()`
#[derive(
    Clone,
    Copy,
    Debug,
    Deserialize,
    MallocSizeOf,
    PartialEq,
    Serialize,
    ToAnimatedZero,
    ToResolvedValue,
    ToShmem,
)]
#[repr(u8)]
pub enum RoundingStrategy {
    /// `round(nearest, a, b)`
    /// round a to the nearest multiple of b
    Nearest,
    /// `round(up, a, b)`
    /// round a up to the nearest multiple of b
    Up,
    /// `round(down, a, b)`
    /// round a down to the nearest multiple of b
    Down,
    /// `round(to-zero, a, b)`
    /// round a to the nearest multiple of b that is towards zero
    ToZero,
}

/// This determines the order in which we serialize members of a calc() sum.
///
/// See https://drafts.csswg.org/css-values-4/#sort-a-calculations-children
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd)]
#[allow(missing_docs)]
pub enum SortKey {
    Number,
    Percentage,
    Cap,
    Ch,
    Cqb,
    Cqh,
    Cqi,
    Cqmax,
    Cqmin,
    Cqw,
    Deg,
    Dvb,
    Dvh,
    Dvi,
    Dvmax,
    Dvmin,
    Dvw,
    Em,
    Ex,
    Ic,
    Lvb,
    Lvh,
    Lvi,
    Lvmax,
    Lvmin,
    Lvw,
    Px,
    Rem,
    Sec,
    Svb,
    Svh,
    Svi,
    Svmax,
    Svmin,
    Svw,
    Vb,
    Vh,
    Vi,
    Vmax,
    Vmin,
    Vw,
    Other,
}

/// A generic node in a calc expression.
///
/// FIXME: This would be much more elegant if we used `Self` in the types below,
/// but we can't because of https://github.com/serde-rs/serde/issues/1565.
///
/// FIXME: The following annotations are to workaround an LLVM inlining bug, see
/// bug 1631929.
///
/// cbindgen:destructor-attributes=MOZ_NEVER_INLINE
/// cbindgen:copy-constructor-attributes=MOZ_NEVER_INLINE
/// cbindgen:eq-attributes=MOZ_NEVER_INLINE
#[repr(u8)]
#[derive(
    Clone,
    Debug,
    Deserialize,
    MallocSizeOf,
    PartialEq,
    Serialize,
    ToAnimatedZero,
    ToResolvedValue,
    ToShmem,
)]
pub enum GenericCalcNode<L> {
    /// A leaf node.
    Leaf(L),
    /// A sum node, representing `a + b + c` where a, b, and c are the
    /// arguments.
    Sum(crate::OwnedSlice<GenericCalcNode<L>>),
    /// A `min` or `max` function.
    MinMax(crate::OwnedSlice<GenericCalcNode<L>>, MinMaxOp),
    /// A `clamp()` function.
    Clamp {
        /// The minimum value.
        min: Box<GenericCalcNode<L>>,
        /// The central value.
        center: Box<GenericCalcNode<L>>,
        /// The maximum value.
        max: Box<GenericCalcNode<L>>,
    },
    /// A `round()` function.
    Round {
        /// The rounding strategy.
        strategy: RoundingStrategy,
        /// The value to round.
        value: Box<GenericCalcNode<L>>,
        /// The step value.
        step: Box<GenericCalcNode<L>>,
    },
    /// A `mod()` or `rem()` function.
    ModRem {
        /// The dividend calculation.
        dividend: Box<GenericCalcNode<L>>,
        /// The divisor calculation.
        divisor: Box<GenericCalcNode<L>>,
        /// Is the function mod or rem?
        op: ModRemOp,
    },
}

pub use self::GenericCalcNode as CalcNode;

/// A trait that represents all the stuff a valid leaf of a calc expression.
pub trait CalcNodeLeaf: Clone + Sized + PartialOrd + PartialEq + ToCss {
    /// Returns the unitless value of this leaf.
    fn unitless_value(&self) -> f32;

    /// Whether this value is known-negative.
    fn is_negative(&self) -> bool {
        self.unitless_value().is_sign_negative()
    }

    /// Whether this value is infinite.
    fn is_infinite(&self) -> bool {
        self.unitless_value().is_infinite()
    }

    /// Whether this value is zero.
    fn is_zero(&self) -> bool {
        self.unitless_value().is_zero()
    }

    /// Whether this value is NaN.
    fn is_nan(&self) -> bool {
        self.unitless_value().is_nan()
    }

    /// Tries to merge one sum to another, that is, perform `x` + `y`.
    fn try_sum_in_place(&mut self, other: &Self) -> Result<(), ()>;

    /// Tries a generic arithmetic operation.
    fn try_op<O>(&self, other: &Self, op: O) -> Result<Self, ()>
    where
        O: Fn(f32, f32) -> f32;

    /// Multiplies the leaf by a given scalar number.
    fn mul_by(&mut self, scalar: f32);

    /// Negates the leaf.
    fn negate(&mut self) {
        self.mul_by(-1.);
    }

    /// Canonicalizes the expression if necessary.
    fn simplify(&mut self);

    /// Returns the sort key for simplification.
    fn sort_key(&self) -> SortKey;
}

impl<L: CalcNodeLeaf> CalcNode<L> {
    /// Negates the node.
    pub fn negate(&mut self) {
        self.mul_by(-1.);
    }

    fn sort_key(&self) -> SortKey {
        match *self {
            Self::Leaf(ref l) => l.sort_key(),
            _ => SortKey::Other,
        }
    }

    /// Returns the leaf if we can (if simplification has allowed it).
    pub fn as_leaf(&self) -> Option<&L> {
        match *self {
            Self::Leaf(ref l) => Some(l),
            _ => None,
        }
    }

    /// Tries to merge one sum to another, that is, perform `x` + `y`.
    fn try_sum_in_place(&mut self, other: &Self) -> Result<(), ()> {
        match (self, other) {
            (&mut CalcNode::Leaf(ref mut one), &CalcNode::Leaf(ref other)) => {
                one.try_sum_in_place(other)
            },
            _ => Err(()),
        }
    }

    /// Tries to apply a generic arithmentic operator
    fn try_op<O>(&self, other: &Self, op: O) -> Result<Self, ()>
    where
        O: Fn(f32, f32) -> f32,
    {
        match (self, other) {
            (&CalcNode::Leaf(ref one), &CalcNode::Leaf(ref other)) => {
                Ok(CalcNode::Leaf(one.try_op(other, op)?))
            },
            _ => Err(()),
        }
    }

    /// Convert this `CalcNode` into a `CalcNode` with a different leaf kind.
    pub fn map_leaves<O, F>(&self, mut map: F) -> CalcNode<O>
    where
        O: CalcNodeLeaf,
        F: FnMut(&L) -> O,
    {
        self.map_leaves_internal(&mut map)
    }

    fn map_leaves_internal<O, F>(&self, map: &mut F) -> CalcNode<O>
    where
        O: CalcNodeLeaf,
        F: FnMut(&L) -> O,
    {
        fn map_children<L, O, F>(
            children: &[CalcNode<L>],
            map: &mut F,
        ) -> crate::OwnedSlice<CalcNode<O>>
        where
            L: CalcNodeLeaf,
            O: CalcNodeLeaf,
            F: FnMut(&L) -> O,
        {
            children
                .iter()
                .map(|c| c.map_leaves_internal(map))
                .collect()
        }

        match *self {
            Self::Leaf(ref l) => CalcNode::Leaf(map(l)),
            Self::Sum(ref c) => CalcNode::Sum(map_children(c, map)),
            Self::MinMax(ref c, op) => CalcNode::MinMax(map_children(c, map), op),
            Self::Clamp {
                ref min,
                ref center,
                ref max,
            } => {
                let min = Box::new(min.map_leaves_internal(map));
                let center = Box::new(center.map_leaves_internal(map));
                let max = Box::new(max.map_leaves_internal(map));
                CalcNode::Clamp { min, center, max }
            },
            Self::Round {
                strategy,
                ref value,
                ref step,
            } => {
                let value = Box::new(value.map_leaves_internal(map));
                let step = Box::new(step.map_leaves_internal(map));
                CalcNode::Round {
                    strategy,
                    value,
                    step,
                }
            },
            Self::ModRem {
                ref dividend,
                ref divisor,
                op,
            } => {
                let dividend = Box::new(dividend.map_leaves_internal(map));
                let divisor = Box::new(divisor.map_leaves_internal(map));
                CalcNode::ModRem {
                    dividend,
                    divisor,
                    op,
                }
            },
        }
    }

    /// Resolves the expression returning a value of `O`, given a function to
    /// turn a leaf into the relevant value.
    pub fn resolve<O>(
        &self,
        mut leaf_to_output_fn: impl FnMut(&L) -> Result<O, ()>,
    ) -> Result<O, ()>
    where
        O: PartialOrd
            + PartialEq
            + Add<Output = O>
            + Mul<Output = O>
            + Div<Output = O>
            + Sub<Output = O>
            + Zero
            + Float
            + Copy,
    {
        self.resolve_internal(&mut leaf_to_output_fn)
    }

    fn resolve_internal<O, F>(&self, leaf_to_output_fn: &mut F) -> Result<O, ()>
    where
        O: PartialOrd
            + PartialEq
            + Add<Output = O>
            + Mul<Output = O>
            + Div<Output = O>
            + Sub<Output = O>
            + Zero
            + Float
            + Copy,
        F: FnMut(&L) -> Result<O, ()>,
    {
        Ok(match *self {
            Self::Leaf(ref l) => return leaf_to_output_fn(l),
            Self::Sum(ref c) => {
                let mut result = Zero::zero();
                for child in &**c {
                    result = result + child.resolve_internal(leaf_to_output_fn)?;
                }
                result
            },
            Self::MinMax(ref nodes, op) => {
                let mut result = nodes[0].resolve_internal(leaf_to_output_fn)?;
                for node in nodes.iter().skip(1) {
                    let candidate = node.resolve_internal(leaf_to_output_fn)?;
                    let candidate_wins = match op {
                        MinMaxOp::Min => candidate < result,
                        MinMaxOp::Max => candidate > result,
                    };
                    if candidate_wins {
                        result = candidate;
                    }
                }
                result
            },
            Self::Clamp {
                ref min,
                ref center,
                ref max,
            } => {
                let min = min.resolve_internal(leaf_to_output_fn)?;
                let center = center.resolve_internal(leaf_to_output_fn)?;
                let max = max.resolve_internal(leaf_to_output_fn)?;

                let mut result = center;
                if result > max {
                    result = max;
                }
                if result < min {
                    result = min
                }
                result
            },
            Self::Round {
                strategy,
                ref value,
                ref step,
            } => {
                let value = value.resolve_internal(leaf_to_output_fn)?;
                let step = step.resolve_internal(leaf_to_output_fn)?;

                // TODO(emilio): Seems like at least a few of these
                // special-cases could be removed if we do the math in a
                // particular order.
                if step.is_zero() {
                    return Ok(<O as Float>::nan());
                }

                if value.is_infinite() && step.is_infinite() {
                    return Ok(<O as Float>::nan());
                }

                if value.is_infinite() {
                    return Ok(value);
                }

                if step.is_infinite() {
                    match strategy {
                        RoundingStrategy::Nearest | RoundingStrategy::ToZero => {
                            return if value.is_sign_negative() {
                                Ok(<O as Float>::neg_zero())
                            } else {
                                Ok(<O as Zero>::zero())
                            }
                        },
                        RoundingStrategy::Up => {
                            return if !value.is_sign_negative() && !value.is_zero() {
                                Ok(<O as Float>::infinity())
                            } else if !value.is_sign_negative() && value.is_zero() {
                                Ok(value)
                            } else {
                                Ok(<O as Float>::neg_zero())
                            }
                        },
                        RoundingStrategy::Down => {
                            return if value.is_sign_negative() && !value.is_zero() {
                                Ok(<O as Float>::neg_infinity())
                            } else if value.is_sign_negative() && value.is_zero() {
                                Ok(value)
                            } else {
                                Ok(<O as Zero>::zero())
                            }
                        },
                    }
                }

                let div = value / step;
                let lower_bound = div.floor() * step;
                let upper_bound = div.ceil() * step;

                match strategy {
                    RoundingStrategy::Nearest => {
                        // In case of a tie, use the upper bound
                        if value - lower_bound < upper_bound - value {
                            lower_bound
                        } else {
                            upper_bound
                        }
                    },
                    RoundingStrategy::Up => upper_bound,
                    RoundingStrategy::Down => lower_bound,
                    RoundingStrategy::ToZero => {
                        // In case of a tie, use the upper bound
                        if lower_bound.abs() < upper_bound.abs() {
                            lower_bound
                        } else {
                            upper_bound
                        }
                    },
                }
            },
            Self::ModRem {
                ref dividend,
                ref divisor,
                op,
            } => {
                let dividend = dividend.resolve_internal(leaf_to_output_fn)?;
                let divisor = divisor.resolve_internal(leaf_to_output_fn)?;

                // In mod(A, B) only, if B is infinite and A has opposite sign to B
                // (including an oppositely-signed zero), the result is NaN.
                // https://drafts.csswg.org/css-values/#round-infinities
                if matches!(op, ModRemOp::Mod) &&
                    divisor.is_infinite() &&
                    dividend.is_sign_negative() != divisor.is_sign_negative()
                {
                    return Ok(<O as Float>::nan());
                }

                match op {
                    ModRemOp::Mod => dividend - divisor * (dividend / divisor).floor(),
                    ModRemOp::Rem => dividend - divisor * (dividend / divisor).trunc(),
                }
            },
        })
    }

    fn is_negative_leaf(&self) -> bool {
        match *self {
            Self::Leaf(ref l) => l.is_negative(),
            _ => false,
        }
    }

    fn is_zero_leaf(&self) -> bool {
        match *self {
            Self::Leaf(ref l) => l.is_zero(),
            _ => false,
        }
    }

    fn is_infinite_leaf(&self) -> bool {
        match *self {
            Self::Leaf(ref l) => l.is_infinite(),
            _ => false,
        }
    }

    /// Multiplies the node by a scalar.
    pub fn mul_by(&mut self, scalar: f32) {
        match *self {
            Self::Leaf(ref mut l) => l.mul_by(scalar),
            // Multiplication is distributive across this.
            Self::Sum(ref mut children) => {
                for node in &mut **children {
                    node.mul_by(scalar);
                }
            },
            // This one is a bit trickier.
            Self::MinMax(ref mut children, ref mut op) => {
                for node in &mut **children {
                    node.mul_by(scalar);
                }

                // For negatives we need to invert the operation.
                if scalar < 0. {
                    *op = match *op {
                        MinMaxOp::Min => MinMaxOp::Max,
                        MinMaxOp::Max => MinMaxOp::Min,
                    }
                }
            },
            // This one is slightly tricky too.
            Self::Clamp {
                ref mut min,
                ref mut center,
                ref mut max,
            } => {
                min.mul_by(scalar);
                center.mul_by(scalar);
                max.mul_by(scalar);
                // For negatives we need to swap min / max.
                if scalar < 0. {
                    mem::swap(min, max);
                }
            },
            Self::Round {
                ref mut value,
                ref mut step,
                ..
            } => {
                value.mul_by(scalar);
                step.mul_by(scalar);
            },
            Self::ModRem {
                ref mut dividend,
                ref mut divisor,
                ..
            } => {
                dividend.mul_by(scalar);
                divisor.mul_by(scalar);
            },
        }
    }

    /// Visits all the nodes in this calculation tree recursively, starting by
    /// the leaves and bubbling all the way up.
    ///
    /// This is useful for simplification, but can also be used for validation
    /// and such.
    pub fn visit_depth_first(&mut self, mut f: impl FnMut(&mut Self)) {
        self.visit_depth_first_internal(&mut f);
    }

    fn visit_depth_first_internal(&mut self, f: &mut impl FnMut(&mut Self)) {
        match *self {
            Self::Clamp {
                ref mut min,
                ref mut center,
                ref mut max,
            } => {
                min.visit_depth_first_internal(f);
                center.visit_depth_first_internal(f);
                max.visit_depth_first_internal(f);
            },
            Self::Round {
                ref mut value,
                ref mut step,
                ..
            } => {
                value.visit_depth_first_internal(f);
                step.visit_depth_first_internal(f);
            },
            Self::ModRem {
                ref mut dividend,
                ref mut divisor,
                ..
            } => {
                dividend.visit_depth_first_internal(f);
                divisor.visit_depth_first_internal(f);
            },
            Self::Sum(ref mut children) | Self::MinMax(ref mut children, _) => {
                for child in &mut **children {
                    child.visit_depth_first_internal(f);
                }
            },
            Self::Leaf(..) => {},
        }
        f(self);
    }

    /// Simplifies and sorts the calculation of a given node. All the nodes
    /// below it should be simplified already, this only takes care of
    /// simplifying directly nested nodes. So, probably should always be used in
    /// combination with `visit_depth_first()`.
    ///
    /// This is only needed if it's going to be preserved after parsing (so, for
    /// `<length-percentage>`). Otherwise we can just evaluate it using
    /// `resolve()`, and we'll come up with a simplified value anyways.
    pub fn simplify_and_sort_direct_children(&mut self) {
        macro_rules! replace_self_with {
            ($slot:expr) => {{
                let dummy = Self::MinMax(Default::default(), MinMaxOp::Max);
                let result = mem::replace($slot, dummy);
                *self = result;
            }};
        }
        match *self {
            Self::Clamp {
                ref mut min,
                ref mut center,
                ref mut max,
            } => {
                // NOTE: clamp() is max(min, min(center, max))
                let min_cmp_center = match min.partial_cmp(&center) {
                    Some(o) => o,
                    None => return,
                };

                // So if we can prove that min is more than center, then we won,
                // as that's what we should always return.
                if matches!(min_cmp_center, cmp::Ordering::Greater) {
                    return replace_self_with!(&mut **min);
                }

                // Otherwise try with max.
                let max_cmp_center = match max.partial_cmp(&center) {
                    Some(o) => o,
                    None => return,
                };

                if matches!(max_cmp_center, cmp::Ordering::Less) {
                    // max is less than center, so we need to return effectively
                    // `max(min, max)`.
                    let max_cmp_min = match max.partial_cmp(&min) {
                        Some(o) => o,
                        None => {
                            debug_assert!(
                                false,
                                "We compared center with min and max, how are \
                                 min / max not comparable with each other?"
                            );
                            return;
                        },
                    };

                    if matches!(max_cmp_min, cmp::Ordering::Less) {
                        return replace_self_with!(&mut **min);
                    }

                    return replace_self_with!(&mut **max);
                }

                // Otherwise we're the center node.
                return replace_self_with!(&mut **center);
            },
            Self::Round {
                strategy,
                ref mut value,
                ref mut step,
            } => {
                if step.is_zero_leaf() {
                    value.mul_by(f32::NAN);
                    return replace_self_with!(&mut **value);
                }

                if value.is_infinite_leaf() && step.is_infinite_leaf() {
                    value.mul_by(f32::NAN);
                    return replace_self_with!(&mut **value);
                }

                if value.is_infinite_leaf() {
                    return replace_self_with!(&mut **value);
                }

                if step.is_infinite_leaf() {
                    match strategy {
                        RoundingStrategy::Nearest | RoundingStrategy::ToZero => {
                            value.mul_by(0.);
                            return replace_self_with!(&mut **value);
                        },
                        RoundingStrategy::Up => {
                            if !value.is_negative_leaf() && !value.is_zero_leaf() {
                                value.mul_by(f32::INFINITY);
                                return replace_self_with!(&mut **value);
                            } else if !value.is_negative_leaf() && value.is_zero_leaf() {
                                return replace_self_with!(&mut **value);
                            } else {
                                value.mul_by(0.);
                                return replace_self_with!(&mut **value);
                            }
                        },
                        RoundingStrategy::Down => {
                            if value.is_negative_leaf() && !value.is_zero_leaf() {
                                value.mul_by(f32::INFINITY);
                                return replace_self_with!(&mut **value);
                            } else if value.is_negative_leaf() && value.is_zero_leaf() {
                                return replace_self_with!(&mut **value);
                            } else {
                                value.mul_by(0.);
                                return replace_self_with!(&mut **value);
                            }
                        },
                    }
                }

                if step.is_negative_leaf() {
                    step.negate();
                }

                let remainder = match value.try_op(step, Rem::rem) {
                    Ok(res) => res,
                    Err(..) => return,
                };

                let (mut lower_bound, mut upper_bound) = if value.is_negative_leaf() {
                    let upper_bound = match value.try_op(&remainder, Sub::sub) {
                        Ok(res) => res,
                        Err(..) => return,
                    };

                    let lower_bound = match upper_bound.try_op(&step, Sub::sub) {
                        Ok(res) => res,
                        Err(..) => return,
                    };

                    (lower_bound, upper_bound)
                } else {
                    let lower_bound = match value.try_op(&remainder, Sub::sub) {
                        Ok(res) => res,
                        Err(..) => return,
                    };

                    let upper_bound = match lower_bound.try_op(&step, Add::add) {
                        Ok(res) => res,
                        Err(..) => return,
                    };

                    (lower_bound, upper_bound)
                };

                match strategy {
                    RoundingStrategy::Nearest => {
                        let lower_diff = match value.try_op(&lower_bound, Sub::sub) {
                            Ok(res) => res,
                            Err(..) => return,
                        };

                        let upper_diff = match upper_bound.try_op(value, Sub::sub) {
                            Ok(res) => res,
                            Err(..) => return,
                        };

                        // In case of a tie, use the upper bound
                        if lower_diff < upper_diff {
                            return replace_self_with!(&mut lower_bound);
                        } else {
                            return replace_self_with!(&mut upper_bound);
                        }
                    },
                    RoundingStrategy::Up => return replace_self_with!(&mut upper_bound),
                    RoundingStrategy::Down => return replace_self_with!(&mut lower_bound),
                    RoundingStrategy::ToZero => {
                        let mut lower_diff = lower_bound.clone();
                        let mut upper_diff = upper_bound.clone();

                        if lower_diff.is_negative_leaf() {
                            lower_diff.negate();
                        }

                        if upper_diff.is_negative_leaf() {
                            upper_diff.negate();
                        }

                        // In case of a tie, use the upper bound
                        if lower_diff < upper_diff {
                            return replace_self_with!(&mut lower_bound);
                        } else {
                            return replace_self_with!(&mut upper_bound);
                        }
                    },
                };
            },
            Self::ModRem {
                ref dividend,
                ref divisor,
                op,
            } => {
                let mut result = dividend.clone();

                // In mod(A, B) only, if B is infinite and A has opposite sign to B
                // (including an oppositely-signed zero), the result is NaN.
                // https://drafts.csswg.org/css-values/#round-infinities
                if matches!(op, ModRemOp::Mod) &&
                    divisor.is_infinite_leaf() &&
                    dividend.is_negative_leaf() != divisor.is_negative_leaf()
                {
                    result.mul_by(f32::NAN);
                    return replace_self_with!(&mut *result);
                }

                let result = match op {
                    ModRemOp::Mod => dividend.try_op(divisor, |a, b| a - b * (a / b).floor()),
                    ModRemOp::Rem => dividend.try_op(divisor, |a, b| a - b * (a / b).trunc()),
                };

                let mut result = match result {
                    Ok(res) => res,
                    Err(..) => return,
                };

                return replace_self_with!(&mut result);
            },
            Self::MinMax(ref mut children, op) => {
                let winning_order = match op {
                    MinMaxOp::Min => cmp::Ordering::Less,
                    MinMaxOp::Max => cmp::Ordering::Greater,
                };

                let mut result = 0;
                for i in 1..children.len() {
                    let o = match children[i].partial_cmp(&children[result]) {
                        // We can't compare all the children, so we can't
                        // know which one will actually win. Bail out and
                        // keep ourselves as a min / max function.
                        //
                        // TODO: Maybe we could simplify compatible children,
                        // see https://github.com/w3c/csswg-drafts/issues/4756
                        None => return,
                        Some(o) => o,
                    };

                    if o == winning_order {
                        result = i;
                    }
                }

                replace_self_with!(&mut children[result]);
            },
            Self::Sum(ref mut children_slot) => {
                let mut sums_to_merge = SmallVec::<[_; 3]>::new();
                let mut extra_kids = 0;
                for (i, child) in children_slot.iter().enumerate() {
                    if let Self::Sum(ref children) = *child {
                        extra_kids += children.len();
                        sums_to_merge.push(i);
                    }
                }

                // If we only have one kid, we've already simplified it, and it
                // doesn't really matter whether it's a sum already or not, so
                // lift it up and continue.
                if children_slot.len() == 1 {
                    return replace_self_with!(&mut children_slot[0]);
                }

                let mut children = mem::replace(children_slot, Default::default()).into_vec();

                if !sums_to_merge.is_empty() {
                    children.reserve(extra_kids - sums_to_merge.len());
                    // Merge all our nested sums, in reverse order so that the
                    // list indices are not invalidated.
                    for i in sums_to_merge.drain(..).rev() {
                        let kid_children = match children.swap_remove(i) {
                            Self::Sum(c) => c,
                            _ => unreachable!(),
                        };

                        // This would be nicer with
                        // https://github.com/rust-lang/rust/issues/59878 fixed.
                        children.extend(kid_children.into_vec());
                    }
                }

                debug_assert!(children.len() >= 2, "Should still have multiple kids!");

                // Sort by spec order.
                children.sort_unstable_by_key(|c| c.sort_key());

                // NOTE: if the function returns true, by the docs of dedup_by,
                // a is removed.
                children.dedup_by(|a, b| b.try_sum_in_place(a).is_ok());

                if children.len() == 1 {
                    // If only one children remains, lift it up, and carry on.
                    replace_self_with!(&mut children[0]);
                } else {
                    // Else put our simplified children back.
                    *children_slot = children.into_boxed_slice().into();
                }
            },
            Self::Leaf(ref mut l) => {
                l.simplify();
            },
        }
    }

    /// Simplifies and sorts the kids in the whole calculation subtree.
    pub fn simplify_and_sort(&mut self) {
        self.visit_depth_first(|node| node.simplify_and_sort_direct_children())
    }

    fn to_css_impl<W>(&self, dest: &mut CssWriter<W>, is_outermost: bool) -> fmt::Result
    where
        W: Write,
    {
        let write_closing_paren = match *self {
            Self::MinMax(_, op) => {
                dest.write_str(match op {
                    MinMaxOp::Max => "max(",
                    MinMaxOp::Min => "min(",
                })?;
                true
            },
            Self::Clamp { .. } => {
                dest.write_str("clamp(")?;
                true
            },
            Self::Round { strategy, .. } => {
                match strategy {
                    RoundingStrategy::Nearest => dest.write_str("round("),
                    RoundingStrategy::Up => dest.write_str("round(up, "),
                    RoundingStrategy::Down => dest.write_str("round(down, "),
                    RoundingStrategy::ToZero => dest.write_str("round(to-zero, "),
                }?;

                true
            },
            Self::ModRem { op, .. } => {
                dest.write_str(match op {
                    ModRemOp::Mod => "mod(",
                    ModRemOp::Rem => "rem(",
                })?;

                true
            },
            _ => {
                if is_outermost {
                    dest.write_str("calc(")?;
                }
                is_outermost
            },
        };

        match *self {
            Self::MinMax(ref children, _) => {
                let mut first = true;
                for child in &**children {
                    if !first {
                        dest.write_str(", ")?;
                    }
                    first = false;
                    child.to_css_impl(dest, false)?;
                }
            },
            Self::Sum(ref children) => {
                let mut first = true;
                for child in &**children {
                    if !first {
                        if child.is_negative_leaf() {
                            dest.write_str(" - ")?;
                            let mut c = child.clone();
                            c.negate();
                            c.to_css_impl(dest, false)?;
                        } else {
                            dest.write_str(" + ")?;
                            child.to_css_impl(dest, false)?;
                        }
                    } else {
                        first = false;
                        child.to_css_impl(dest, false)?;
                    }
                }
            },
            Self::Clamp {
                ref min,
                ref center,
                ref max,
            } => {
                min.to_css_impl(dest, false)?;
                dest.write_str(", ")?;
                center.to_css_impl(dest, false)?;
                dest.write_str(", ")?;
                max.to_css_impl(dest, false)?;
            },
            Self::Round {
                ref value,
                ref step,
                ..
            } => {
                value.to_css_impl(dest, false)?;
                dest.write_str(", ")?;
                step.to_css_impl(dest, false)?;
            },
            Self::ModRem {
                ref dividend,
                ref divisor,
                ..
            } => {
                dividend.to_css_impl(dest, false)?;
                dest.write_str(", ")?;
                divisor.to_css_impl(dest, false)?;
            },
            Self::Leaf(ref l) => l.to_css(dest)?,
        }

        if write_closing_paren {
            dest.write_str(")")?;
        }
        Ok(())
    }
}

impl<L: CalcNodeLeaf> PartialOrd for CalcNode<L> {
    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
        match (self, other) {
            (&CalcNode::Leaf(ref one), &CalcNode::Leaf(ref other)) => one.partial_cmp(other),
            _ => None,
        }
    }
}

impl<L: CalcNodeLeaf> ToCss for CalcNode<L> {
    /// <https://drafts.csswg.org/css-values/#calc-serialize>
    fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
    where
        W: Write,
    {
        self.to_css_impl(dest, /* is_outermost = */ true)
    }
}