1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
|
<!doctype html>
<title>Geometry APIs spec examples</title>
<script src=/resources/testharness.js></script>
<script src=/resources/testharnessreport.js></script>
<link rel=help href="https://drafts.fxtf.org/geometry/">
<script>
test(() => {
var point = new DOMPoint(5, 4);
var matrix = new DOMMatrix([2, 0, 0, 2, 10, 10]);
var transformedPoint = point.matrixTransform(matrix);
// The point variable is set to a new DOMPoint object with x coordinate initialized to 5 and y
// coordinate initialized to 4.
assert_equals(point.x, 5, 'point.x');
assert_equals(point.y, 4, 'point.y');
assert_equals(point.z, 0, 'point.z');
assert_equals(point.w, 1, 'point.w');
// This new DOMPoint is now scaled and the translated by matrix. This resulting transformedPoint
// has the x coordinate 20 and y coordinate 18.
assert_equals(transformedPoint.x, 20, 'transformedPoint.x');
assert_equals(transformedPoint.y, 18, 'transformedPoint.x');
assert_equals(transformedPoint.z, 0, 'transformedPoint.z');
assert_equals(transformedPoint.w, 1, 'transformedPoint.w');
}, 'matrixTransform');
test(() => {
var point = new DOMPoint(2, 0);
var quad1 = new DOMQuad(point, {x: 12, y: 0}, {x: 12, y: 10}, {x: 2, y: 10});
// The attribute values of the resulting DOMQuad quad1 above are also equivalent to the attribute
// values of the following DOMQuad quad2:
var rect = new DOMRect(2, 0, 10, 10);
var quad2 = DOMQuad.fromRect(rect);
for (var p of ['p1', 'p2', 'p3', 'p4']) {
for (var attr of ['x', 'y', 'z', 'w']) {
assert_equals(quad2[p][attr], quad1[p][attr], `${p}.${attr}`);
}
}
}, 'DOMQuad');
test(() => {
var quad = new DOMQuad({x: 40, y: 25}, {x: 180, y: 8}, {x: 210, y: 150}, {x: 10, y: 180});
// <circle cx="40" cy="25" r="3" fill="rgb(204, 51, 51)"/>
assert_equals(quad.p1.x, 40, 'p1.x');
assert_equals(quad.p1.y, 25, 'p1.y');
// <circle cx="180" cy="8" r="3" fill="rgb(204, 51, 51)"/>
assert_equals(quad.p2.x, 180, 'p2.x');
assert_equals(quad.p2.y, 8, 'p2.y');
// <circle cx="210" cy="150" r="3" fill="rgb(204, 51, 51)"/>
assert_equals(quad.p3.x, 210, 'p3.x');
assert_equals(quad.p3.y, 150, 'p3.y');
// <circle cx="10" cy="180" r="3" fill="rgb(204, 51, 51)"/>
assert_equals(quad.p4.x, 10, 'p4.x');
assert_equals(quad.p4.y, 180, 'p4.y');
var bounds = quad.getBounds();
// <rect x="10" y="8" width="200" height="172" fill="none" stroke="black" stroke-dasharray="3 2"/>
assert_equals(bounds.x, 10, 'bounds.x');
assert_equals(bounds.y, 8, 'bounds.x');
assert_equals(bounds.width, 200, 'bounds.width');
assert_equals(bounds.height, 172, 'bounds.height');
}, 'DOMQuad irregular');
test(() => {
// In this example, a matrix is created and several 2D transformation methods are called:
var matrix = new DOMMatrix();
matrix.scaleSelf(2);
matrix.translateSelf(20,20);
assert_equals(matrix.toString(), "matrix(2, 0, 0, 2, 40, 40)");
}, 'DOMMatrix 2D transformation');
test(() => {
// In the following example, a matrix is created and several 3D transformation methods are called:
var matrix = new DOMMatrix();
matrix.scale3dSelf(2);
assert_equals(matrix.toString(), "matrix3d(2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1)");
}, 'DOMMatrix 3D transformation');
test(() => {
// This example will throw an exception because there are non-finite values in the matrix.
var matrix = new DOMMatrix([NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN]);
assert_throws_dom("InvalidStateError", () => { var string = matrix + " Batman!"; });
}, 'DOMMatrix NaN');
test(() => {
var matrix = new DOMMatrix();
matrix.translateSelf(20, 20);
matrix.scaleSelf(2);
matrix.translateSelf(-20, -20);
// is equivalent to:
var matrix2 = new DOMMatrix();
matrix2.translateSelf(20, 20).scaleSelf(2).translateSelf(-20, -20);
assert_equals(matrix.toString(), matrix2.toString());
}, 'DOMMatrix mutable');
</script>
|