1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
// GENERATED CONTENT - DO NOT EDIT
// Content was automatically extracted by Reffy into webref
// (https://github.com/w3c/webref)
// Source: Web Neural Network API (https://webmachinelearning.github.io/webnn/)
interface mixin NavigatorML {
[SecureContext, SameObject] readonly attribute ML ml;
};
Navigator includes NavigatorML;
WorkerNavigator includes NavigatorML;
enum MLDeviceType {
"cpu",
"gpu"
};
enum MLPowerPreference {
"default",
"high-performance",
"low-power"
};
dictionary MLContextOptions {
MLDeviceType deviceType = "cpu";
MLPowerPreference powerPreference = "default";
};
[SecureContext, Exposed=(Window, DedicatedWorker)]
interface ML {
Promise<MLContext> createContext(optional MLContextOptions options = {});
Promise<MLContext> createContext(GPUDevice gpuDevice);
[Exposed=(DedicatedWorker)]
MLContext createContextSync(optional MLContextOptions options = {});
[Exposed=(DedicatedWorker)]
MLContext createContextSync(GPUDevice gpuDevice);
};
typedef record<DOMString, ArrayBufferView> MLNamedArrayBufferViews;
[SecureContext, Exposed=(Window, DedicatedWorker)]
interface MLContext {};
partial interface MLContext {
[Exposed=(DedicatedWorker)]
undefined computeSync(
MLGraph graph, MLNamedArrayBufferViews inputs, MLNamedArrayBufferViews outputs);
};
partial interface MLContext {
Promise<undefined> compute(
MLGraph graph, MLNamedArrayBufferViews inputs, MLNamedArrayBufferViews outputs);
};
partial interface MLContext {
MLCommandEncoder createCommandEncoder();
};
enum MLInputOperandLayout {
"nchw",
"nhwc"
};
enum MLOperandType {
"float32",
"float16",
"int32",
"uint32",
"int8",
"uint8"
};
dictionary MLOperandDescriptor {
// The operand type.
required MLOperandType type;
// The dimensions field is only required for tensor operands.
sequence<unsigned long> dimensions;
};
[SecureContext, Exposed=(Window, DedicatedWorker)]
interface MLOperand {};
[SecureContext, Exposed=(Window, DedicatedWorker)]
interface MLOperator {};
typedef record<DOMString, MLOperand> MLNamedOperands;
dictionary MLBufferResourceView {
required GPUBuffer resource;
unsigned long long offset = 0;
unsigned long long size;
};
typedef (ArrayBufferView or MLBufferResourceView) MLBufferView;
[SecureContext, Exposed=(Window, DedicatedWorker)]
interface MLGraphBuilder {
// Construct the graph builder from the context.
constructor(MLContext context);
// Create an operand for a graph input.
MLOperand input(DOMString name, MLOperandDescriptor desc);
// Create an operand for a graph constant.
MLOperand constant(MLOperandDescriptor desc, MLBufferView bufferView);
// Create a single-value operand from the specified number of the specified type.
MLOperand constant(double value, optional MLOperandType type = "float32");
// Compile the graph up to the specified output operands asynchronously.
Promise<MLGraph> build(MLNamedOperands outputs);
// Compile the graph up to the specified output operands synchronously.
[Exposed=(DedicatedWorker)]
MLGraph buildSync(MLNamedOperands outputs);
};
dictionary MLBatchNormalizationOptions {
MLOperand scale;
MLOperand bias;
long axis = 1;
float epsilon = 1e-5;
MLOperator activation;
};
partial interface MLGraphBuilder {
MLOperand batchNormalization(MLOperand input, MLOperand mean, MLOperand variance,
optional MLBatchNormalizationOptions options = {});
};
dictionary MLClampOptions {
float minValue;
float maxValue;
};
partial interface MLGraphBuilder {
MLOperand clamp(MLOperand x, optional MLClampOptions options = {});
MLOperator clamp(optional MLClampOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand concat(sequence<MLOperand> inputs, long axis);
};
enum MLConv2dFilterOperandLayout {
"oihw",
"hwio",
"ohwi",
"ihwo"
};
enum MLAutoPad {
"explicit",
"same-upper",
"same-lower"
};
dictionary MLConv2dOptions {
sequence<unsigned long> padding;
sequence<unsigned long> strides;
sequence<unsigned long> dilations;
MLAutoPad autoPad = "explicit";
unsigned long groups = 1;
MLInputOperandLayout inputLayout = "nchw";
MLConv2dFilterOperandLayout filterLayout = "oihw";
MLOperand bias;
MLOperator activation;
};
partial interface MLGraphBuilder {
MLOperand conv2d(MLOperand input, MLOperand filter, optional MLConv2dOptions options = {});
};
enum MLConvTranspose2dFilterOperandLayout {
"iohw",
"hwoi",
"ohwi"
};
dictionary MLConvTranspose2dOptions {
sequence<unsigned long> padding;
sequence<unsigned long> strides;
sequence<unsigned long> dilations;
sequence<unsigned long> outputPadding;
sequence<unsigned long> outputSizes;
MLAutoPad autoPad = "explicit";
unsigned long groups = 1;
MLInputOperandLayout inputLayout = "nchw";
MLConvTranspose2dFilterOperandLayout filterLayout = "iohw";
MLOperand bias;
MLOperator activation;
};
partial interface MLGraphBuilder {
MLOperand convTranspose2d(MLOperand input, MLOperand filter,
optional MLConvTranspose2dOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand add(MLOperand a, MLOperand b);
MLOperand sub(MLOperand a, MLOperand b);
MLOperand mul(MLOperand a, MLOperand b);
MLOperand div(MLOperand a, MLOperand b);
MLOperand max(MLOperand a, MLOperand b);
MLOperand min(MLOperand a, MLOperand b);
MLOperand pow(MLOperand a, MLOperand b);
};
partial interface MLGraphBuilder {
MLOperand abs(MLOperand x);
MLOperand ceil(MLOperand x);
MLOperand cos(MLOperand x);
MLOperand exp(MLOperand x);
MLOperand floor(MLOperand x);
MLOperand log(MLOperand x);
MLOperand neg(MLOperand x);
MLOperand sin(MLOperand x);
MLOperand tan(MLOperand x);
};
dictionary MLEluOptions {
float alpha = 1;
};
partial interface MLGraphBuilder {
MLOperand elu(MLOperand x, optional MLEluOptions options = {});
MLOperator elu(optional MLEluOptions options = {});
};
dictionary MLGemmOptions {
MLOperand c;
float alpha = 1.0;
float beta = 1.0;
boolean aTranspose = false;
boolean bTranspose = false;
};
partial interface MLGraphBuilder {
MLOperand gemm(MLOperand a, MLOperand b, optional MLGemmOptions options = {});
};
enum MLRecurrentNetworkWeightLayout {
"zrn", // update-reset-new gate ordering
"rzn" // reset-update-new gate ordering
};
enum MLRecurrentNetworkDirection {
"forward",
"backward",
"both"
};
dictionary MLGruOptions {
MLOperand bias;
MLOperand recurrentBias;
MLOperand initialHiddenState;
boolean resetAfter = true;
boolean returnSequence = false;
MLRecurrentNetworkDirection direction = "forward";
MLRecurrentNetworkWeightLayout layout = "zrn";
sequence<MLOperator> activations;
};
partial interface MLGraphBuilder {
sequence<MLOperand> gru(MLOperand input, MLOperand weight, MLOperand recurrentWeight,
long steps, long hiddenSize, optional MLGruOptions options = {});
};
dictionary MLGruCellOptions {
MLOperand bias;
MLOperand recurrentBias;
boolean resetAfter = true;
MLRecurrentNetworkWeightLayout layout = "zrn";
sequence<MLOperator> activations;
};
partial interface MLGraphBuilder {
MLOperand gruCell(MLOperand input, MLOperand weight, MLOperand recurrentWeight,
MLOperand hiddenState, long hiddenSize, optional MLGruCellOptions options = {});
};
dictionary MLHardSigmoidOptions {
float alpha = 0.2;
float beta = 0.5;
};
partial interface MLGraphBuilder {
MLOperand hardSigmoid(MLOperand x, optional MLHardSigmoidOptions options = {});
MLOperator hardSigmoid(optional MLHardSigmoidOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand hardSwish(MLOperand x);
MLOperator hardSwish();
};
dictionary MLInstanceNormalizationOptions {
MLOperand scale;
MLOperand bias;
float epsilon = 1e-5;
MLInputOperandLayout layout = "nchw";
};
partial interface MLGraphBuilder {
MLOperand instanceNormalization(MLOperand input,
optional MLInstanceNormalizationOptions options = {});
};
dictionary MLLeakyReluOptions {
float alpha = 0.01;
};
partial interface MLGraphBuilder {
MLOperand leakyRelu(MLOperand x, optional MLLeakyReluOptions options = {});
MLOperator leakyRelu(optional MLLeakyReluOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand matmul(MLOperand a, MLOperand b);
};
dictionary MLLinearOptions {
float alpha = 1;
float beta = 0;
};
partial interface MLGraphBuilder {
MLOperand linear(MLOperand x, optional MLLinearOptions options = {});
MLOperator linear(optional MLLinearOptions options = {});
};
enum MLPaddingMode {
"constant",
"edge",
"reflection",
"symmetric"
};
dictionary MLPadOptions {
MLPaddingMode mode = "constant";
float value = 0;
};
partial interface MLGraphBuilder {
MLOperand pad(MLOperand input, MLOperand padding, optional MLPadOptions options = {});
};
enum MLRoundingType {
"floor",
"ceil"
};
dictionary MLPool2dOptions {
sequence<unsigned long> windowDimensions;
sequence<unsigned long> padding;
sequence<unsigned long> strides;
sequence<unsigned long> dilations;
MLAutoPad autoPad = "explicit";
MLInputOperandLayout layout = "nchw";
MLRoundingType roundingType = "floor";
sequence<unsigned long> outputSizes;
};
partial interface MLGraphBuilder {
MLOperand averagePool2d(MLOperand input, optional MLPool2dOptions options = {});
MLOperand l2Pool2d(MLOperand input, optional MLPool2dOptions options = {});
MLOperand maxPool2d(MLOperand input, optional MLPool2dOptions options = {});
};
dictionary MLReduceOptions {
sequence<long> axes = null;
boolean keepDimensions = false;
};
partial interface MLGraphBuilder {
MLOperand reduceL1(MLOperand input, optional MLReduceOptions options = {});
MLOperand reduceL2(MLOperand input, optional MLReduceOptions options = {});
MLOperand reduceLogSum(MLOperand input, optional MLReduceOptions options = {});
MLOperand reduceLogSumExp(MLOperand input, optional MLReduceOptions options = {});
MLOperand reduceMax(MLOperand input, optional MLReduceOptions options = {});
MLOperand reduceMean(MLOperand input, optional MLReduceOptions options = {});
MLOperand reduceMin(MLOperand input, optional MLReduceOptions options = {});
MLOperand reduceProduct(MLOperand input, optional MLReduceOptions options = {});
MLOperand reduceSum(MLOperand input, optional MLReduceOptions options = {});
MLOperand reduceSumSquare(MLOperand input, optional MLReduceOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand relu(MLOperand x);
MLOperator relu();
};
enum MLInterpolationMode {
"nearest-neighbor",
"linear"
};
dictionary MLResample2dOptions {
MLInterpolationMode mode = "nearest-neighbor";
sequence<float> scales;
sequence<unsigned long> sizes;
sequence<long> axes;
};
partial interface MLGraphBuilder {
MLOperand resample2d(MLOperand input, optional MLResample2dOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand reshape(MLOperand input, sequence<unsigned long?> newShape);
};
partial interface MLGraphBuilder {
MLOperand sigmoid(MLOperand x);
MLOperator sigmoid();
};
dictionary MLSliceOptions {
sequence<long> axes;
};
partial interface MLGraphBuilder {
MLOperand slice(MLOperand input, sequence<long> starts, sequence<long> sizes,
optional MLSliceOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand softmax(MLOperand x);
};
dictionary MLSoftplusOptions {
float steepness = 1;
};
partial interface MLGraphBuilder {
MLOperand softplus(MLOperand x, optional MLSoftplusOptions options = {});
MLOperator softplus(optional MLSoftplusOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand softsign(MLOperand x);
MLOperator softsign();
};
dictionary MLSplitOptions {
long axis = 0;
};
partial interface MLGraphBuilder {
sequence<MLOperand> split(MLOperand input,
(unsigned long or sequence<unsigned long>) splits,
optional MLSplitOptions options = {});
};
dictionary MLSqueezeOptions {
sequence<long> axes;
};
partial interface MLGraphBuilder {
MLOperand squeeze(MLOperand input, optional MLSqueezeOptions options = {});
};
partial interface MLGraphBuilder {
MLOperand tanh(MLOperand x);
MLOperator tanh();
};
dictionary MLTransposeOptions {
sequence<long> permutation;
};
partial interface MLGraphBuilder {
MLOperand transpose(MLOperand input, optional MLTransposeOptions options = {});
};
[SecureContext, Exposed=(Window, DedicatedWorker)]
interface MLGraph {};
typedef (GPUBuffer or GPUTexture) MLGPUResource;
typedef record<DOMString, MLGPUResource> MLNamedGPUResources;
[SecureContext, Exposed=(Window, DedicatedWorker)]
interface MLCommandEncoder {};
partial interface MLCommandEncoder {
undefined initializeGraph(MLGraph graph);
};
partial interface MLCommandEncoder {
undefined dispatch(MLGraph graph, MLNamedGPUResources inputs, MLNamedGPUResources outputs);
};
partial interface MLCommandEncoder {
GPUCommandBuffer finish(optional GPUCommandBufferDescriptor descriptor = {});
};
|