1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
|
'use strict';
const ExecutionArray = ['sync', 'async'];
// https://webmachinelearning.github.io/webnn/#enumdef-mldevicetype
const DeviceTypeArray = ['cpu', 'gpu'];
// https://webmachinelearning.github.io/webnn/#enumdef-mloperandtype
const TypedArrayDict = {
float32: Float32Array,
int32: Int32Array,
uint32: Uint32Array,
int8: Int8Array,
uint8: Uint8Array,
};
const sizeOfShape = (array) => {
return array.reduce((accumulator, currentValue) => accumulator * currentValue, 1);
};
/**
* Get JSON resources from specified test resources file.
* @param {String} file - A test resources file path
* @returns {Object} Test resources
*/
const loadResources = (file) => {
const loadJSON = () => {
let xmlhttp = new XMLHttpRequest();
xmlhttp.open("GET", file, false);
xmlhttp.overrideMimeType("application/json");
xmlhttp.send();
if (xmlhttp.status == 200 && xmlhttp.readyState == 4) {
return xmlhttp.responseText;
} else {
throw new Error(`Failed to load ${file}`);
}
};
const json = loadJSON();
return JSON.parse(json.replace(/\\"|"(?:\\"|[^"])*"|(\/\/.*|\/\*[\s\S]*?\*\/)/g, (m, g) => g ? "" : m));
};
/**
* Get exptected data and data type from given resources with output name.
* @param {Array} resources - An array of expected resources
* @param {String} outputName - An output name
* @returns {Array.<[Number[], String]>} An array of expected data array and data type
*/
const getExpectedDataAndType = (resources, outputName) => {
let ret;
for (let subResources of resources) {
if (subResources.name === outputName) {
ret = [subResources.data, subResources.type];
break;
}
}
if (ret === undefined) {
throw new Error(`Failed to get expected data sources and type by ${outputName}`);
}
return ret;
};
/**
* Get ULP tolerance of softmax operation.
* @param {Object} resources - Resources used for building a graph
* @returns {Number} A tolerance number
*/
const getSoftmaxPrecisionTolerance = (resources) => {
// Compute the softmax values of the 2-D input tensor along axis 1.
const inputShape = resources.inputs[Object.keys(resources.inputs)[0]].shape;
const tolerance = inputShape[1] * 3 + 3;
return tolerance;
};
// Refer to precision metrics on https://github.com/webmachinelearning/webnn/issues/265#issuecomment-1256242643
const PrecisionMetrics = {
clamp: {ULP: {float32: 0, float16: 0}},
concat: {ULP: {float32: 0, float16: 0}},
leakyRelu: {ULP: {float32: 1, float16: 1}},
relu: {ULP: {float32: 0, float16: 0}},
reshape: {ULP: {float32: 0, float16: 0}},
sigmoid: {ULP: {float32: 32+2, float16: 3}}, // float32 (leaving a few ULP for roundoff)
slice: {ULP: {float32: 0, float16: 0}},
softmax: {ULP: {float32: getSoftmaxPrecisionTolerance, float16: getSoftmaxPrecisionTolerance}},
split: {ULP: {float32: 0, float16: 0}},
squeeze: {ULP: {float32: 0, float16: 0}},
tanh: {ATOL: {float32: 1/1024, float16: 1/512}},
transpose: {ULP: {float32: 0, float16: 0}},
};
/**
* Get precison tolerance value.
* @param {String} operationName - An operation name
* @param {String} metricType - Value: 'ULP', 'ATOL'
* @param {String} precisionType - A precision type string, like "float32", "float16",
* more types, please see:
* https://webmachinelearning.github.io/webnn/#enumdef-mloperandtype
* @returns {Number} A tolerance number
*/
const getPrecisonTolerance = (operationName, metricType, precisionType) => {
let tolerance = PrecisionMetrics[operationName][metricType][precisionType];
// If the tolerance is dynamic, then evaluate the function to get the value.
if (tolerance instanceof Function) {
tolerance = tolerance(resources, operationName);
}
return tolerance;
};
/**
* Get bitwise of the given value.
* @param {Number} value
* @param {String} dataType - A data type string, like "float32", "float16",
* more types, please see:
* https://webmachinelearning.github.io/webnn/#enumdef-mloperandtype
* @return {Number} A 64-bit signed integer.
*/
const getBitwise = (value, dataType) => {
const buffer = new ArrayBuffer(8);
const int64Array = new BigInt64Array(buffer);
int64Array[0] = value < 0 ? ~BigInt(0) : BigInt(0);
let typedArray;
if (dataType === "float32") {
typedArray = new Float32Array(buffer);
} else {
throw new AssertionError(`Data type ${dataType} is not supported`);
}
typedArray[0] = value;
return int64Array[0];
};
/**
* Assert that each array property in ``actual`` is a number being close enough to the corresponding
* property in ``expected`` by the acceptable ULP distance ``nulp`` with given ``dataType`` data type.
*
* @param {Array} actual - Array of test values.
* @param {Array} expected - Array of values expected to be close to the values in ``actual``.
* @param {Number} nulp - A BigInt value indicates acceptable ULP distance.
* @param {String} dataType - A data type string, value: "float32",
* more types, please see:
* https://webmachinelearning.github.io/webnn/#enumdef-mloperandtype
* @param {String} description - Description of the condition being tested.
*/
const assert_array_approx_equals_ulp = (actual, expected, nulp, dataType, description) => {
/*
* Test if two primitive arrays are equal within acceptable ULP distance
*/
assert_true(actual.length === expected.length,
`assert_array_approx_equals_ulp: ${description} lengths differ, expected ${expected.length} but got ${actual.length}`);
let actualBitwise, expectedBitwise, distance;
for (let i = 0; i < actual.length; i++) {
actualBitwise = getBitwise(actual[i], dataType);
expectedBitwise = getBitwise(expected[i], dataType);
distance = actualBitwise - expectedBitwise;
distance = distance >= 0 ? distance : -distance;
assert_true(distance <= nulp,
`assert_array_approx_equals_ulp: ${description} actual ${actual[i]} should be close enough to expected ${expected[i]} by the acceptable ${nulp} ULP distance, but they have ${distance} ULP distance`);
}
};
/**
* Assert actual results with expected results.
* @param {String} operationName - An operation name
* @param {(Number[]|Number)} actual
* @param {(Number[]|Number)} expected
* @param {Number} tolerance
* @param {String} operandType - An operand type string, value: "float32",
* more types, please see:
* https://webmachinelearning.github.io/webnn/#enumdef-mloperandtype
* @param {String} metricType - Value: 'ULP', 'ATOL'
*/
const doAssert = (operationName, actual, expected, tolerance, operandType, metricType) => {
const description = `test ${operationName} ${operandType}`;
if (typeof expected === 'number') {
// for checking a scalar output by matmul 1D x 1D
expected = [expected];
actual = [actual];
}
if (metricType === 'ULP') {
assert_array_approx_equals_ulp(actual, expected, tolerance, operandType, description);
} else if (metricType === 'ATOL') {
assert_array_approx_equals(actual, expected, tolerance, description);
}
};
/**
* Check computed results with expected data.
* @param {String} operationName - An operation name
* @param {Object.<String, MLOperand>} namedOutputOperands
* @param {Object.<MLNamedArrayBufferViews>} outputs - The resources of required outputs
* @param {Object} resources - Resources used for building a graph
*/
const checkResults = (operationName, namedOutputOperands, outputs, resources) => {
const metricType = Object.keys(PrecisionMetrics[operationName])[0];
const expected = resources.expected;
let tolerance;
let operandType;
let outputData;
let expectedData;
if (Array.isArray(expected)) {
// the outputs of split() or gru() is a sequence
for (let operandName in namedOutputOperands) {
outputData = outputs[operandName];
// for some operations which may have multi outputs of different types
[expectedData, operandType] = getExpectedDataAndType(expected, operandName);
tolerance = getPrecisonTolerance(operationName, metricType, operandType);
doAssert(operationName, outputData, expectedData, tolerance, operandType, metricType)
}
} else {
outputData = outputs[expected.name];
expectedData = expected.data;
operandType = expected.type;
tolerance = getPrecisonTolerance(operationName, metricType, operandType);
doAssert(operationName, outputData, expectedData, tolerance, operandType, metricType)
}
};
/**
* Create single input operands for a graph.
* @param {MLGraphBuilder} builder - A ML graph builder
* @param {Object} resources - Resources used for building a graph
* @param {String} [inputOperandName] - An inputOperand name
* @returns {MLOperand} An input operand
*/
const createSingleInputOperand = (builder, resources, inputOperandName) => {
inputOperandName = inputOperandName ? inputOperandName : Object.keys(resources.inputs)[0];
const inputResources = resources.inputs[inputOperandName];
return builder.input(inputOperandName, {type: inputResources.type, dimensions: inputResources.shape});
};
/**
* Build an operation which has a single input.
* @param {String} operationName - An operation name
* @param {MLGraphBuilder} builder - A ML graph builder
* @param {Object} resources - Resources used for building a graph
* @returns {MLNamedOperands}
*/
const buildOperationWithSingleInput = (operationName, builder, resources) => {
const namedOutputOperand = {};
const inputOperand = createSingleInputOperand(builder, resources);
const outputOperand = resources.options ?
builder[operationName](inputOperand, resources.options) : builder[operationName](inputOperand);
namedOutputOperand[resources.expected.name] = outputOperand;
return namedOutputOperand;
};
/**
* Build a graph.
* @param {String} operationName - An operation name
* @param {MLGraphBuilder} builder - A ML graph builder
* @param {Object} resources - Resources used for building a graph
* @param {Function} buildFunc - A build function for an operation
* @returns [namedOperands, inputs, outputs]
*/
const buildGraph = (operationName, builder, resources, buildFunc) => {
const namedOperands = buildFunc(operationName, builder, resources);
let inputs = {};
if (Array.isArray(resources.inputs)) {
// the inputs of concat() is a sequence
for (let subInput of resources.inputs) {
inputs[subInput.name] = new TypedArrayDict[subInput.type](subInput.data);
}
} else {
for (let inputName in resources.inputs) {
const subTestByName = resources.inputs[inputName];
inputs[inputName] = new TypedArrayDict[subTestByName.type](subTestByName.data);
}
}
let outputs = {};
if (Array.isArray(resources.expected)) {
// the outputs of split() or gru() is a sequence
for (let i = 0; i < resources.expected.length; i++) {
const subExpected = resources.expected[i];
outputs[subExpected.name] = new TypedArrayDict[subExpected.type](sizeOfShape(subExpected.shape));
}
} else {
// matmul 1D with 1D produces a scalar which doesn't have its shape
const shape = resources.expected.shape ? resources.expected.shape : [1];
outputs[resources.expected.name] = new TypedArrayDict[resources.expected.type](sizeOfShape(shape));
}
return [namedOperands, inputs, outputs];
};
/**
* Build a graph, synchronously compile graph and execute, then check computed results.
* @param {String} operationName - An operation name
* @param {MLContext} context - A ML context
* @param {MLGraphBuilder} builder - A ML graph builder
* @param {Object} resources - Resources used for building a graph
* @param {Function} buildFunc - A build function for an operation
*/
const runSync = (operationName, context, builder, resources, buildFunc) => {
// build a graph
const [namedOutputOperands, inputs, outputs] = buildGraph(operationName, builder, resources, buildFunc);
// synchronously compile the graph up to the output operand
const graph = builder.buildSync(namedOutputOperands);
// synchronously execute the compiled graph.
context.computeSync(graph, inputs, outputs);
checkResults(operationName, namedOutputOperands, outputs, resources);
};
/**
* Build a graph, asynchronously compile graph and execute, then check computed results.
* @param {String} operationName - An operation name
* @param {MLContext} context - A ML context
* @param {MLGraphBuilder} builder - A ML graph builder
* @param {Object} resources - Resources used for building a graph
* @param {Function} buildFunc - A build function for an operation
*/
const run = async (operationName, context, builder, resources, buildFunc) => {
// build a graph
const [namedOutputOperands, inputs, outputs] = buildGraph(operationName, builder, resources, buildFunc);
// asynchronously compile the graph up to the output operand
const graph = await builder.build(namedOutputOperands);
// asynchronously execute the compiled graph
await context.compute(graph, inputs, outputs);
checkResults(operationName, namedOutputOperands, outputs, resources);
};
/**
* Run WebNN operation tests.
* @param {String} operationName - An operation name
* @param {String} file - A test resources file path
* @param {Function} buildFunc - A build function for an operation
*/
const testWebNNOperation = (operationName, file, buildFunc) => {
const resources = loadResources(file);
const tests = resources.tests;
ExecutionArray.forEach(executionType => {
const isSync = executionType === 'sync';
if (self.GLOBAL.isWindow() && isSync) {
return;
}
let context;
let builder;
if (isSync) {
// test sync
DeviceTypeArray.forEach(deviceType => {
setup(() => {
context = navigator.ml.createContextSync({deviceType});
builder = new MLGraphBuilder(context);
});
for (const subTest of tests) {
test(() => {
runSync(operationName, context, builder, subTest, buildFunc);
}, `${subTest.name} / ${deviceType} / ${executionType}`);
}
});
} else {
// test async
DeviceTypeArray.forEach(deviceType => {
promise_setup(async () => {
context = await navigator.ml.createContext({deviceType});
builder = new MLGraphBuilder(context);
});
for (const subTest of tests) {
promise_test(async () => {
await run(operationName, context, builder, subTest, buildFunc);
}, `${subTest.name} / ${deviceType} / ${executionType}`);
}
});
}
});
};
|