1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
<!DOCTYPE html>
<script src="/resources/testharness.js"></script>
<script src="/resources/testharnessreport.js"></script>
<script src="../resources/webxr_util.js"></script>
<script src="../resources/webxr_math_utils.js"></script>
<script src="../resources/webxr_test_asserts.js"></script>
<script src="../resources/webxr_test_constants.js"></script>
<script src="../resources/webxr_test_constants_fake_world.js"></script>
<script>
// 1m above world origin.
const VIEWER_ORIGIN_TRANSFORM = {
position: [0, 1, 0],
orientation: [0, 0, 0, 1],
};
// 0.25m above world origin.
const FLOOR_ORIGIN_TRANSFORM = {
position: [0, -0.25, 0],
orientation: [0, 0, 0, 1],
};
// Start the screen pointer at the same place as the viewer, so it's essentially
// coming straight forward from the middle of the screen.
const SCREEN_POINTER_TRANSFORM = VIEWER_ORIGIN_TRANSFORM;
const screen_controller_init = {
handedness: "none",
targetRayMode: "screen",
pointerOrigin: SCREEN_POINTER_TRANSFORM, // aka mojo_from_pointer
profiles: ["generic-touchscreen",]
};
const fakeDeviceInitParams = {
supportedModes: ["immersive-ar"],
views: VALID_VIEWS,
floorOrigin: FLOOR_ORIGIN_TRANSFORM, // aka floor_from_mojo
viewerOrigin: VIEWER_ORIGIN_TRANSFORM, // aka mojo_from_viewer
supportedFeatures: ALL_FEATURES,
world: createFakeWorld(5.0, 2.0, 5.0), // see webxr_test_constants_fake_world.js for details
};
// Generates a test function given the parameters for the transient hit test.
// |ray| - ray that will be used to subscribe to hit test.
// |expectedPoses| - array of expected pose objects. The poses should be expressed in local space.
// Null entries in the array mean that the given entry will not be validated.
// |inputFromPointer| - input from pointer transform that will be used as the input source's
// inputFromPointer (aka pointer origin) in subsequent rAF.
// |nextFrameExpectedPoses| - array of expected pose objects. The poses should be expressed in local space.
// Null entries in the array mean that the given entry will not be validated.
let testFunctionGenerator = function(ray, expectedPoses, inputFromPointer, nextFrameExpectedPoses) {
const testFunction = function(session, fakeDeviceController, t) {
let debug = xr_debug.bind(this, 'testFunction');
return session.requestReferenceSpace('local').then((localRefSpace) => new Promise((resolve, reject) => {
const input_source_controller = fakeDeviceController.simulateInputSourceConnection(screen_controller_init);
requestSkipAnimationFrame(session, (time, frame) => {
debug('rAF 1');
t.step(() => {
assert_equals(session.inputSources.length, 1);
});
const hitTestOptionsInit = {
profile: "generic-touchscreen",
offsetRay: ray,
};
session.requestHitTestSourceForTransientInput(hitTestOptionsInit)
.then((hitTestSource) => {
t.step(() => {
assert_not_equals(hitTestSource, null);
});
// We got a hit test source, now get the results in subsequent rAFcb:
session.requestAnimationFrame((time, frame) => {
debug('rAF 2');
const results = frame.getHitTestResultsForTransientInput(hitTestSource);
t.step(() => {
assert_true(results != null, "Transient input hit tests should not be null");
assert_equals(results.length, 1, "There should be exactly one group of transient hit test results!");
assert_equals(results[0].results.length, expectedPoses.length);
for(const [index, expectedPose] of expectedPoses.entries()) {
const pose = results[0].results[index].getPose(localRefSpace);
assert_true(pose != null, "Each hit test result should have a pose in local space");
if(expectedPose != null) {
assert_transform_approx_equals(pose.transform, expectedPose, FLOAT_EPSILON, "before-move-pose: ");
}
}
});
input_source_controller.setPointerOrigin(inputFromPointer, false);
session.requestAnimationFrame((time, frame) => {
debug('rAF 3');
const results = frame.getHitTestResultsForTransientInput(hitTestSource);
t.step(() => {
assert_equals(results[0].results.length, nextFrameExpectedPoses.length);
for(const [index, expectedPose] of nextFrameExpectedPoses.entries()) {
const pose = results[0].results[index].getPose(localRefSpace);
assert_true(pose != null, "Each hit test result should have a pose in local space");
if(expectedPose != null) {
assert_transform_approx_equals(pose.transform, expectedPose, FLOAT_EPSILON, "after-move-pose: ");
}
}
});
debug('resolving');
resolve();
});
});
});
});
}));
};
return testFunction;
};
// Pose of the first expected hit test result - straight ahead of the input source, viewer-facing.
const pose_1 = {
position: {x: 0.0, y: 1.0, z: -2.5, w: 1.0},
orientation: {x: 0.0, y: -0.707, z: -0.707, w: 0.0},
// Hit test API will set Y axis to the surface normal at the intersection point,
// Z axis towards the ray origin and X axis to cross product of Y axis & Z axis.
// If the surface normal and Z axis would be parallel, the hit test API
// will attempt to use `up` vector ([0, 1, 0]) as the Z axis, and if it so happens that Z axis
// and the surface normal would still be parallel, it will use the `right` vector ([1, 0, 0]) as the Z axis.
// In this particular case, `up` vector will work so the resulting pose.orientation
// becomes a rotation around [0, 1, 1] vector by 180 degrees.
};
xr_session_promise_test("Ensures subscription to transient hit test works with an XRSpace from input source - no move",
testFunctionGenerator(new XRRay(), [pose_1], SCREEN_POINTER_TRANSFORM, [pose_1]),
fakeDeviceInitParams,
'immersive-ar', { 'requiredFeatures': ['hit-test'] });
const moved_pointer_transform_1 = {
position: [0, 1, 0],
orientation: [ 0.707, 0, 0, 0.707 ] // 90 degrees around X axis = facing up
};
xr_session_promise_test("Ensures subscription to transient hit test works with an XRSpace from input source - after move - no results",
testFunctionGenerator(new XRRay(), [pose_1], moved_pointer_transform_1, []),
fakeDeviceInitParams,
'immersive-ar', { 'requiredFeatures': ['hit-test'] });
const pose_2 = {
position: {x: -1.443, y: 1.0, z: -2.5, w: 1.0},
// Intersection point will be on the same height as the viewer, on the front
// wall. Distance from the front wall to viewer is 2.5m, and we are rotating
// to the left, so X coordinate of the intersection point will be negative
// & equal to -2.5 * tan(30 deg) ~= 1.443m.
orientation: {x: 0.5, y: 0.5, z: 0.5, w: 0.5 },
// See comment for pose_1.orientation for details.
// In this case, the hit test pose will have Y axis facing towards world's
// positive Z axis ([0,0,1]), Z axis to the right ([1,0,0]) and X axis
// towards world's Y axis ([0,1,0]).
// This is equivalent to the rotation around [1, 1, 1] vector by 120 degrees.
};
const moved_pointer_transform_2 = {
position: [0, 1, 0],
orientation: [ 0, 0.2588, 0, 0.9659 ] // 30 degrees around Y axis = to the left,
// creating 30-60-90 triangle with the front wall
};
xr_session_promise_test("Ensures subscription to transient hit test works with an XRSpace from input source - after move - 1 result",
testFunctionGenerator(new XRRay(), [pose_1], moved_pointer_transform_2, [pose_2]),
fakeDeviceInitParams,
'immersive-ar', { 'requiredFeatures': ['hit-test'] });
</script>
|