summaryrefslogtreecommitdiffstats
path: root/third_party/highway/hwy/base.h
blob: 5a941926130ab119434980e6ff24a04e3415e620 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
// Copyright 2020 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef HIGHWAY_HWY_BASE_H_
#define HIGHWAY_HWY_BASE_H_

// For SIMD module implementations and their callers, target-independent.

#include <stddef.h>
#include <stdint.h>

#include "hwy/detect_compiler_arch.h"
#include "hwy/highway_export.h"

#if HWY_COMPILER_MSVC
#include <string.h>  // memcpy
#endif
#if HWY_ARCH_X86
#include <atomic>
#endif

//------------------------------------------------------------------------------
// Compiler-specific definitions

#define HWY_STR_IMPL(macro) #macro
#define HWY_STR(macro) HWY_STR_IMPL(macro)

#if HWY_COMPILER_MSVC

#include <intrin.h>

#define HWY_RESTRICT __restrict
#define HWY_INLINE __forceinline
#define HWY_NOINLINE __declspec(noinline)
#define HWY_FLATTEN
#define HWY_NORETURN __declspec(noreturn)
#define HWY_LIKELY(expr) (expr)
#define HWY_UNLIKELY(expr) (expr)
#define HWY_PRAGMA(tokens) __pragma(tokens)
#define HWY_DIAGNOSTICS(tokens) HWY_PRAGMA(warning(tokens))
#define HWY_DIAGNOSTICS_OFF(msc, gcc) HWY_DIAGNOSTICS(msc)
#define HWY_MAYBE_UNUSED
#define HWY_HAS_ASSUME_ALIGNED 0
#if (_MSC_VER >= 1700)
#define HWY_MUST_USE_RESULT _Check_return_
#else
#define HWY_MUST_USE_RESULT
#endif

#else

#define HWY_RESTRICT __restrict__
// force inlining without optimization enabled creates very inefficient code
// that can cause compiler timeout
#ifdef __OPTIMIZE__
#define HWY_INLINE inline __attribute__((always_inline))
#else
#define HWY_INLINE inline
#endif
#define HWY_NOINLINE __attribute__((noinline))
#define HWY_FLATTEN __attribute__((flatten))
#define HWY_NORETURN __attribute__((noreturn))
#define HWY_LIKELY(expr) __builtin_expect(!!(expr), 1)
#define HWY_UNLIKELY(expr) __builtin_expect(!!(expr), 0)
#define HWY_PRAGMA(tokens) _Pragma(#tokens)
#define HWY_DIAGNOSTICS(tokens) HWY_PRAGMA(GCC diagnostic tokens)
#define HWY_DIAGNOSTICS_OFF(msc, gcc) HWY_DIAGNOSTICS(gcc)
// Encountered "attribute list cannot appear here" when using the C++17
// [[maybe_unused]], so only use the old style attribute for now.
#define HWY_MAYBE_UNUSED __attribute__((unused))
#define HWY_MUST_USE_RESULT __attribute__((warn_unused_result))

#endif  // !HWY_COMPILER_MSVC

//------------------------------------------------------------------------------
// Builtin/attributes

// Enables error-checking of format strings.
#if HWY_HAS_ATTRIBUTE(__format__)
#define HWY_FORMAT(idx_fmt, idx_arg) \
  __attribute__((__format__(__printf__, idx_fmt, idx_arg)))
#else
#define HWY_FORMAT(idx_fmt, idx_arg)
#endif

// Returns a void* pointer which the compiler then assumes is N-byte aligned.
// Example: float* HWY_RESTRICT aligned = (float*)HWY_ASSUME_ALIGNED(in, 32);
//
// The assignment semantics are required by GCC/Clang. ICC provides an in-place
// __assume_aligned, whereas MSVC's __assume appears unsuitable.
#if HWY_HAS_BUILTIN(__builtin_assume_aligned)
#define HWY_ASSUME_ALIGNED(ptr, align) __builtin_assume_aligned((ptr), (align))
#else
#define HWY_ASSUME_ALIGNED(ptr, align) (ptr) /* not supported */
#endif

// Clang and GCC require attributes on each function into which SIMD intrinsics
// are inlined. Support both per-function annotation (HWY_ATTR) for lambdas and
// automatic annotation via pragmas.
#if HWY_COMPILER_CLANG
#define HWY_PUSH_ATTRIBUTES(targets_str)                                \
  HWY_PRAGMA(clang attribute push(__attribute__((target(targets_str))), \
                                  apply_to = function))
#define HWY_POP_ATTRIBUTES HWY_PRAGMA(clang attribute pop)
#elif HWY_COMPILER_GCC
#define HWY_PUSH_ATTRIBUTES(targets_str) \
  HWY_PRAGMA(GCC push_options) HWY_PRAGMA(GCC target targets_str)
#define HWY_POP_ATTRIBUTES HWY_PRAGMA(GCC pop_options)
#else
#define HWY_PUSH_ATTRIBUTES(targets_str)
#define HWY_POP_ATTRIBUTES
#endif

//------------------------------------------------------------------------------
// Macros

#define HWY_API static HWY_INLINE HWY_FLATTEN HWY_MAYBE_UNUSED

#define HWY_CONCAT_IMPL(a, b) a##b
#define HWY_CONCAT(a, b) HWY_CONCAT_IMPL(a, b)

#define HWY_MIN(a, b) ((a) < (b) ? (a) : (b))
#define HWY_MAX(a, b) ((a) > (b) ? (a) : (b))

#if HWY_COMPILER_GCC_ACTUAL
// nielskm: GCC does not support '#pragma GCC unroll' without the factor.
#define HWY_UNROLL(factor) HWY_PRAGMA(GCC unroll factor)
#define HWY_DEFAULT_UNROLL HWY_UNROLL(4)
#elif HWY_COMPILER_CLANG || HWY_COMPILER_ICC || HWY_COMPILER_ICX
#define HWY_UNROLL(factor) HWY_PRAGMA(unroll factor)
#define HWY_DEFAULT_UNROLL HWY_UNROLL()
#else
#define HWY_UNROLL(factor)
#define HWY_DEFAULT_UNROLL
#endif


// Compile-time fence to prevent undesirable code reordering. On Clang x86, the
// typical asm volatile("" : : : "memory") has no effect, whereas atomic fence
// does, without generating code.
#if HWY_ARCH_X86
#define HWY_FENCE std::atomic_thread_fence(std::memory_order_acq_rel)
#else
// TODO(janwas): investigate alternatives. On ARM, the above generates barriers.
#define HWY_FENCE
#endif

// 4 instances of a given literal value, useful as input to LoadDup128.
#define HWY_REP4(literal) literal, literal, literal, literal

#define HWY_ABORT(format, ...) \
  ::hwy::Abort(__FILE__, __LINE__, format, ##__VA_ARGS__)

// Always enabled.
#define HWY_ASSERT(condition)             \
  do {                                    \
    if (!(condition)) {                   \
      HWY_ABORT("Assert %s", #condition); \
    }                                     \
  } while (0)

#if HWY_HAS_FEATURE(memory_sanitizer) || defined(MEMORY_SANITIZER)
#define HWY_IS_MSAN 1
#else
#define HWY_IS_MSAN 0
#endif

#if HWY_HAS_FEATURE(address_sanitizer) || defined(ADDRESS_SANITIZER)
#define HWY_IS_ASAN 1
#else
#define HWY_IS_ASAN 0
#endif

#if HWY_HAS_FEATURE(thread_sanitizer) || defined(THREAD_SANITIZER)
#define HWY_IS_TSAN 1
#else
#define HWY_IS_TSAN 0
#endif

// MSAN may cause lengthy build times or false positives e.g. in AVX3 DemoteTo.
// You can disable MSAN by adding this attribute to the function that fails.
#if HWY_IS_MSAN
#define HWY_ATTR_NO_MSAN __attribute__((no_sanitize_memory))
#else
#define HWY_ATTR_NO_MSAN
#endif

// For enabling HWY_DASSERT and shortening tests in slower debug builds
#if !defined(HWY_IS_DEBUG_BUILD)
// Clang does not define NDEBUG, but it and GCC define __OPTIMIZE__, and recent
// MSVC defines NDEBUG (if not, could instead check _DEBUG).
#if (!defined(__OPTIMIZE__) && !defined(NDEBUG)) || HWY_IS_ASAN || \
    HWY_IS_MSAN || HWY_IS_TSAN || defined(__clang_analyzer__)
#define HWY_IS_DEBUG_BUILD 1
#else
#define HWY_IS_DEBUG_BUILD 0
#endif
#endif  // HWY_IS_DEBUG_BUILD

#if HWY_IS_DEBUG_BUILD
#define HWY_DASSERT(condition) HWY_ASSERT(condition)
#else
#define HWY_DASSERT(condition) \
  do {                         \
  } while (0)
#endif

namespace hwy {

//------------------------------------------------------------------------------
// kMaxVectorSize (undocumented, pending removal)

#if HWY_ARCH_X86
static constexpr HWY_MAYBE_UNUSED size_t kMaxVectorSize = 64;  // AVX-512
#elif HWY_ARCH_RVV && defined(__riscv_vector)
// Not actually an upper bound on the size.
static constexpr HWY_MAYBE_UNUSED size_t kMaxVectorSize = 4096;
#else
static constexpr HWY_MAYBE_UNUSED size_t kMaxVectorSize = 16;
#endif

//------------------------------------------------------------------------------
// Alignment

// Potentially useful for LoadDup128 and capped vectors. In other cases, arrays
// should be allocated dynamically via aligned_allocator.h because Lanes() may
// exceed the stack size.
#if HWY_ARCH_X86
#define HWY_ALIGN_MAX alignas(64)
#elif HWY_ARCH_RVV && defined(__riscv_vector)
#define HWY_ALIGN_MAX alignas(8)  // only elements need be aligned
#else
#define HWY_ALIGN_MAX alignas(16)
#endif

//------------------------------------------------------------------------------
// Lane types

// Match [u]int##_t naming scheme so rvv-inl.h macros can obtain the type name
// by concatenating base type and bits.

#pragma pack(push, 1)

// ACLE (https://gcc.gnu.org/onlinedocs/gcc/Half-Precision.html):
// always supported on aarch64, for v7 only if -mfp16-format is given.
#if ((HWY_ARCH_ARM_A64 || (__ARM_FP & 2)) && HWY_COMPILER_GCC)
using float16_t = __fp16;
// C11 extension ISO/IEC TS 18661-3:2015 but not supported on all targets.
// Required for Clang RVV if the float16 extension is used.
#elif HWY_ARCH_RVV && HWY_COMPILER_CLANG && defined(__riscv_zvfh)
using float16_t = _Float16;
// Otherwise emulate
#else
struct float16_t {
  uint16_t bits;
};
#endif

struct bfloat16_t {
  uint16_t bits;
};

#pragma pack(pop)

using float32_t = float;
using float64_t = double;

#pragma pack(push, 1)

// Aligned 128-bit type. Cannot use __int128 because clang doesn't yet align it:
// https://reviews.llvm.org/D86310
struct alignas(16) uint128_t {
  uint64_t lo;  // little-endian layout
  uint64_t hi;
};

// 64 bit key plus 64 bit value. Faster than using uint128_t when only the key
// field is to be compared (Lt128Upper instead of Lt128).
struct alignas(16) K64V64 {
  uint64_t value;  // little-endian layout
  uint64_t key;
};

// 32 bit key plus 32 bit value. Allows vqsort recursions to terminate earlier
// than when considering both to be a 64-bit key.
struct alignas(8) K32V32 {
  uint32_t value;  // little-endian layout
  uint32_t key;
};

#pragma pack(pop)

static inline HWY_MAYBE_UNUSED bool operator<(const uint128_t& a,
                                              const uint128_t& b) {
  return (a.hi == b.hi) ? a.lo < b.lo : a.hi < b.hi;
}
// Required for std::greater.
static inline HWY_MAYBE_UNUSED bool operator>(const uint128_t& a,
                                              const uint128_t& b) {
  return b < a;
}
static inline HWY_MAYBE_UNUSED bool operator==(const uint128_t& a,
                                               const uint128_t& b) {
  return a.lo == b.lo && a.hi == b.hi;
}

static inline HWY_MAYBE_UNUSED bool operator<(const K64V64& a,
                                              const K64V64& b) {
  return a.key < b.key;
}
// Required for std::greater.
static inline HWY_MAYBE_UNUSED bool operator>(const K64V64& a,
                                              const K64V64& b) {
  return b < a;
}
static inline HWY_MAYBE_UNUSED bool operator==(const K64V64& a,
                                               const K64V64& b) {
  return a.key == b.key;
}

static inline HWY_MAYBE_UNUSED bool operator<(const K32V32& a,
                                              const K32V32& b) {
  return a.key < b.key;
}
// Required for std::greater.
static inline HWY_MAYBE_UNUSED bool operator>(const K32V32& a,
                                              const K32V32& b) {
  return b < a;
}
static inline HWY_MAYBE_UNUSED bool operator==(const K32V32& a,
                                               const K32V32& b) {
  return a.key == b.key;
}

//------------------------------------------------------------------------------
// Controlling overload resolution (SFINAE)

template <bool Condition>
struct EnableIfT {};
template <>
struct EnableIfT<true> {
  using type = void;
};

template <bool Condition>
using EnableIf = typename EnableIfT<Condition>::type;

template <typename T, typename U>
struct IsSameT {
  enum { value = 0 };
};

template <typename T>
struct IsSameT<T, T> {
  enum { value = 1 };
};

template <typename T, typename U>
HWY_API constexpr bool IsSame() {
  return IsSameT<T, U>::value;
}

// Insert into template/function arguments to enable this overload only for
// vectors of AT MOST this many bits.
//
// Note that enabling for exactly 128 bits is unnecessary because a function can
// simply be overloaded with Vec128<T> and/or Full128<T> tag. Enabling for other
// sizes (e.g. 64 bit) can be achieved via Simd<T, 8 / sizeof(T), 0>.
#define HWY_IF_LE128(T, N) hwy::EnableIf<N * sizeof(T) <= 16>* = nullptr
#define HWY_IF_LE64(T, N) hwy::EnableIf<N * sizeof(T) <= 8>* = nullptr
#define HWY_IF_LE32(T, N) hwy::EnableIf<N * sizeof(T) <= 4>* = nullptr
#define HWY_IF_GE32(T, N) hwy::EnableIf<N * sizeof(T) >= 4>* = nullptr
#define HWY_IF_GE64(T, N) hwy::EnableIf<N * sizeof(T) >= 8>* = nullptr
#define HWY_IF_GE128(T, N) hwy::EnableIf<N * sizeof(T) >= 16>* = nullptr
#define HWY_IF_GT128(T, N) hwy::EnableIf<(N * sizeof(T) > 16)>* = nullptr

#define HWY_IF_UNSIGNED(T) hwy::EnableIf<!IsSigned<T>()>* = nullptr
#define HWY_IF_SIGNED(T) \
  hwy::EnableIf<IsSigned<T>() && !IsFloat<T>()>* = nullptr
#define HWY_IF_FLOAT(T) hwy::EnableIf<hwy::IsFloat<T>()>* = nullptr
#define HWY_IF_NOT_FLOAT(T) hwy::EnableIf<!hwy::IsFloat<T>()>* = nullptr

#define HWY_IF_LANE_SIZE(T, bytes) \
  hwy::EnableIf<sizeof(T) == (bytes)>* = nullptr
#define HWY_IF_NOT_LANE_SIZE(T, bytes) \
  hwy::EnableIf<sizeof(T) != (bytes)>* = nullptr
#define HWY_IF_LANE_SIZE_LT(T, bytes) \
  hwy::EnableIf<sizeof(T) < (bytes)>* = nullptr
#define HWY_IF_LANE_SIZE_GE(T, bytes) \
  hwy::EnableIf<sizeof(T) >= (bytes)>* = nullptr

#define HWY_IF_LANES_PER_BLOCK(T, N, LANES) \
  hwy::EnableIf<HWY_MIN(sizeof(T) * N, 16) / sizeof(T) == (LANES)>* = nullptr

// Empty struct used as a size tag type.
template <size_t N>
struct SizeTag {};

template <class T>
struct RemoveConstT {
  using type = T;
};
template <class T>
struct RemoveConstT<const T> {
  using type = T;
};

template <class T>
using RemoveConst = typename RemoveConstT<T>::type;

//------------------------------------------------------------------------------
// Type relations

namespace detail {

template <typename T>
struct Relations;
template <>
struct Relations<uint8_t> {
  using Unsigned = uint8_t;
  using Signed = int8_t;
  using Wide = uint16_t;
  enum { is_signed = 0, is_float = 0 };
};
template <>
struct Relations<int8_t> {
  using Unsigned = uint8_t;
  using Signed = int8_t;
  using Wide = int16_t;
  enum { is_signed = 1, is_float = 0 };
};
template <>
struct Relations<uint16_t> {
  using Unsigned = uint16_t;
  using Signed = int16_t;
  using Wide = uint32_t;
  using Narrow = uint8_t;
  enum { is_signed = 0, is_float = 0 };
};
template <>
struct Relations<int16_t> {
  using Unsigned = uint16_t;
  using Signed = int16_t;
  using Wide = int32_t;
  using Narrow = int8_t;
  enum { is_signed = 1, is_float = 0 };
};
template <>
struct Relations<uint32_t> {
  using Unsigned = uint32_t;
  using Signed = int32_t;
  using Float = float;
  using Wide = uint64_t;
  using Narrow = uint16_t;
  enum { is_signed = 0, is_float = 0 };
};
template <>
struct Relations<int32_t> {
  using Unsigned = uint32_t;
  using Signed = int32_t;
  using Float = float;
  using Wide = int64_t;
  using Narrow = int16_t;
  enum { is_signed = 1, is_float = 0 };
};
template <>
struct Relations<uint64_t> {
  using Unsigned = uint64_t;
  using Signed = int64_t;
  using Float = double;
  using Wide = uint128_t;
  using Narrow = uint32_t;
  enum { is_signed = 0, is_float = 0 };
};
template <>
struct Relations<int64_t> {
  using Unsigned = uint64_t;
  using Signed = int64_t;
  using Float = double;
  using Narrow = int32_t;
  enum { is_signed = 1, is_float = 0 };
};
template <>
struct Relations<uint128_t> {
  using Unsigned = uint128_t;
  using Narrow = uint64_t;
  enum { is_signed = 0, is_float = 0 };
};
template <>
struct Relations<float16_t> {
  using Unsigned = uint16_t;
  using Signed = int16_t;
  using Float = float16_t;
  using Wide = float;
  enum { is_signed = 1, is_float = 1 };
};
template <>
struct Relations<bfloat16_t> {
  using Unsigned = uint16_t;
  using Signed = int16_t;
  using Wide = float;
  enum { is_signed = 1, is_float = 1 };
};
template <>
struct Relations<float> {
  using Unsigned = uint32_t;
  using Signed = int32_t;
  using Float = float;
  using Wide = double;
  using Narrow = float16_t;
  enum { is_signed = 1, is_float = 1 };
};
template <>
struct Relations<double> {
  using Unsigned = uint64_t;
  using Signed = int64_t;
  using Float = double;
  using Narrow = float;
  enum { is_signed = 1, is_float = 1 };
};

template <size_t N>
struct TypeFromSize;
template <>
struct TypeFromSize<1> {
  using Unsigned = uint8_t;
  using Signed = int8_t;
};
template <>
struct TypeFromSize<2> {
  using Unsigned = uint16_t;
  using Signed = int16_t;
};
template <>
struct TypeFromSize<4> {
  using Unsigned = uint32_t;
  using Signed = int32_t;
  using Float = float;
};
template <>
struct TypeFromSize<8> {
  using Unsigned = uint64_t;
  using Signed = int64_t;
  using Float = double;
};
template <>
struct TypeFromSize<16> {
  using Unsigned = uint128_t;
};

}  // namespace detail

// Aliases for types of a different category, but the same size.
template <typename T>
using MakeUnsigned = typename detail::Relations<T>::Unsigned;
template <typename T>
using MakeSigned = typename detail::Relations<T>::Signed;
template <typename T>
using MakeFloat = typename detail::Relations<T>::Float;

// Aliases for types of the same category, but different size.
template <typename T>
using MakeWide = typename detail::Relations<T>::Wide;
template <typename T>
using MakeNarrow = typename detail::Relations<T>::Narrow;

// Obtain type from its size [bytes].
template <size_t N>
using UnsignedFromSize = typename detail::TypeFromSize<N>::Unsigned;
template <size_t N>
using SignedFromSize = typename detail::TypeFromSize<N>::Signed;
template <size_t N>
using FloatFromSize = typename detail::TypeFromSize<N>::Float;

// Avoid confusion with SizeTag where the parameter is a lane size.
using UnsignedTag = SizeTag<0>;
using SignedTag = SizeTag<0x100>;  // integer
using FloatTag = SizeTag<0x200>;

template <typename T, class R = detail::Relations<T>>
constexpr auto TypeTag() -> hwy::SizeTag<((R::is_signed + R::is_float) << 8)> {
  return hwy::SizeTag<((R::is_signed + R::is_float) << 8)>();
}

// For when we only want to distinguish FloatTag from everything else.
using NonFloatTag = SizeTag<0x400>;

template <typename T, class R = detail::Relations<T>>
constexpr auto IsFloatTag() -> hwy::SizeTag<(R::is_float ? 0x200 : 0x400)> {
  return hwy::SizeTag<(R::is_float ? 0x200 : 0x400)>();
}

//------------------------------------------------------------------------------
// Type traits

template <typename T>
HWY_API constexpr bool IsFloat() {
  // Cannot use T(1.25) != T(1) for float16_t, which can only be converted to or
  // from a float, not compared.
  return IsSame<T, float>() || IsSame<T, double>();
}

template <typename T>
HWY_API constexpr bool IsSigned() {
  return T(0) > T(-1);
}
template <>
constexpr bool IsSigned<float16_t>() {
  return true;
}
template <>
constexpr bool IsSigned<bfloat16_t>() {
  return true;
}

// Largest/smallest representable integer values.
template <typename T>
HWY_API constexpr T LimitsMax() {
  static_assert(!IsFloat<T>(), "Only for integer types");
  using TU = MakeUnsigned<T>;
  return static_cast<T>(IsSigned<T>() ? (static_cast<TU>(~0ull) >> 1)
                                      : static_cast<TU>(~0ull));
}
template <typename T>
HWY_API constexpr T LimitsMin() {
  static_assert(!IsFloat<T>(), "Only for integer types");
  return IsSigned<T>() ? T(-1) - LimitsMax<T>() : T(0);
}

// Largest/smallest representable value (integer or float). This naming avoids
// confusion with numeric_limits<float>::min() (the smallest positive value).
template <typename T>
HWY_API constexpr T LowestValue() {
  return LimitsMin<T>();
}
template <>
constexpr float LowestValue<float>() {
  return -3.402823466e+38F;
}
template <>
constexpr double LowestValue<double>() {
  return -1.7976931348623158e+308;
}

template <typename T>
HWY_API constexpr T HighestValue() {
  return LimitsMax<T>();
}
template <>
constexpr float HighestValue<float>() {
  return 3.402823466e+38F;
}
template <>
constexpr double HighestValue<double>() {
  return 1.7976931348623158e+308;
}

// Difference between 1.0 and the next representable value.
template <typename T>
HWY_API constexpr T Epsilon() {
  return 1;
}
template <>
constexpr float Epsilon<float>() {
  return 1.192092896e-7f;
}
template <>
constexpr double Epsilon<double>() {
  return 2.2204460492503131e-16;
}

// Returns width in bits of the mantissa field in IEEE binary32/64.
template <typename T>
constexpr int MantissaBits() {
  static_assert(sizeof(T) == 0, "Only instantiate the specializations");
  return 0;
}
template <>
constexpr int MantissaBits<float>() {
  return 23;
}
template <>
constexpr int MantissaBits<double>() {
  return 52;
}

// Returns the (left-shifted by one bit) IEEE binary32/64 representation with
// the largest possible (biased) exponent field. Used by IsInf.
template <typename T>
constexpr MakeSigned<T> MaxExponentTimes2() {
  return -(MakeSigned<T>{1} << (MantissaBits<T>() + 1));
}

// Returns bitmask of the sign bit in IEEE binary32/64.
template <typename T>
constexpr MakeUnsigned<T> SignMask() {
  return MakeUnsigned<T>{1} << (sizeof(T) * 8 - 1);
}

// Returns bitmask of the exponent field in IEEE binary32/64.
template <typename T>
constexpr MakeUnsigned<T> ExponentMask() {
  return (~(MakeUnsigned<T>{1} << MantissaBits<T>()) + 1) & ~SignMask<T>();
}

// Returns bitmask of the mantissa field in IEEE binary32/64.
template <typename T>
constexpr MakeUnsigned<T> MantissaMask() {
  return (MakeUnsigned<T>{1} << MantissaBits<T>()) - 1;
}

// Returns 1 << mantissa_bits as a floating-point number. All integers whose
// absolute value are less than this can be represented exactly.
template <typename T>
constexpr T MantissaEnd() {
  static_assert(sizeof(T) == 0, "Only instantiate the specializations");
  return 0;
}
template <>
constexpr float MantissaEnd<float>() {
  return 8388608.0f;  // 1 << 23
}
template <>
constexpr double MantissaEnd<double>() {
  // floating point literal with p52 requires C++17.
  return 4503599627370496.0;  // 1 << 52
}

// Returns width in bits of the exponent field in IEEE binary32/64.
template <typename T>
constexpr int ExponentBits() {
  // Exponent := remaining bits after deducting sign and mantissa.
  return 8 * sizeof(T) - 1 - MantissaBits<T>();
}

// Returns largest value of the biased exponent field in IEEE binary32/64,
// right-shifted so that the LSB is bit zero. Example: 0xFF for float.
// This is expressed as a signed integer for more efficient comparison.
template <typename T>
constexpr MakeSigned<T> MaxExponentField() {
  return (MakeSigned<T>{1} << ExponentBits<T>()) - 1;
}

//------------------------------------------------------------------------------
// Helper functions

template <typename T1, typename T2>
constexpr inline T1 DivCeil(T1 a, T2 b) {
  return (a + b - 1) / b;
}

// Works for any `align`; if a power of two, compiler emits ADD+AND.
constexpr inline size_t RoundUpTo(size_t what, size_t align) {
  return DivCeil(what, align) * align;
}

// Undefined results for x == 0.
HWY_API size_t Num0BitsBelowLS1Bit_Nonzero32(const uint32_t x) {
#if HWY_COMPILER_MSVC
  unsigned long index;  // NOLINT
  _BitScanForward(&index, x);
  return index;
#else   // HWY_COMPILER_MSVC
  return static_cast<size_t>(__builtin_ctz(x));
#endif  // HWY_COMPILER_MSVC
}

HWY_API size_t Num0BitsBelowLS1Bit_Nonzero64(const uint64_t x) {
#if HWY_COMPILER_MSVC
#if HWY_ARCH_X86_64
  unsigned long index;  // NOLINT
  _BitScanForward64(&index, x);
  return index;
#else   // HWY_ARCH_X86_64
  // _BitScanForward64 not available
  uint32_t lsb = static_cast<uint32_t>(x & 0xFFFFFFFF);
  unsigned long index;  // NOLINT
  if (lsb == 0) {
    uint32_t msb = static_cast<uint32_t>(x >> 32u);
    _BitScanForward(&index, msb);
    return 32 + index;
  } else {
    _BitScanForward(&index, lsb);
    return index;
  }
#endif  // HWY_ARCH_X86_64
#else   // HWY_COMPILER_MSVC
  return static_cast<size_t>(__builtin_ctzll(x));
#endif  // HWY_COMPILER_MSVC
}

// Undefined results for x == 0.
HWY_API size_t Num0BitsAboveMS1Bit_Nonzero32(const uint32_t x) {
#if HWY_COMPILER_MSVC
  unsigned long index;  // NOLINT
  _BitScanReverse(&index, x);
  return 31 - index;
#else   // HWY_COMPILER_MSVC
  return static_cast<size_t>(__builtin_clz(x));
#endif  // HWY_COMPILER_MSVC
}

HWY_API size_t Num0BitsAboveMS1Bit_Nonzero64(const uint64_t x) {
#if HWY_COMPILER_MSVC
#if HWY_ARCH_X86_64
  unsigned long index;  // NOLINT
  _BitScanReverse64(&index, x);
  return 63 - index;
#else   // HWY_ARCH_X86_64
  // _BitScanReverse64 not available
  const uint32_t msb = static_cast<uint32_t>(x >> 32u);
  unsigned long index;  // NOLINT
  if (msb == 0) {
    const uint32_t lsb = static_cast<uint32_t>(x & 0xFFFFFFFF);
    _BitScanReverse(&index, lsb);
    return 63 - index;
  } else {
    _BitScanReverse(&index, msb);
    return 31 - index;
  }
#endif  // HWY_ARCH_X86_64
#else   // HWY_COMPILER_MSVC
  return static_cast<size_t>(__builtin_clzll(x));
#endif  // HWY_COMPILER_MSVC
}

HWY_API size_t PopCount(uint64_t x) {
#if HWY_COMPILER_GCC  // includes clang
  return static_cast<size_t>(__builtin_popcountll(x));
  // This instruction has a separate feature flag, but is often called from
  // non-SIMD code, so we don't want to require dynamic dispatch. It was first
  // supported by Intel in Nehalem (SSE4.2), but MSVC only predefines a macro
  // for AVX, so check for that.
#elif HWY_COMPILER_MSVC && HWY_ARCH_X86_64 && defined(__AVX__)
  return _mm_popcnt_u64(x);
#elif HWY_COMPILER_MSVC && HWY_ARCH_X86_32 && defined(__AVX__)
  return _mm_popcnt_u32(static_cast<uint32_t>(x & 0xFFFFFFFFu)) +
         _mm_popcnt_u32(static_cast<uint32_t>(x >> 32));
#else
  x -= ((x >> 1) & 0x5555555555555555ULL);
  x = (((x >> 2) & 0x3333333333333333ULL) + (x & 0x3333333333333333ULL));
  x = (((x >> 4) + x) & 0x0F0F0F0F0F0F0F0FULL);
  x += (x >> 8);
  x += (x >> 16);
  x += (x >> 32);
  return static_cast<size_t>(x & 0x7Fu);
#endif
}

// Skip HWY_API due to GCC "function not considered for inlining". Previously
// such errors were caused by underlying type mismatches, but it's not clear
// what is still mismatched despite all the casts.
template <typename TI>
/*HWY_API*/ constexpr size_t FloorLog2(TI x) {
  return x == TI{1}
             ? 0
             : static_cast<size_t>(FloorLog2(static_cast<TI>(x >> 1)) + 1);
}

template <typename TI>
/*HWY_API*/ constexpr size_t CeilLog2(TI x) {
  return x == TI{1}
             ? 0
             : static_cast<size_t>(FloorLog2(static_cast<TI>(x - 1)) + 1);
}

#if HWY_COMPILER_MSVC && HWY_ARCH_X86_64
#pragma intrinsic(_umul128)
#endif

// 64 x 64 = 128 bit multiplication
HWY_API uint64_t Mul128(uint64_t a, uint64_t b, uint64_t* HWY_RESTRICT upper) {
#if defined(__SIZEOF_INT128__)
  __uint128_t product = (__uint128_t)a * (__uint128_t)b;
  *upper = (uint64_t)(product >> 64);
  return (uint64_t)(product & 0xFFFFFFFFFFFFFFFFULL);
#elif HWY_COMPILER_MSVC && HWY_ARCH_X86_64
  return _umul128(a, b, upper);
#else
  constexpr uint64_t kLo32 = 0xFFFFFFFFU;
  const uint64_t lo_lo = (a & kLo32) * (b & kLo32);
  const uint64_t hi_lo = (a >> 32) * (b & kLo32);
  const uint64_t lo_hi = (a & kLo32) * (b >> 32);
  const uint64_t hi_hi = (a >> 32) * (b >> 32);
  const uint64_t t = (lo_lo >> 32) + (hi_lo & kLo32) + lo_hi;
  *upper = (hi_lo >> 32) + (t >> 32) + hi_hi;
  return (t << 32) | (lo_lo & kLo32);
#endif
}

#if HWY_COMPILER_MSVC
#pragma intrinsic(memcpy)
#pragma intrinsic(memset)
#endif

// The source/destination must not overlap/alias.
template <size_t kBytes, typename From, typename To>
HWY_API void CopyBytes(const From* from, To* to) {
#if HWY_COMPILER_MSVC
  memcpy(to, from, kBytes);
#else
  __builtin_memcpy(
      static_cast<void*>(to), static_cast<const void*>(from), kBytes);
#endif
}

// Same as CopyBytes, but for same-sized objects; avoids a size argument.
template <typename From, typename To>
HWY_API void CopySameSize(const From* HWY_RESTRICT from, To* HWY_RESTRICT to) {
  static_assert(sizeof(From) == sizeof(To), "");
  CopyBytes<sizeof(From)>(from, to);
}

template <size_t kBytes, typename To>
HWY_API void ZeroBytes(To* to) {
#if HWY_COMPILER_MSVC
  memset(to, 0, kBytes);
#else
  __builtin_memset(to, 0, kBytes);
#endif
}

HWY_API float F32FromBF16(bfloat16_t bf) {
  uint32_t bits = bf.bits;
  bits <<= 16;
  float f;
  CopySameSize(&bits, &f);
  return f;
}

HWY_API bfloat16_t BF16FromF32(float f) {
  uint32_t bits;
  CopySameSize(&f, &bits);
  bfloat16_t bf;
  bf.bits = static_cast<uint16_t>(bits >> 16);
  return bf;
}

HWY_DLLEXPORT HWY_NORETURN void HWY_FORMAT(3, 4)
    Abort(const char* file, int line, const char* format, ...);

}  // namespace hwy

#endif  // HIGHWAY_HWY_BASE_H_