1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
|
// Copyright 2021 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ARM SVE[2] vectors (length not known at compile time).
// External include guard in highway.h - see comment there.
#include <arm_sve.h>
#include <stddef.h>
#include <stdint.h>
#include "hwy/base.h"
#include "hwy/ops/shared-inl.h"
// If running on hardware whose vector length is known to be a power of two, we
// can skip fixups for non-power of two sizes.
#undef HWY_SVE_IS_POW2
#if HWY_TARGET == HWY_SVE_256 || HWY_TARGET == HWY_SVE2_128
#define HWY_SVE_IS_POW2 1
#else
#define HWY_SVE_IS_POW2 0
#endif
HWY_BEFORE_NAMESPACE();
namespace hwy {
namespace HWY_NAMESPACE {
template <class V>
struct DFromV_t {}; // specialized in macros
template <class V>
using DFromV = typename DFromV_t<RemoveConst<V>>::type;
template <class V>
using TFromV = TFromD<DFromV<V>>;
// ================================================== MACROS
// Generate specializations and function definitions using X macros. Although
// harder to read and debug, writing everything manually is too bulky.
namespace detail { // for code folding
// Unsigned:
#define HWY_SVE_FOREACH_U08(X_MACRO, NAME, OP) X_MACRO(uint, u, 8, 8, NAME, OP)
#define HWY_SVE_FOREACH_U16(X_MACRO, NAME, OP) X_MACRO(uint, u, 16, 8, NAME, OP)
#define HWY_SVE_FOREACH_U32(X_MACRO, NAME, OP) \
X_MACRO(uint, u, 32, 16, NAME, OP)
#define HWY_SVE_FOREACH_U64(X_MACRO, NAME, OP) \
X_MACRO(uint, u, 64, 32, NAME, OP)
// Signed:
#define HWY_SVE_FOREACH_I08(X_MACRO, NAME, OP) X_MACRO(int, s, 8, 8, NAME, OP)
#define HWY_SVE_FOREACH_I16(X_MACRO, NAME, OP) X_MACRO(int, s, 16, 8, NAME, OP)
#define HWY_SVE_FOREACH_I32(X_MACRO, NAME, OP) X_MACRO(int, s, 32, 16, NAME, OP)
#define HWY_SVE_FOREACH_I64(X_MACRO, NAME, OP) X_MACRO(int, s, 64, 32, NAME, OP)
// Float:
#define HWY_SVE_FOREACH_F16(X_MACRO, NAME, OP) \
X_MACRO(float, f, 16, 16, NAME, OP)
#define HWY_SVE_FOREACH_F32(X_MACRO, NAME, OP) \
X_MACRO(float, f, 32, 16, NAME, OP)
#define HWY_SVE_FOREACH_F64(X_MACRO, NAME, OP) \
X_MACRO(float, f, 64, 32, NAME, OP)
// For all element sizes:
#define HWY_SVE_FOREACH_U(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U08(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U16(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U32(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U64(X_MACRO, NAME, OP)
#define HWY_SVE_FOREACH_I(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I08(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I16(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I32(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I64(X_MACRO, NAME, OP)
#define HWY_SVE_FOREACH_F(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_F16(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_F32(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_F64(X_MACRO, NAME, OP)
// Commonly used type categories for a given element size:
#define HWY_SVE_FOREACH_UI08(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U08(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I08(X_MACRO, NAME, OP)
#define HWY_SVE_FOREACH_UI16(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U16(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I16(X_MACRO, NAME, OP)
#define HWY_SVE_FOREACH_UI32(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U32(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I32(X_MACRO, NAME, OP)
#define HWY_SVE_FOREACH_UI64(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U64(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I64(X_MACRO, NAME, OP)
#define HWY_SVE_FOREACH_UIF3264(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_UI32(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_UI64(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_F32(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_F64(X_MACRO, NAME, OP)
// Commonly used type categories:
#define HWY_SVE_FOREACH_UI(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I(X_MACRO, NAME, OP)
#define HWY_SVE_FOREACH_IF(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_F(X_MACRO, NAME, OP)
#define HWY_SVE_FOREACH(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_F(X_MACRO, NAME, OP)
// Assemble types for use in x-macros
#define HWY_SVE_T(BASE, BITS) BASE##BITS##_t
#define HWY_SVE_D(BASE, BITS, N, POW2) Simd<HWY_SVE_T(BASE, BITS), N, POW2>
#define HWY_SVE_V(BASE, BITS) sv##BASE##BITS##_t
} // namespace detail
#define HWY_SPECIALIZE(BASE, CHAR, BITS, HALF, NAME, OP) \
template <> \
struct DFromV_t<HWY_SVE_V(BASE, BITS)> { \
using type = ScalableTag<HWY_SVE_T(BASE, BITS)>; \
};
HWY_SVE_FOREACH(HWY_SPECIALIZE, _, _)
#undef HWY_SPECIALIZE
// Note: _x (don't-care value for inactive lanes) avoids additional MOVPRFX
// instructions, and we anyway only use it when the predicate is ptrue.
// vector = f(vector), e.g. Not
#define HWY_SVE_RETV_ARGPV(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_V(BASE, BITS) v) { \
return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), v); \
}
#define HWY_SVE_RETV_ARGV(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_V(BASE, BITS) v) { \
return sv##OP##_##CHAR##BITS(v); \
}
// vector = f(vector, scalar), e.g. detail::AddN
#define HWY_SVE_RETV_ARGPVN(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_T(BASE, BITS) b) { \
return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), a, b); \
}
#define HWY_SVE_RETV_ARGVN(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_T(BASE, BITS) b) { \
return sv##OP##_##CHAR##BITS(a, b); \
}
// vector = f(vector, vector), e.g. Add
#define HWY_SVE_RETV_ARGPVV(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_V(BASE, BITS) b) { \
return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), a, b); \
}
#define HWY_SVE_RETV_ARGVV(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_V(BASE, BITS) b) { \
return sv##OP##_##CHAR##BITS(a, b); \
}
// ------------------------------ Lanes
namespace detail {
// Returns actual lanes of a hardware vector without rounding to a power of two.
HWY_INLINE size_t AllHardwareLanes(hwy::SizeTag<1> /* tag */) {
return svcntb_pat(SV_ALL);
}
HWY_INLINE size_t AllHardwareLanes(hwy::SizeTag<2> /* tag */) {
return svcnth_pat(SV_ALL);
}
HWY_INLINE size_t AllHardwareLanes(hwy::SizeTag<4> /* tag */) {
return svcntw_pat(SV_ALL);
}
HWY_INLINE size_t AllHardwareLanes(hwy::SizeTag<8> /* tag */) {
return svcntd_pat(SV_ALL);
}
// All-true mask from a macro
#define HWY_SVE_ALL_PTRUE(BITS) svptrue_pat_b##BITS(SV_ALL)
#if HWY_SVE_IS_POW2
#define HWY_SVE_PTRUE(BITS) HWY_SVE_ALL_PTRUE(BITS)
#else
#define HWY_SVE_PTRUE(BITS) svptrue_pat_b##BITS(SV_POW2)
// Returns actual lanes of a hardware vector, rounded down to a power of two.
template <typename T, HWY_IF_LANE_SIZE(T, 1)>
HWY_INLINE size_t HardwareLanes() {
return svcntb_pat(SV_POW2);
}
template <typename T, HWY_IF_LANE_SIZE(T, 2)>
HWY_INLINE size_t HardwareLanes() {
return svcnth_pat(SV_POW2);
}
template <typename T, HWY_IF_LANE_SIZE(T, 4)>
HWY_INLINE size_t HardwareLanes() {
return svcntw_pat(SV_POW2);
}
template <typename T, HWY_IF_LANE_SIZE(T, 8)>
HWY_INLINE size_t HardwareLanes() {
return svcntd_pat(SV_POW2);
}
#endif // HWY_SVE_IS_POW2
} // namespace detail
// Returns actual number of lanes after capping by N and shifting. May return 0
// (e.g. for "1/8th" of a u32x4 - would be 1 for 1/8th of u32x8).
#if HWY_TARGET == HWY_SVE_256
template <typename T, size_t N, int kPow2>
HWY_API constexpr size_t Lanes(Simd<T, N, kPow2> /* d */) {
return HWY_MIN(detail::ScaleByPower(32 / sizeof(T), kPow2), N);
}
#elif HWY_TARGET == HWY_SVE2_128
template <typename T, size_t N, int kPow2>
HWY_API constexpr size_t Lanes(Simd<T, N, kPow2> /* d */) {
return HWY_MIN(detail::ScaleByPower(16 / sizeof(T), kPow2), N);
}
#else
template <typename T, size_t N, int kPow2>
HWY_API size_t Lanes(Simd<T, N, kPow2> d) {
const size_t actual = detail::HardwareLanes<T>();
// Common case of full vectors: avoid any extra instructions.
if (detail::IsFull(d)) return actual;
return HWY_MIN(detail::ScaleByPower(actual, kPow2), N);
}
#endif // HWY_TARGET
// ================================================== MASK INIT
// One mask bit per byte; only the one belonging to the lowest byte is valid.
// ------------------------------ FirstN
#define HWY_SVE_FIRSTN(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API svbool_t NAME(HWY_SVE_D(BASE, BITS, N, kPow2) d, size_t count) { \
const size_t limit = detail::IsFull(d) ? count : HWY_MIN(Lanes(d), count); \
return sv##OP##_b##BITS##_u32(uint32_t{0}, static_cast<uint32_t>(limit)); \
}
HWY_SVE_FOREACH(HWY_SVE_FIRSTN, FirstN, whilelt)
#undef HWY_SVE_FIRSTN
template <class D>
using MFromD = decltype(FirstN(D(), 0));
namespace detail {
#define HWY_SVE_WRAP_PTRUE(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API svbool_t NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */) { \
return HWY_SVE_PTRUE(BITS); \
} \
template <size_t N, int kPow2> \
HWY_API svbool_t All##NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */) { \
return HWY_SVE_ALL_PTRUE(BITS); \
}
HWY_SVE_FOREACH(HWY_SVE_WRAP_PTRUE, PTrue, ptrue) // return all-true
#undef HWY_SVE_WRAP_PTRUE
HWY_API svbool_t PFalse() { return svpfalse_b(); }
// Returns all-true if d is HWY_FULL or FirstN(N) after capping N.
//
// This is used in functions that load/store memory; other functions (e.g.
// arithmetic) can ignore d and use PTrue instead.
template <class D>
svbool_t MakeMask(D d) {
return IsFull(d) ? PTrue(d) : FirstN(d, Lanes(d));
}
} // namespace detail
// ================================================== INIT
// ------------------------------ Set
// vector = f(d, scalar), e.g. Set
#define HWY_SVE_SET(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, \
HWY_SVE_T(BASE, BITS) arg) { \
return sv##OP##_##CHAR##BITS(arg); \
}
HWY_SVE_FOREACH(HWY_SVE_SET, Set, dup_n)
#undef HWY_SVE_SET
// Required for Zero and VFromD
template <size_t N, int kPow2>
svuint16_t Set(Simd<bfloat16_t, N, kPow2> d, bfloat16_t arg) {
return Set(RebindToUnsigned<decltype(d)>(), arg.bits);
}
template <class D>
using VFromD = decltype(Set(D(), TFromD<D>()));
// ------------------------------ Zero
template <class D>
VFromD<D> Zero(D d) {
// Cast to support bfloat16_t.
const RebindToUnsigned<decltype(d)> du;
return BitCast(d, Set(du, 0));
}
// ------------------------------ Undefined
#define HWY_SVE_UNDEFINED(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */) { \
return sv##OP##_##CHAR##BITS(); \
}
HWY_SVE_FOREACH(HWY_SVE_UNDEFINED, Undefined, undef)
// ------------------------------ BitCast
namespace detail {
// u8: no change
#define HWY_SVE_CAST_NOP(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) BitCastToByte(HWY_SVE_V(BASE, BITS) v) { \
return v; \
} \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_V(BASE, BITS) BitCastFromByte( \
HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, HWY_SVE_V(BASE, BITS) v) { \
return v; \
}
// All other types
#define HWY_SVE_CAST(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_INLINE svuint8_t BitCastToByte(HWY_SVE_V(BASE, BITS) v) { \
return sv##OP##_u8_##CHAR##BITS(v); \
} \
template <size_t N, int kPow2> \
HWY_INLINE HWY_SVE_V(BASE, BITS) \
BitCastFromByte(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, svuint8_t v) { \
return sv##OP##_##CHAR##BITS##_u8(v); \
}
HWY_SVE_FOREACH_U08(HWY_SVE_CAST_NOP, _, _)
HWY_SVE_FOREACH_I08(HWY_SVE_CAST, _, reinterpret)
HWY_SVE_FOREACH_UI16(HWY_SVE_CAST, _, reinterpret)
HWY_SVE_FOREACH_UI32(HWY_SVE_CAST, _, reinterpret)
HWY_SVE_FOREACH_UI64(HWY_SVE_CAST, _, reinterpret)
HWY_SVE_FOREACH_F(HWY_SVE_CAST, _, reinterpret)
#undef HWY_SVE_CAST_NOP
#undef HWY_SVE_CAST
template <size_t N, int kPow2>
HWY_INLINE svuint16_t BitCastFromByte(Simd<bfloat16_t, N, kPow2> /* d */,
svuint8_t v) {
return BitCastFromByte(Simd<uint16_t, N, kPow2>(), v);
}
} // namespace detail
template <class D, class FromV>
HWY_API VFromD<D> BitCast(D d, FromV v) {
return detail::BitCastFromByte(d, detail::BitCastToByte(v));
}
// ================================================== LOGICAL
// detail::*N() functions accept a scalar argument to avoid extra Set().
// ------------------------------ Not
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPV, Not, not ) // NOLINT
// ------------------------------ And
namespace detail {
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVN, AndN, and_n)
} // namespace detail
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVV, And, and)
template <class V, HWY_IF_FLOAT_V(V)>
HWY_API V And(const V a, const V b) {
const DFromV<V> df;
const RebindToUnsigned<decltype(df)> du;
return BitCast(df, And(BitCast(du, a), BitCast(du, b)));
}
// ------------------------------ Or
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVV, Or, orr)
template <class V, HWY_IF_FLOAT_V(V)>
HWY_API V Or(const V a, const V b) {
const DFromV<V> df;
const RebindToUnsigned<decltype(df)> du;
return BitCast(df, Or(BitCast(du, a), BitCast(du, b)));
}
// ------------------------------ Xor
namespace detail {
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVN, XorN, eor_n)
} // namespace detail
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVV, Xor, eor)
template <class V, HWY_IF_FLOAT_V(V)>
HWY_API V Xor(const V a, const V b) {
const DFromV<V> df;
const RebindToUnsigned<decltype(df)> du;
return BitCast(df, Xor(BitCast(du, a), BitCast(du, b)));
}
// ------------------------------ AndNot
namespace detail {
#define HWY_SVE_RETV_ARGPVN_SWAP(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_T(BASE, BITS) a, HWY_SVE_V(BASE, BITS) b) { \
return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), b, a); \
}
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVN_SWAP, AndNotN, bic_n)
#undef HWY_SVE_RETV_ARGPVN_SWAP
} // namespace detail
#define HWY_SVE_RETV_ARGPVV_SWAP(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_V(BASE, BITS) b) { \
return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), b, a); \
}
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVV_SWAP, AndNot, bic)
#undef HWY_SVE_RETV_ARGPVV_SWAP
template <class V, HWY_IF_FLOAT_V(V)>
HWY_API V AndNot(const V a, const V b) {
const DFromV<V> df;
const RebindToUnsigned<decltype(df)> du;
return BitCast(df, AndNot(BitCast(du, a), BitCast(du, b)));
}
// ------------------------------ Or3
template <class V>
HWY_API V Or3(V o1, V o2, V o3) {
return Or(o1, Or(o2, o3));
}
// ------------------------------ OrAnd
template <class V>
HWY_API V OrAnd(const V o, const V a1, const V a2) {
return Or(o, And(a1, a2));
}
// ------------------------------ PopulationCount
#ifdef HWY_NATIVE_POPCNT
#undef HWY_NATIVE_POPCNT
#else
#define HWY_NATIVE_POPCNT
#endif
// Need to return original type instead of unsigned.
#define HWY_SVE_POPCNT(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_V(BASE, BITS) v) { \
return BitCast(DFromV<decltype(v)>(), \
sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), v)); \
}
HWY_SVE_FOREACH_UI(HWY_SVE_POPCNT, PopulationCount, cnt)
#undef HWY_SVE_POPCNT
// ================================================== SIGN
// ------------------------------ Neg
HWY_SVE_FOREACH_IF(HWY_SVE_RETV_ARGPV, Neg, neg)
// ------------------------------ Abs
HWY_SVE_FOREACH_IF(HWY_SVE_RETV_ARGPV, Abs, abs)
// ------------------------------ CopySign[ToAbs]
template <class V>
HWY_API V CopySign(const V magn, const V sign) {
const auto msb = SignBit(DFromV<V>());
return Or(AndNot(msb, magn), And(msb, sign));
}
template <class V>
HWY_API V CopySignToAbs(const V abs, const V sign) {
const auto msb = SignBit(DFromV<V>());
return Or(abs, And(msb, sign));
}
// ================================================== ARITHMETIC
// ------------------------------ Add
namespace detail {
HWY_SVE_FOREACH(HWY_SVE_RETV_ARGPVN, AddN, add_n)
} // namespace detail
HWY_SVE_FOREACH(HWY_SVE_RETV_ARGPVV, Add, add)
// ------------------------------ Sub
namespace detail {
// Can't use HWY_SVE_RETV_ARGPVN because caller wants to specify pg.
#define HWY_SVE_RETV_ARGPVN_MASK(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(svbool_t pg, HWY_SVE_V(BASE, BITS) a, HWY_SVE_T(BASE, BITS) b) { \
return sv##OP##_##CHAR##BITS##_z(pg, a, b); \
}
HWY_SVE_FOREACH(HWY_SVE_RETV_ARGPVN_MASK, SubN, sub_n)
#undef HWY_SVE_RETV_ARGPVN_MASK
} // namespace detail
HWY_SVE_FOREACH(HWY_SVE_RETV_ARGPVV, Sub, sub)
// ------------------------------ SumsOf8
HWY_API svuint64_t SumsOf8(const svuint8_t v) {
const ScalableTag<uint32_t> du32;
const ScalableTag<uint64_t> du64;
const svbool_t pg = detail::PTrue(du64);
const svuint32_t sums_of_4 = svdot_n_u32(Zero(du32), v, 1);
// Compute pairwise sum of u32 and extend to u64.
// TODO(janwas): on SVE2, we can instead use svaddp.
const svuint64_t hi = svlsr_n_u64_x(pg, BitCast(du64, sums_of_4), 32);
// Isolate the lower 32 bits (to be added to the upper 32 and zero-extended)
const svuint64_t lo = svextw_u64_x(pg, BitCast(du64, sums_of_4));
return Add(hi, lo);
}
// ------------------------------ SaturatedAdd
HWY_SVE_FOREACH_UI08(HWY_SVE_RETV_ARGVV, SaturatedAdd, qadd)
HWY_SVE_FOREACH_UI16(HWY_SVE_RETV_ARGVV, SaturatedAdd, qadd)
// ------------------------------ SaturatedSub
HWY_SVE_FOREACH_UI08(HWY_SVE_RETV_ARGVV, SaturatedSub, qsub)
HWY_SVE_FOREACH_UI16(HWY_SVE_RETV_ARGVV, SaturatedSub, qsub)
// ------------------------------ AbsDiff
HWY_SVE_FOREACH_IF(HWY_SVE_RETV_ARGPVV, AbsDiff, abd)
// ------------------------------ ShiftLeft[Same]
#define HWY_SVE_SHIFT_N(BASE, CHAR, BITS, HALF, NAME, OP) \
template <int kBits> \
HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_V(BASE, BITS) v) { \
return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), v, kBits); \
} \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME##Same(HWY_SVE_V(BASE, BITS) v, HWY_SVE_T(uint, BITS) bits) { \
return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), v, bits); \
}
HWY_SVE_FOREACH_UI(HWY_SVE_SHIFT_N, ShiftLeft, lsl_n)
// ------------------------------ ShiftRight[Same]
HWY_SVE_FOREACH_U(HWY_SVE_SHIFT_N, ShiftRight, lsr_n)
HWY_SVE_FOREACH_I(HWY_SVE_SHIFT_N, ShiftRight, asr_n)
#undef HWY_SVE_SHIFT_N
// ------------------------------ RotateRight
// TODO(janwas): svxar on SVE2
template <int kBits, class V>
HWY_API V RotateRight(const V v) {
constexpr size_t kSizeInBits = sizeof(TFromV<V>) * 8;
static_assert(0 <= kBits && kBits < kSizeInBits, "Invalid shift count");
if (kBits == 0) return v;
return Or(ShiftRight<kBits>(v), ShiftLeft<kSizeInBits - kBits>(v));
}
// ------------------------------ Shl/r
#define HWY_SVE_SHIFT(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) v, HWY_SVE_V(BASE, BITS) bits) { \
const RebindToUnsigned<DFromV<decltype(v)>> du; \
return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), v, \
BitCast(du, bits)); \
}
HWY_SVE_FOREACH_UI(HWY_SVE_SHIFT, Shl, lsl)
HWY_SVE_FOREACH_U(HWY_SVE_SHIFT, Shr, lsr)
HWY_SVE_FOREACH_I(HWY_SVE_SHIFT, Shr, asr)
#undef HWY_SVE_SHIFT
// ------------------------------ Min/Max
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVV, Min, min)
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVV, Max, max)
HWY_SVE_FOREACH_F(HWY_SVE_RETV_ARGPVV, Min, minnm)
HWY_SVE_FOREACH_F(HWY_SVE_RETV_ARGPVV, Max, maxnm)
namespace detail {
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVN, MinN, min_n)
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVN, MaxN, max_n)
} // namespace detail
// ------------------------------ Mul
HWY_SVE_FOREACH_UI16(HWY_SVE_RETV_ARGPVV, Mul, mul)
HWY_SVE_FOREACH_UIF3264(HWY_SVE_RETV_ARGPVV, Mul, mul)
// Per-target flag to prevent generic_ops-inl.h from defining i64 operator*.
#ifdef HWY_NATIVE_I64MULLO
#undef HWY_NATIVE_I64MULLO
#else
#define HWY_NATIVE_I64MULLO
#endif
// ------------------------------ MulHigh
HWY_SVE_FOREACH_UI16(HWY_SVE_RETV_ARGPVV, MulHigh, mulh)
// Not part of API, used internally:
HWY_SVE_FOREACH_UI32(HWY_SVE_RETV_ARGPVV, MulHigh, mulh)
HWY_SVE_FOREACH_U64(HWY_SVE_RETV_ARGPVV, MulHigh, mulh)
// ------------------------------ MulFixedPoint15
HWY_API svint16_t MulFixedPoint15(svint16_t a, svint16_t b) {
#if HWY_TARGET == HWY_SVE2
return svqrdmulh_s16(a, b);
#else
const DFromV<decltype(a)> d;
const RebindToUnsigned<decltype(d)> du;
const svuint16_t lo = BitCast(du, Mul(a, b));
const svint16_t hi = MulHigh(a, b);
// We want (lo + 0x4000) >> 15, but that can overflow, and if it does we must
// carry that into the result. Instead isolate the top two bits because only
// they can influence the result.
const svuint16_t lo_top2 = ShiftRight<14>(lo);
// Bits 11: add 2, 10: add 1, 01: add 1, 00: add 0.
const svuint16_t rounding = ShiftRight<1>(detail::AddN(lo_top2, 1));
return Add(Add(hi, hi), BitCast(d, rounding));
#endif
}
// ------------------------------ Div
HWY_SVE_FOREACH_F(HWY_SVE_RETV_ARGPVV, Div, div)
// ------------------------------ ApproximateReciprocal
HWY_SVE_FOREACH_F32(HWY_SVE_RETV_ARGV, ApproximateReciprocal, recpe)
// ------------------------------ Sqrt
HWY_SVE_FOREACH_F(HWY_SVE_RETV_ARGPV, Sqrt, sqrt)
// ------------------------------ ApproximateReciprocalSqrt
HWY_SVE_FOREACH_F32(HWY_SVE_RETV_ARGV, ApproximateReciprocalSqrt, rsqrte)
// ------------------------------ MulAdd
#define HWY_SVE_FMA(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) mul, HWY_SVE_V(BASE, BITS) x, \
HWY_SVE_V(BASE, BITS) add) { \
return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), x, mul, add); \
}
HWY_SVE_FOREACH_F(HWY_SVE_FMA, MulAdd, mad)
// ------------------------------ NegMulAdd
HWY_SVE_FOREACH_F(HWY_SVE_FMA, NegMulAdd, msb)
// ------------------------------ MulSub
HWY_SVE_FOREACH_F(HWY_SVE_FMA, MulSub, nmsb)
// ------------------------------ NegMulSub
HWY_SVE_FOREACH_F(HWY_SVE_FMA, NegMulSub, nmad)
#undef HWY_SVE_FMA
// ------------------------------ Round etc.
HWY_SVE_FOREACH_F(HWY_SVE_RETV_ARGPV, Round, rintn)
HWY_SVE_FOREACH_F(HWY_SVE_RETV_ARGPV, Floor, rintm)
HWY_SVE_FOREACH_F(HWY_SVE_RETV_ARGPV, Ceil, rintp)
HWY_SVE_FOREACH_F(HWY_SVE_RETV_ARGPV, Trunc, rintz)
// ================================================== MASK
// ------------------------------ RebindMask
template <class D, typename MFrom>
HWY_API svbool_t RebindMask(const D /*d*/, const MFrom mask) {
return mask;
}
// ------------------------------ Mask logical
HWY_API svbool_t Not(svbool_t m) {
// We don't know the lane type, so assume 8-bit. For larger types, this will
// de-canonicalize the predicate, i.e. set bits to 1 even though they do not
// correspond to the lowest byte in the lane. Per ARM, such bits are ignored.
return svnot_b_z(HWY_SVE_PTRUE(8), m);
}
HWY_API svbool_t And(svbool_t a, svbool_t b) {
return svand_b_z(b, b, a); // same order as AndNot for consistency
}
HWY_API svbool_t AndNot(svbool_t a, svbool_t b) {
return svbic_b_z(b, b, a); // reversed order like NEON
}
HWY_API svbool_t Or(svbool_t a, svbool_t b) {
return svsel_b(a, a, b); // a ? true : b
}
HWY_API svbool_t Xor(svbool_t a, svbool_t b) {
return svsel_b(a, svnand_b_z(a, a, b), b); // a ? !(a & b) : b.
}
HWY_API svbool_t ExclusiveNeither(svbool_t a, svbool_t b) {
return svnor_b_z(HWY_SVE_PTRUE(8), a, b); // !a && !b, undefined if a && b.
}
// ------------------------------ CountTrue
#define HWY_SVE_COUNT_TRUE(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API size_t NAME(HWY_SVE_D(BASE, BITS, N, kPow2) d, svbool_t m) { \
return sv##OP##_b##BITS(detail::MakeMask(d), m); \
}
HWY_SVE_FOREACH(HWY_SVE_COUNT_TRUE, CountTrue, cntp)
#undef HWY_SVE_COUNT_TRUE
// For 16-bit Compress: full vector, not limited to SV_POW2.
namespace detail {
#define HWY_SVE_COUNT_TRUE_FULL(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API size_t NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, svbool_t m) { \
return sv##OP##_b##BITS(svptrue_b##BITS(), m); \
}
HWY_SVE_FOREACH(HWY_SVE_COUNT_TRUE_FULL, CountTrueFull, cntp)
#undef HWY_SVE_COUNT_TRUE_FULL
} // namespace detail
// ------------------------------ AllFalse
template <class D>
HWY_API bool AllFalse(D d, svbool_t m) {
return !svptest_any(detail::MakeMask(d), m);
}
// ------------------------------ AllTrue
template <class D>
HWY_API bool AllTrue(D d, svbool_t m) {
return CountTrue(d, m) == Lanes(d);
}
// ------------------------------ FindFirstTrue
template <class D>
HWY_API intptr_t FindFirstTrue(D d, svbool_t m) {
return AllFalse(d, m) ? intptr_t{-1}
: static_cast<intptr_t>(
CountTrue(d, svbrkb_b_z(detail::MakeMask(d), m)));
}
// ------------------------------ FindKnownFirstTrue
template <class D>
HWY_API size_t FindKnownFirstTrue(D d, svbool_t m) {
return CountTrue(d, svbrkb_b_z(detail::MakeMask(d), m));
}
// ------------------------------ IfThenElse
#define HWY_SVE_IF_THEN_ELSE(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(svbool_t m, HWY_SVE_V(BASE, BITS) yes, HWY_SVE_V(BASE, BITS) no) { \
return sv##OP##_##CHAR##BITS(m, yes, no); \
}
HWY_SVE_FOREACH(HWY_SVE_IF_THEN_ELSE, IfThenElse, sel)
#undef HWY_SVE_IF_THEN_ELSE
// ------------------------------ IfThenElseZero
template <class V>
HWY_API V IfThenElseZero(const svbool_t mask, const V yes) {
return IfThenElse(mask, yes, Zero(DFromV<V>()));
}
// ------------------------------ IfThenZeroElse
template <class V>
HWY_API V IfThenZeroElse(const svbool_t mask, const V no) {
return IfThenElse(mask, Zero(DFromV<V>()), no);
}
// ================================================== COMPARE
// mask = f(vector, vector)
#define HWY_SVE_COMPARE(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API svbool_t NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_V(BASE, BITS) b) { \
return sv##OP##_##CHAR##BITS(HWY_SVE_PTRUE(BITS), a, b); \
}
#define HWY_SVE_COMPARE_N(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API svbool_t NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_T(BASE, BITS) b) { \
return sv##OP##_##CHAR##BITS(HWY_SVE_PTRUE(BITS), a, b); \
}
// ------------------------------ Eq
HWY_SVE_FOREACH(HWY_SVE_COMPARE, Eq, cmpeq)
namespace detail {
HWY_SVE_FOREACH(HWY_SVE_COMPARE_N, EqN, cmpeq_n)
} // namespace detail
// ------------------------------ Ne
HWY_SVE_FOREACH(HWY_SVE_COMPARE, Ne, cmpne)
namespace detail {
HWY_SVE_FOREACH(HWY_SVE_COMPARE_N, NeN, cmpne_n)
} // namespace detail
// ------------------------------ Lt
HWY_SVE_FOREACH(HWY_SVE_COMPARE, Lt, cmplt)
namespace detail {
HWY_SVE_FOREACH(HWY_SVE_COMPARE_N, LtN, cmplt_n)
} // namespace detail
// ------------------------------ Le
HWY_SVE_FOREACH_F(HWY_SVE_COMPARE, Le, cmple)
#undef HWY_SVE_COMPARE
#undef HWY_SVE_COMPARE_N
// ------------------------------ Gt/Ge (swapped order)
template <class V>
HWY_API svbool_t Gt(const V a, const V b) {
return Lt(b, a);
}
template <class V>
HWY_API svbool_t Ge(const V a, const V b) {
return Le(b, a);
}
// ------------------------------ TestBit
template <class V>
HWY_API svbool_t TestBit(const V a, const V bit) {
return detail::NeN(And(a, bit), 0);
}
// ------------------------------ MaskFromVec (Ne)
template <class V>
HWY_API svbool_t MaskFromVec(const V v) {
return detail::NeN(v, static_cast<TFromV<V>>(0));
}
// ------------------------------ VecFromMask
template <class D>
HWY_API VFromD<D> VecFromMask(const D d, svbool_t mask) {
const RebindToSigned<D> di;
// This generates MOV imm, whereas svdup_n_s8_z generates MOV scalar, which
// requires an extra instruction plus M0 pipeline.
return BitCast(d, IfThenElseZero(mask, Set(di, -1)));
}
// ------------------------------ IfVecThenElse (MaskFromVec, IfThenElse)
#if HWY_TARGET == HWY_SVE2
#define HWY_SVE_IF_VEC(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) mask, HWY_SVE_V(BASE, BITS) yes, \
HWY_SVE_V(BASE, BITS) no) { \
return sv##OP##_##CHAR##BITS(yes, no, mask); \
}
HWY_SVE_FOREACH_UI(HWY_SVE_IF_VEC, IfVecThenElse, bsl)
#undef HWY_SVE_IF_VEC
template <class V, HWY_IF_FLOAT_V(V)>
HWY_API V IfVecThenElse(const V mask, const V yes, const V no) {
const DFromV<V> d;
const RebindToUnsigned<decltype(d)> du;
return BitCast(
d, IfVecThenElse(BitCast(du, mask), BitCast(du, yes), BitCast(du, no)));
}
#else
template <class V>
HWY_API V IfVecThenElse(const V mask, const V yes, const V no) {
return Or(And(mask, yes), AndNot(mask, no));
}
#endif // HWY_TARGET == HWY_SVE2
// ------------------------------ Floating-point classification (Ne)
template <class V>
HWY_API svbool_t IsNaN(const V v) {
return Ne(v, v); // could also use cmpuo
}
template <class V>
HWY_API svbool_t IsInf(const V v) {
using T = TFromV<V>;
const DFromV<decltype(v)> d;
const RebindToSigned<decltype(d)> di;
const VFromD<decltype(di)> vi = BitCast(di, v);
// 'Shift left' to clear the sign bit, check for exponent=max and mantissa=0.
return RebindMask(d, detail::EqN(Add(vi, vi), hwy::MaxExponentTimes2<T>()));
}
// Returns whether normal/subnormal/zero.
template <class V>
HWY_API svbool_t IsFinite(const V v) {
using T = TFromV<V>;
const DFromV<decltype(v)> d;
const RebindToUnsigned<decltype(d)> du;
const RebindToSigned<decltype(d)> di; // cheaper than unsigned comparison
const VFromD<decltype(du)> vu = BitCast(du, v);
// 'Shift left' to clear the sign bit, then right so we can compare with the
// max exponent (cannot compare with MaxExponentTimes2 directly because it is
// negative and non-negative floats would be greater).
const VFromD<decltype(di)> exp =
BitCast(di, ShiftRight<hwy::MantissaBits<T>() + 1>(Add(vu, vu)));
return RebindMask(d, detail::LtN(exp, hwy::MaxExponentField<T>()));
}
// ================================================== MEMORY
// ------------------------------ Load/MaskedLoad/LoadDup128/Store/Stream
#define HWY_SVE_LOAD(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_D(BASE, BITS, N, kPow2) d, \
const HWY_SVE_T(BASE, BITS) * HWY_RESTRICT p) { \
return sv##OP##_##CHAR##BITS(detail::MakeMask(d), p); \
}
#define HWY_SVE_MASKED_LOAD(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(svbool_t m, HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, \
const HWY_SVE_T(BASE, BITS) * HWY_RESTRICT p) { \
return sv##OP##_##CHAR##BITS(m, p); \
}
#define HWY_SVE_LOAD_DUP128(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, \
const HWY_SVE_T(BASE, BITS) * HWY_RESTRICT p) { \
/* All-true predicate to load all 128 bits. */ \
return sv##OP##_##CHAR##BITS(HWY_SVE_PTRUE(8), p); \
}
#define HWY_SVE_STORE(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API void NAME(HWY_SVE_V(BASE, BITS) v, \
HWY_SVE_D(BASE, BITS, N, kPow2) d, \
HWY_SVE_T(BASE, BITS) * HWY_RESTRICT p) { \
sv##OP##_##CHAR##BITS(detail::MakeMask(d), p, v); \
}
#define HWY_SVE_BLENDED_STORE(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API void NAME(HWY_SVE_V(BASE, BITS) v, svbool_t m, \
HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, \
HWY_SVE_T(BASE, BITS) * HWY_RESTRICT p) { \
sv##OP##_##CHAR##BITS(m, p, v); \
}
HWY_SVE_FOREACH(HWY_SVE_LOAD, Load, ld1)
HWY_SVE_FOREACH(HWY_SVE_MASKED_LOAD, MaskedLoad, ld1)
HWY_SVE_FOREACH(HWY_SVE_LOAD_DUP128, LoadDup128, ld1rq)
HWY_SVE_FOREACH(HWY_SVE_STORE, Store, st1)
HWY_SVE_FOREACH(HWY_SVE_STORE, Stream, stnt1)
HWY_SVE_FOREACH(HWY_SVE_BLENDED_STORE, BlendedStore, st1)
#undef HWY_SVE_LOAD
#undef HWY_SVE_MASKED_LOAD
#undef HWY_SVE_LOAD_DUP128
#undef HWY_SVE_STORE
#undef HWY_SVE_BLENDED_STORE
// BF16 is the same as svuint16_t because BF16 is optional before v8.6.
template <size_t N, int kPow2>
HWY_API svuint16_t Load(Simd<bfloat16_t, N, kPow2> d,
const bfloat16_t* HWY_RESTRICT p) {
return Load(RebindToUnsigned<decltype(d)>(),
reinterpret_cast<const uint16_t * HWY_RESTRICT>(p));
}
template <size_t N, int kPow2>
HWY_API void Store(svuint16_t v, Simd<bfloat16_t, N, kPow2> d,
bfloat16_t* HWY_RESTRICT p) {
Store(v, RebindToUnsigned<decltype(d)>(),
reinterpret_cast<uint16_t * HWY_RESTRICT>(p));
}
// ------------------------------ Load/StoreU
// SVE only requires lane alignment, not natural alignment of the entire
// vector.
template <class D>
HWY_API VFromD<D> LoadU(D d, const TFromD<D>* HWY_RESTRICT p) {
return Load(d, p);
}
template <class V, class D>
HWY_API void StoreU(const V v, D d, TFromD<D>* HWY_RESTRICT p) {
Store(v, d, p);
}
// ------------------------------ ScatterOffset/Index
#define HWY_SVE_SCATTER_OFFSET(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API void NAME(HWY_SVE_V(BASE, BITS) v, \
HWY_SVE_D(BASE, BITS, N, kPow2) d, \
HWY_SVE_T(BASE, BITS) * HWY_RESTRICT base, \
HWY_SVE_V(int, BITS) offset) { \
sv##OP##_s##BITS##offset_##CHAR##BITS(detail::MakeMask(d), base, offset, \
v); \
}
#define HWY_SVE_SCATTER_INDEX(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API void NAME( \
HWY_SVE_V(BASE, BITS) v, HWY_SVE_D(BASE, BITS, N, kPow2) d, \
HWY_SVE_T(BASE, BITS) * HWY_RESTRICT base, HWY_SVE_V(int, BITS) index) { \
sv##OP##_s##BITS##index_##CHAR##BITS(detail::MakeMask(d), base, index, v); \
}
HWY_SVE_FOREACH_UIF3264(HWY_SVE_SCATTER_OFFSET, ScatterOffset, st1_scatter)
HWY_SVE_FOREACH_UIF3264(HWY_SVE_SCATTER_INDEX, ScatterIndex, st1_scatter)
#undef HWY_SVE_SCATTER_OFFSET
#undef HWY_SVE_SCATTER_INDEX
// ------------------------------ GatherOffset/Index
#define HWY_SVE_GATHER_OFFSET(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_D(BASE, BITS, N, kPow2) d, \
const HWY_SVE_T(BASE, BITS) * HWY_RESTRICT base, \
HWY_SVE_V(int, BITS) offset) { \
return sv##OP##_s##BITS##offset_##CHAR##BITS(detail::MakeMask(d), base, \
offset); \
}
#define HWY_SVE_GATHER_INDEX(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_D(BASE, BITS, N, kPow2) d, \
const HWY_SVE_T(BASE, BITS) * HWY_RESTRICT base, \
HWY_SVE_V(int, BITS) index) { \
return sv##OP##_s##BITS##index_##CHAR##BITS(detail::MakeMask(d), base, \
index); \
}
HWY_SVE_FOREACH_UIF3264(HWY_SVE_GATHER_OFFSET, GatherOffset, ld1_gather)
HWY_SVE_FOREACH_UIF3264(HWY_SVE_GATHER_INDEX, GatherIndex, ld1_gather)
#undef HWY_SVE_GATHER_OFFSET
#undef HWY_SVE_GATHER_INDEX
// ------------------------------ LoadInterleaved2
// Per-target flag to prevent generic_ops-inl.h from defining LoadInterleaved2.
#ifdef HWY_NATIVE_LOAD_STORE_INTERLEAVED
#undef HWY_NATIVE_LOAD_STORE_INTERLEAVED
#else
#define HWY_NATIVE_LOAD_STORE_INTERLEAVED
#endif
#define HWY_SVE_LOAD2(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API void NAME(HWY_SVE_D(BASE, BITS, N, kPow2) d, \
const HWY_SVE_T(BASE, BITS) * HWY_RESTRICT unaligned, \
HWY_SVE_V(BASE, BITS) & v0, HWY_SVE_V(BASE, BITS) & v1) { \
const sv##BASE##BITS##x2_t tuple = \
sv##OP##_##CHAR##BITS(detail::MakeMask(d), unaligned); \
v0 = svget2(tuple, 0); \
v1 = svget2(tuple, 1); \
}
HWY_SVE_FOREACH(HWY_SVE_LOAD2, LoadInterleaved2, ld2)
#undef HWY_SVE_LOAD2
// ------------------------------ LoadInterleaved3
#define HWY_SVE_LOAD3(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API void NAME(HWY_SVE_D(BASE, BITS, N, kPow2) d, \
const HWY_SVE_T(BASE, BITS) * HWY_RESTRICT unaligned, \
HWY_SVE_V(BASE, BITS) & v0, HWY_SVE_V(BASE, BITS) & v1, \
HWY_SVE_V(BASE, BITS) & v2) { \
const sv##BASE##BITS##x3_t tuple = \
sv##OP##_##CHAR##BITS(detail::MakeMask(d), unaligned); \
v0 = svget3(tuple, 0); \
v1 = svget3(tuple, 1); \
v2 = svget3(tuple, 2); \
}
HWY_SVE_FOREACH(HWY_SVE_LOAD3, LoadInterleaved3, ld3)
#undef HWY_SVE_LOAD3
// ------------------------------ LoadInterleaved4
#define HWY_SVE_LOAD4(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API void NAME(HWY_SVE_D(BASE, BITS, N, kPow2) d, \
const HWY_SVE_T(BASE, BITS) * HWY_RESTRICT unaligned, \
HWY_SVE_V(BASE, BITS) & v0, HWY_SVE_V(BASE, BITS) & v1, \
HWY_SVE_V(BASE, BITS) & v2, HWY_SVE_V(BASE, BITS) & v3) { \
const sv##BASE##BITS##x4_t tuple = \
sv##OP##_##CHAR##BITS(detail::MakeMask(d), unaligned); \
v0 = svget4(tuple, 0); \
v1 = svget4(tuple, 1); \
v2 = svget4(tuple, 2); \
v3 = svget4(tuple, 3); \
}
HWY_SVE_FOREACH(HWY_SVE_LOAD4, LoadInterleaved4, ld4)
#undef HWY_SVE_LOAD4
// ------------------------------ StoreInterleaved2
#define HWY_SVE_STORE2(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API void NAME(HWY_SVE_V(BASE, BITS) v0, HWY_SVE_V(BASE, BITS) v1, \
HWY_SVE_D(BASE, BITS, N, kPow2) d, \
HWY_SVE_T(BASE, BITS) * HWY_RESTRICT unaligned) { \
const sv##BASE##BITS##x2_t tuple = svcreate2##_##CHAR##BITS(v0, v1); \
sv##OP##_##CHAR##BITS(detail::MakeMask(d), unaligned, tuple); \
}
HWY_SVE_FOREACH(HWY_SVE_STORE2, StoreInterleaved2, st2)
#undef HWY_SVE_STORE2
// ------------------------------ StoreInterleaved3
#define HWY_SVE_STORE3(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API void NAME(HWY_SVE_V(BASE, BITS) v0, HWY_SVE_V(BASE, BITS) v1, \
HWY_SVE_V(BASE, BITS) v2, \
HWY_SVE_D(BASE, BITS, N, kPow2) d, \
HWY_SVE_T(BASE, BITS) * HWY_RESTRICT unaligned) { \
const sv##BASE##BITS##x3_t triple = svcreate3##_##CHAR##BITS(v0, v1, v2); \
sv##OP##_##CHAR##BITS(detail::MakeMask(d), unaligned, triple); \
}
HWY_SVE_FOREACH(HWY_SVE_STORE3, StoreInterleaved3, st3)
#undef HWY_SVE_STORE3
// ------------------------------ StoreInterleaved4
#define HWY_SVE_STORE4(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API void NAME(HWY_SVE_V(BASE, BITS) v0, HWY_SVE_V(BASE, BITS) v1, \
HWY_SVE_V(BASE, BITS) v2, HWY_SVE_V(BASE, BITS) v3, \
HWY_SVE_D(BASE, BITS, N, kPow2) d, \
HWY_SVE_T(BASE, BITS) * HWY_RESTRICT unaligned) { \
const sv##BASE##BITS##x4_t quad = \
svcreate4##_##CHAR##BITS(v0, v1, v2, v3); \
sv##OP##_##CHAR##BITS(detail::MakeMask(d), unaligned, quad); \
}
HWY_SVE_FOREACH(HWY_SVE_STORE4, StoreInterleaved4, st4)
#undef HWY_SVE_STORE4
// ================================================== CONVERT
// ------------------------------ PromoteTo
// Same sign
#define HWY_SVE_PROMOTE_TO(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_V(BASE, BITS) NAME( \
HWY_SVE_D(BASE, BITS, N, kPow2) /* tag */, HWY_SVE_V(BASE, HALF) v) { \
return sv##OP##_##CHAR##BITS(v); \
}
HWY_SVE_FOREACH_UI16(HWY_SVE_PROMOTE_TO, PromoteTo, unpklo)
HWY_SVE_FOREACH_UI32(HWY_SVE_PROMOTE_TO, PromoteTo, unpklo)
HWY_SVE_FOREACH_UI64(HWY_SVE_PROMOTE_TO, PromoteTo, unpklo)
// 2x
template <size_t N, int kPow2>
HWY_API svuint32_t PromoteTo(Simd<uint32_t, N, kPow2> dto, svuint8_t vfrom) {
const RepartitionToWide<DFromV<decltype(vfrom)>> d2;
return PromoteTo(dto, PromoteTo(d2, vfrom));
}
template <size_t N, int kPow2>
HWY_API svint32_t PromoteTo(Simd<int32_t, N, kPow2> dto, svint8_t vfrom) {
const RepartitionToWide<DFromV<decltype(vfrom)>> d2;
return PromoteTo(dto, PromoteTo(d2, vfrom));
}
// Sign change
template <size_t N, int kPow2>
HWY_API svint16_t PromoteTo(Simd<int16_t, N, kPow2> dto, svuint8_t vfrom) {
const RebindToUnsigned<decltype(dto)> du;
return BitCast(dto, PromoteTo(du, vfrom));
}
template <size_t N, int kPow2>
HWY_API svint32_t PromoteTo(Simd<int32_t, N, kPow2> dto, svuint16_t vfrom) {
const RebindToUnsigned<decltype(dto)> du;
return BitCast(dto, PromoteTo(du, vfrom));
}
template <size_t N, int kPow2>
HWY_API svint32_t PromoteTo(Simd<int32_t, N, kPow2> dto, svuint8_t vfrom) {
const Repartition<uint16_t, DFromV<decltype(vfrom)>> du16;
const Repartition<int16_t, decltype(du16)> di16;
return PromoteTo(dto, BitCast(di16, PromoteTo(du16, vfrom)));
}
// ------------------------------ PromoteTo F
// Unlike Highway's ZipLower, this returns the same type.
namespace detail {
HWY_SVE_FOREACH(HWY_SVE_RETV_ARGVV, ZipLowerSame, zip1)
} // namespace detail
template <size_t N, int kPow2>
HWY_API svfloat32_t PromoteTo(Simd<float32_t, N, kPow2> /* d */,
const svfloat16_t v) {
// svcvt* expects inputs in even lanes, whereas Highway wants lower lanes, so
// first replicate each lane once.
const svfloat16_t vv = detail::ZipLowerSame(v, v);
return svcvt_f32_f16_x(detail::PTrue(Simd<float16_t, N, kPow2>()), vv);
}
template <size_t N, int kPow2>
HWY_API svfloat64_t PromoteTo(Simd<float64_t, N, kPow2> /* d */,
const svfloat32_t v) {
const svfloat32_t vv = detail::ZipLowerSame(v, v);
return svcvt_f64_f32_x(detail::PTrue(Simd<float32_t, N, kPow2>()), vv);
}
template <size_t N, int kPow2>
HWY_API svfloat64_t PromoteTo(Simd<float64_t, N, kPow2> /* d */,
const svint32_t v) {
const svint32_t vv = detail::ZipLowerSame(v, v);
return svcvt_f64_s32_x(detail::PTrue(Simd<int32_t, N, kPow2>()), vv);
}
// For 16-bit Compress
namespace detail {
HWY_SVE_FOREACH_UI32(HWY_SVE_PROMOTE_TO, PromoteUpperTo, unpkhi)
#undef HWY_SVE_PROMOTE_TO
template <size_t N, int kPow2>
HWY_API svfloat32_t PromoteUpperTo(Simd<float, N, kPow2> df, svfloat16_t v) {
const RebindToUnsigned<decltype(df)> du;
const RepartitionToNarrow<decltype(du)> dn;
return BitCast(df, PromoteUpperTo(du, BitCast(dn, v)));
}
} // namespace detail
// ------------------------------ DemoteTo U
namespace detail {
// Saturates unsigned vectors to half/quarter-width TN.
template <typename TN, class VU>
VU SaturateU(VU v) {
return detail::MinN(v, static_cast<TFromV<VU>>(LimitsMax<TN>()));
}
// Saturates unsigned vectors to half/quarter-width TN.
template <typename TN, class VI>
VI SaturateI(VI v) {
return detail::MinN(detail::MaxN(v, LimitsMin<TN>()), LimitsMax<TN>());
}
} // namespace detail
template <size_t N, int kPow2>
HWY_API svuint8_t DemoteTo(Simd<uint8_t, N, kPow2> dn, const svint16_t v) {
const DFromV<decltype(v)> di;
const RebindToUnsigned<decltype(di)> du;
using TN = TFromD<decltype(dn)>;
// First clamp negative numbers to zero and cast to unsigned.
const svuint16_t clamped = BitCast(du, detail::MaxN(v, 0));
// Saturate to unsigned-max and halve the width.
const svuint8_t vn = BitCast(dn, detail::SaturateU<TN>(clamped));
return svuzp1_u8(vn, vn);
}
template <size_t N, int kPow2>
HWY_API svuint16_t DemoteTo(Simd<uint16_t, N, kPow2> dn, const svint32_t v) {
const DFromV<decltype(v)> di;
const RebindToUnsigned<decltype(di)> du;
using TN = TFromD<decltype(dn)>;
// First clamp negative numbers to zero and cast to unsigned.
const svuint32_t clamped = BitCast(du, detail::MaxN(v, 0));
// Saturate to unsigned-max and halve the width.
const svuint16_t vn = BitCast(dn, detail::SaturateU<TN>(clamped));
return svuzp1_u16(vn, vn);
}
template <size_t N, int kPow2>
HWY_API svuint8_t DemoteTo(Simd<uint8_t, N, kPow2> dn, const svint32_t v) {
const DFromV<decltype(v)> di;
const RebindToUnsigned<decltype(di)> du;
const RepartitionToNarrow<decltype(du)> d2;
using TN = TFromD<decltype(dn)>;
// First clamp negative numbers to zero and cast to unsigned.
const svuint32_t clamped = BitCast(du, detail::MaxN(v, 0));
// Saturate to unsigned-max and quarter the width.
const svuint16_t cast16 = BitCast(d2, detail::SaturateU<TN>(clamped));
const svuint8_t x2 = BitCast(dn, svuzp1_u16(cast16, cast16));
return svuzp1_u8(x2, x2);
}
HWY_API svuint8_t U8FromU32(const svuint32_t v) {
const DFromV<svuint32_t> du32;
const RepartitionToNarrow<decltype(du32)> du16;
const RepartitionToNarrow<decltype(du16)> du8;
const svuint16_t cast16 = BitCast(du16, v);
const svuint16_t x2 = svuzp1_u16(cast16, cast16);
const svuint8_t cast8 = BitCast(du8, x2);
return svuzp1_u8(cast8, cast8);
}
// ------------------------------ Truncations
template <size_t N, int kPow2>
HWY_API svuint8_t TruncateTo(Simd<uint8_t, N, kPow2> /* tag */,
const svuint64_t v) {
const DFromV<svuint8_t> d;
const svuint8_t v1 = BitCast(d, v);
const svuint8_t v2 = svuzp1_u8(v1, v1);
const svuint8_t v3 = svuzp1_u8(v2, v2);
return svuzp1_u8(v3, v3);
}
template <size_t N, int kPow2>
HWY_API svuint16_t TruncateTo(Simd<uint16_t, N, kPow2> /* tag */,
const svuint64_t v) {
const DFromV<svuint16_t> d;
const svuint16_t v1 = BitCast(d, v);
const svuint16_t v2 = svuzp1_u16(v1, v1);
return svuzp1_u16(v2, v2);
}
template <size_t N, int kPow2>
HWY_API svuint32_t TruncateTo(Simd<uint32_t, N, kPow2> /* tag */,
const svuint64_t v) {
const DFromV<svuint32_t> d;
const svuint32_t v1 = BitCast(d, v);
return svuzp1_u32(v1, v1);
}
template <size_t N, int kPow2>
HWY_API svuint8_t TruncateTo(Simd<uint8_t, N, kPow2> /* tag */,
const svuint32_t v) {
const DFromV<svuint8_t> d;
const svuint8_t v1 = BitCast(d, v);
const svuint8_t v2 = svuzp1_u8(v1, v1);
return svuzp1_u8(v2, v2);
}
template <size_t N, int kPow2>
HWY_API svuint16_t TruncateTo(Simd<uint16_t, N, kPow2> /* tag */,
const svuint32_t v) {
const DFromV<svuint16_t> d;
const svuint16_t v1 = BitCast(d, v);
return svuzp1_u16(v1, v1);
}
template <size_t N, int kPow2>
HWY_API svuint8_t TruncateTo(Simd<uint8_t, N, kPow2> /* tag */,
const svuint16_t v) {
const DFromV<svuint8_t> d;
const svuint8_t v1 = BitCast(d, v);
return svuzp1_u8(v1, v1);
}
// ------------------------------ DemoteTo I
template <size_t N, int kPow2>
HWY_API svint8_t DemoteTo(Simd<int8_t, N, kPow2> dn, const svint16_t v) {
#if HWY_TARGET == HWY_SVE2
const svint8_t vn = BitCast(dn, svqxtnb_s16(v));
#else
using TN = TFromD<decltype(dn)>;
const svint8_t vn = BitCast(dn, detail::SaturateI<TN>(v));
#endif
return svuzp1_s8(vn, vn);
}
template <size_t N, int kPow2>
HWY_API svint16_t DemoteTo(Simd<int16_t, N, kPow2> dn, const svint32_t v) {
#if HWY_TARGET == HWY_SVE2
const svint16_t vn = BitCast(dn, svqxtnb_s32(v));
#else
using TN = TFromD<decltype(dn)>;
const svint16_t vn = BitCast(dn, detail::SaturateI<TN>(v));
#endif
return svuzp1_s16(vn, vn);
}
template <size_t N, int kPow2>
HWY_API svint8_t DemoteTo(Simd<int8_t, N, kPow2> dn, const svint32_t v) {
const RepartitionToWide<decltype(dn)> d2;
#if HWY_TARGET == HWY_SVE2
const svint16_t cast16 = BitCast(d2, svqxtnb_s16(svqxtnb_s32(v)));
#else
using TN = TFromD<decltype(dn)>;
const svint16_t cast16 = BitCast(d2, detail::SaturateI<TN>(v));
#endif
const svint8_t v2 = BitCast(dn, svuzp1_s16(cast16, cast16));
return BitCast(dn, svuzp1_s8(v2, v2));
}
// ------------------------------ ConcatEven/ConcatOdd
// WARNING: the upper half of these needs fixing up (uzp1/uzp2 use the
// full vector length, not rounded down to a power of two as we require).
namespace detail {
#define HWY_SVE_CONCAT_EVERY_SECOND(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_INLINE HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) hi, HWY_SVE_V(BASE, BITS) lo) { \
return sv##OP##_##CHAR##BITS(lo, hi); \
}
HWY_SVE_FOREACH(HWY_SVE_CONCAT_EVERY_SECOND, ConcatEvenFull, uzp1)
HWY_SVE_FOREACH(HWY_SVE_CONCAT_EVERY_SECOND, ConcatOddFull, uzp2)
#if defined(__ARM_FEATURE_SVE_MATMUL_FP64)
HWY_SVE_FOREACH(HWY_SVE_CONCAT_EVERY_SECOND, ConcatEvenBlocks, uzp1q)
HWY_SVE_FOREACH(HWY_SVE_CONCAT_EVERY_SECOND, ConcatOddBlocks, uzp2q)
#endif
#undef HWY_SVE_CONCAT_EVERY_SECOND
// Used to slide up / shift whole register left; mask indicates which range
// to take from lo, and the rest is filled from hi starting at its lowest.
#define HWY_SVE_SPLICE(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) NAME( \
HWY_SVE_V(BASE, BITS) hi, HWY_SVE_V(BASE, BITS) lo, svbool_t mask) { \
return sv##OP##_##CHAR##BITS(mask, lo, hi); \
}
HWY_SVE_FOREACH(HWY_SVE_SPLICE, Splice, splice)
#undef HWY_SVE_SPLICE
} // namespace detail
template <class D>
HWY_API VFromD<D> ConcatOdd(D d, VFromD<D> hi, VFromD<D> lo) {
#if HWY_SVE_IS_POW2
(void)d;
return detail::ConcatOddFull(hi, lo);
#else
const VFromD<D> hi_odd = detail::ConcatOddFull(hi, hi);
const VFromD<D> lo_odd = detail::ConcatOddFull(lo, lo);
return detail::Splice(hi_odd, lo_odd, FirstN(d, Lanes(d) / 2));
#endif
}
template <class D>
HWY_API VFromD<D> ConcatEven(D d, VFromD<D> hi, VFromD<D> lo) {
#if HWY_SVE_IS_POW2
(void)d;
return detail::ConcatEvenFull(hi, lo);
#else
const VFromD<D> hi_odd = detail::ConcatEvenFull(hi, hi);
const VFromD<D> lo_odd = detail::ConcatEvenFull(lo, lo);
return detail::Splice(hi_odd, lo_odd, FirstN(d, Lanes(d) / 2));
#endif
}
// ------------------------------ DemoteTo F
template <size_t N, int kPow2>
HWY_API svfloat16_t DemoteTo(Simd<float16_t, N, kPow2> d, const svfloat32_t v) {
const svfloat16_t in_even = svcvt_f16_f32_x(detail::PTrue(d), v);
return detail::ConcatEvenFull(in_even,
in_even); // lower half
}
template <size_t N, int kPow2>
HWY_API svuint16_t DemoteTo(Simd<bfloat16_t, N, kPow2> /* d */, svfloat32_t v) {
const svuint16_t in_even = BitCast(ScalableTag<uint16_t>(), v);
return detail::ConcatOddFull(in_even, in_even); // lower half
}
template <size_t N, int kPow2>
HWY_API svfloat32_t DemoteTo(Simd<float32_t, N, kPow2> d, const svfloat64_t v) {
const svfloat32_t in_even = svcvt_f32_f64_x(detail::PTrue(d), v);
return detail::ConcatEvenFull(in_even,
in_even); // lower half
}
template <size_t N, int kPow2>
HWY_API svint32_t DemoteTo(Simd<int32_t, N, kPow2> d, const svfloat64_t v) {
const svint32_t in_even = svcvt_s32_f64_x(detail::PTrue(d), v);
return detail::ConcatEvenFull(in_even,
in_even); // lower half
}
// ------------------------------ ConvertTo F
#define HWY_SVE_CONVERT(BASE, CHAR, BITS, HALF, NAME, OP) \
/* signed integers */ \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, HWY_SVE_V(int, BITS) v) { \
return sv##OP##_##CHAR##BITS##_s##BITS##_x(HWY_SVE_PTRUE(BITS), v); \
} \
/* unsigned integers */ \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, HWY_SVE_V(uint, BITS) v) { \
return sv##OP##_##CHAR##BITS##_u##BITS##_x(HWY_SVE_PTRUE(BITS), v); \
} \
/* Truncates (rounds toward zero). */ \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_V(int, BITS) \
NAME(HWY_SVE_D(int, BITS, N, kPow2) /* d */, HWY_SVE_V(BASE, BITS) v) { \
return sv##OP##_s##BITS##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), v); \
}
// API only requires f32 but we provide f64 for use by Iota.
HWY_SVE_FOREACH_F(HWY_SVE_CONVERT, ConvertTo, cvt)
#undef HWY_SVE_CONVERT
// ------------------------------ NearestInt (Round, ConvertTo)
template <class VF, class DI = RebindToSigned<DFromV<VF>>>
HWY_API VFromD<DI> NearestInt(VF v) {
// No single instruction, round then truncate.
return ConvertTo(DI(), Round(v));
}
// ------------------------------ Iota (Add, ConvertTo)
#define HWY_SVE_IOTA(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, \
HWY_SVE_T(BASE, BITS) first) { \
return sv##OP##_##CHAR##BITS(first, 1); \
}
HWY_SVE_FOREACH_UI(HWY_SVE_IOTA, Iota, index)
#undef HWY_SVE_IOTA
template <class D, HWY_IF_FLOAT_D(D)>
HWY_API VFromD<D> Iota(const D d, TFromD<D> first) {
const RebindToSigned<D> di;
return detail::AddN(ConvertTo(d, Iota(di, 0)), first);
}
// ------------------------------ InterleaveLower
template <class D, class V>
HWY_API V InterleaveLower(D d, const V a, const V b) {
static_assert(IsSame<TFromD<D>, TFromV<V>>(), "D/V mismatch");
#if HWY_TARGET == HWY_SVE2_128
(void)d;
return detail::ZipLowerSame(a, b);
#else
// Move lower halves of blocks to lower half of vector.
const Repartition<uint64_t, decltype(d)> d64;
const auto a64 = BitCast(d64, a);
const auto b64 = BitCast(d64, b);
const auto a_blocks = detail::ConcatEvenFull(a64, a64); // lower half
const auto b_blocks = detail::ConcatEvenFull(b64, b64);
return detail::ZipLowerSame(BitCast(d, a_blocks), BitCast(d, b_blocks));
#endif
}
template <class V>
HWY_API V InterleaveLower(const V a, const V b) {
return InterleaveLower(DFromV<V>(), a, b);
}
// ------------------------------ InterleaveUpper
// Only use zip2 if vector are a powers of two, otherwise getting the actual
// "upper half" requires MaskUpperHalf.
#if HWY_TARGET == HWY_SVE2_128
namespace detail {
// Unlike Highway's ZipUpper, this returns the same type.
HWY_SVE_FOREACH(HWY_SVE_RETV_ARGVV, ZipUpperSame, zip2)
} // namespace detail
#endif
// Full vector: guaranteed to have at least one block
template <class D, class V = VFromD<D>,
hwy::EnableIf<detail::IsFull(D())>* = nullptr>
HWY_API V InterleaveUpper(D d, const V a, const V b) {
#if HWY_TARGET == HWY_SVE2_128
(void)d;
return detail::ZipUpperSame(a, b);
#else
// Move upper halves of blocks to lower half of vector.
const Repartition<uint64_t, decltype(d)> d64;
const auto a64 = BitCast(d64, a);
const auto b64 = BitCast(d64, b);
const auto a_blocks = detail::ConcatOddFull(a64, a64); // lower half
const auto b_blocks = detail::ConcatOddFull(b64, b64);
return detail::ZipLowerSame(BitCast(d, a_blocks), BitCast(d, b_blocks));
#endif
}
// Capped/fraction: need runtime check
template <class D, class V = VFromD<D>,
hwy::EnableIf<!detail::IsFull(D())>* = nullptr>
HWY_API V InterleaveUpper(D d, const V a, const V b) {
// Less than one block: treat as capped
if (Lanes(d) * sizeof(TFromD<D>) < 16) {
const Half<decltype(d)> d2;
return InterleaveLower(d, UpperHalf(d2, a), UpperHalf(d2, b));
}
return InterleaveUpper(DFromV<V>(), a, b);
}
// ================================================== COMBINE
namespace detail {
#if HWY_TARGET == HWY_SVE_256 || HWY_IDE
template <class D, HWY_IF_LANE_SIZE_D(D, 1)>
svbool_t MaskLowerHalf(D d) {
switch (Lanes(d)) {
case 32:
return svptrue_pat_b8(SV_VL16);
case 16:
return svptrue_pat_b8(SV_VL8);
case 8:
return svptrue_pat_b8(SV_VL4);
case 4:
return svptrue_pat_b8(SV_VL2);
default:
return svptrue_pat_b8(SV_VL1);
}
}
template <class D, HWY_IF_LANE_SIZE_D(D, 2)>
svbool_t MaskLowerHalf(D d) {
switch (Lanes(d)) {
case 16:
return svptrue_pat_b16(SV_VL8);
case 8:
return svptrue_pat_b16(SV_VL4);
case 4:
return svptrue_pat_b16(SV_VL2);
default:
return svptrue_pat_b16(SV_VL1);
}
}
template <class D, HWY_IF_LANE_SIZE_D(D, 4)>
svbool_t MaskLowerHalf(D d) {
switch (Lanes(d)) {
case 8:
return svptrue_pat_b32(SV_VL4);
case 4:
return svptrue_pat_b32(SV_VL2);
default:
return svptrue_pat_b32(SV_VL1);
}
}
template <class D, HWY_IF_LANE_SIZE_D(D, 8)>
svbool_t MaskLowerHalf(D d) {
switch (Lanes(d)) {
case 4:
return svptrue_pat_b64(SV_VL2);
default:
return svptrue_pat_b64(SV_VL1);
}
}
#endif
#if HWY_TARGET == HWY_SVE2_128 || HWY_IDE
template <class D, HWY_IF_LANE_SIZE_D(D, 1)>
svbool_t MaskLowerHalf(D d) {
switch (Lanes(d)) {
case 16:
return svptrue_pat_b8(SV_VL8);
case 8:
return svptrue_pat_b8(SV_VL4);
case 4:
return svptrue_pat_b8(SV_VL2);
case 2:
case 1:
default:
return svptrue_pat_b8(SV_VL1);
}
}
template <class D, HWY_IF_LANE_SIZE_D(D, 2)>
svbool_t MaskLowerHalf(D d) {
switch (Lanes(d)) {
case 8:
return svptrue_pat_b16(SV_VL4);
case 4:
return svptrue_pat_b16(SV_VL2);
case 2:
case 1:
default:
return svptrue_pat_b16(SV_VL1);
}
}
template <class D, HWY_IF_LANE_SIZE_D(D, 4)>
svbool_t MaskLowerHalf(D d) {
return svptrue_pat_b32(Lanes(d) == 4 ? SV_VL2 : SV_VL1);
}
template <class D, HWY_IF_LANE_SIZE_D(D, 8)>
svbool_t MaskLowerHalf(D /*d*/) {
return svptrue_pat_b64(SV_VL1);
}
#endif // HWY_TARGET == HWY_SVE2_128
#if HWY_TARGET != HWY_SVE_256 && HWY_TARGET != HWY_SVE2_128
template <class D>
svbool_t MaskLowerHalf(D d) {
return FirstN(d, Lanes(d) / 2);
}
#endif
template <class D>
svbool_t MaskUpperHalf(D d) {
// TODO(janwas): WHILEGE on pow2 SVE2
if (HWY_SVE_IS_POW2 && IsFull(d)) {
return Not(MaskLowerHalf(d));
}
// For Splice to work as intended, make sure bits above Lanes(d) are zero.
return AndNot(MaskLowerHalf(d), detail::MakeMask(d));
}
// Right-shift vector pair by constexpr; can be used to slide down (=N) or up
// (=Lanes()-N).
#define HWY_SVE_EXT(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t kIndex> \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) hi, HWY_SVE_V(BASE, BITS) lo) { \
return sv##OP##_##CHAR##BITS(lo, hi, kIndex); \
}
HWY_SVE_FOREACH(HWY_SVE_EXT, Ext, ext)
#undef HWY_SVE_EXT
} // namespace detail
// ------------------------------ ConcatUpperLower
template <class D, class V>
HWY_API V ConcatUpperLower(const D d, const V hi, const V lo) {
return IfThenElse(detail::MaskLowerHalf(d), lo, hi);
}
// ------------------------------ ConcatLowerLower
template <class D, class V>
HWY_API V ConcatLowerLower(const D d, const V hi, const V lo) {
if (detail::IsFull(d)) {
#if defined(__ARM_FEATURE_SVE_MATMUL_FP64) && HWY_TARGET == HWY_SVE_256
return detail::ConcatEvenBlocks(hi, lo);
#endif
#if HWY_TARGET == HWY_SVE2_128
const Repartition<uint64_t, D> du64;
const auto lo64 = BitCast(du64, lo);
return BitCast(d, InterleaveLower(du64, lo64, BitCast(du64, hi)));
#endif
}
return detail::Splice(hi, lo, detail::MaskLowerHalf(d));
}
// ------------------------------ ConcatLowerUpper
template <class D, class V>
HWY_API V ConcatLowerUpper(const D d, const V hi, const V lo) {
#if HWY_TARGET == HWY_SVE_256 || HWY_TARGET == HWY_SVE2_128 // constexpr Lanes
if (detail::IsFull(d)) {
return detail::Ext<Lanes(d) / 2>(hi, lo);
}
#endif
return detail::Splice(hi, lo, detail::MaskUpperHalf(d));
}
// ------------------------------ ConcatUpperUpper
template <class D, class V>
HWY_API V ConcatUpperUpper(const D d, const V hi, const V lo) {
if (detail::IsFull(d)) {
#if defined(__ARM_FEATURE_SVE_MATMUL_FP64) && HWY_TARGET == HWY_SVE_256
return detail::ConcatOddBlocks(hi, lo);
#endif
#if HWY_TARGET == HWY_SVE2_128
const Repartition<uint64_t, D> du64;
const auto lo64 = BitCast(du64, lo);
return BitCast(d, InterleaveUpper(du64, lo64, BitCast(du64, hi)));
#endif
}
const svbool_t mask_upper = detail::MaskUpperHalf(d);
const V lo_upper = detail::Splice(lo, lo, mask_upper);
return IfThenElse(mask_upper, hi, lo_upper);
}
// ------------------------------ Combine
template <class D, class V2>
HWY_API VFromD<D> Combine(const D d, const V2 hi, const V2 lo) {
return ConcatLowerLower(d, hi, lo);
}
// ------------------------------ ZeroExtendVector
template <class D, class V>
HWY_API V ZeroExtendVector(const D d, const V lo) {
return Combine(d, Zero(Half<D>()), lo);
}
// ------------------------------ Lower/UpperHalf
template <class D2, class V>
HWY_API V LowerHalf(D2 /* tag */, const V v) {
return v;
}
template <class V>
HWY_API V LowerHalf(const V v) {
return v;
}
template <class DH, class V>
HWY_API V UpperHalf(const DH dh, const V v) {
const Twice<decltype(dh)> d;
// Cast so that we support bfloat16_t.
const RebindToUnsigned<decltype(d)> du;
const VFromD<decltype(du)> vu = BitCast(du, v);
#if HWY_TARGET == HWY_SVE_256 || HWY_TARGET == HWY_SVE2_128 // constexpr Lanes
return BitCast(d, detail::Ext<Lanes(dh)>(vu, vu));
#else
const MFromD<decltype(du)> mask = detail::MaskUpperHalf(du);
return BitCast(d, detail::Splice(vu, vu, mask));
#endif
}
// ================================================== REDUCE
// These return T, whereas the Highway op returns a broadcasted vector.
namespace detail {
#define HWY_SVE_REDUCE_ADD(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_T(BASE, BITS) NAME(svbool_t pg, HWY_SVE_V(BASE, BITS) v) { \
/* The intrinsic returns [u]int64_t; truncate to T so we can broadcast. */ \
using T = HWY_SVE_T(BASE, BITS); \
using TU = MakeUnsigned<T>; \
constexpr uint64_t kMask = LimitsMax<TU>(); \
return static_cast<T>(static_cast<TU>( \
static_cast<uint64_t>(sv##OP##_##CHAR##BITS(pg, v)) & kMask)); \
}
#define HWY_SVE_REDUCE(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_T(BASE, BITS) NAME(svbool_t pg, HWY_SVE_V(BASE, BITS) v) { \
return sv##OP##_##CHAR##BITS(pg, v); \
}
HWY_SVE_FOREACH_UI(HWY_SVE_REDUCE_ADD, SumOfLanesM, addv)
HWY_SVE_FOREACH_F(HWY_SVE_REDUCE, SumOfLanesM, addv)
HWY_SVE_FOREACH_UI(HWY_SVE_REDUCE, MinOfLanesM, minv)
HWY_SVE_FOREACH_UI(HWY_SVE_REDUCE, MaxOfLanesM, maxv)
// NaN if all are
HWY_SVE_FOREACH_F(HWY_SVE_REDUCE, MinOfLanesM, minnmv)
HWY_SVE_FOREACH_F(HWY_SVE_REDUCE, MaxOfLanesM, maxnmv)
#undef HWY_SVE_REDUCE
#undef HWY_SVE_REDUCE_ADD
} // namespace detail
template <class D, class V>
V SumOfLanes(D d, V v) {
return Set(d, detail::SumOfLanesM(detail::MakeMask(d), v));
}
template <class D, class V>
V MinOfLanes(D d, V v) {
return Set(d, detail::MinOfLanesM(detail::MakeMask(d), v));
}
template <class D, class V>
V MaxOfLanes(D d, V v) {
return Set(d, detail::MaxOfLanesM(detail::MakeMask(d), v));
}
// ================================================== SWIZZLE
// ------------------------------ GetLane
namespace detail {
#define HWY_SVE_GET_LANE(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_INLINE HWY_SVE_T(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) v, svbool_t mask) { \
return sv##OP##_##CHAR##BITS(mask, v); \
}
HWY_SVE_FOREACH(HWY_SVE_GET_LANE, GetLaneM, lasta)
#undef HWY_SVE_GET_LANE
} // namespace detail
template <class V>
HWY_API TFromV<V> GetLane(V v) {
return detail::GetLaneM(v, detail::PFalse());
}
// ------------------------------ ExtractLane
template <class V>
HWY_API TFromV<V> ExtractLane(V v, size_t i) {
return detail::GetLaneM(v, FirstN(DFromV<V>(), i));
}
// ------------------------------ InsertLane (IfThenElse)
template <class V>
HWY_API V InsertLane(const V v, size_t i, TFromV<V> t) {
const DFromV<V> d;
const auto is_i = detail::EqN(Iota(d, 0), static_cast<TFromV<V>>(i));
return IfThenElse(RebindMask(d, is_i), Set(d, t), v);
}
// ------------------------------ DupEven
namespace detail {
HWY_SVE_FOREACH(HWY_SVE_RETV_ARGVV, InterleaveEven, trn1)
} // namespace detail
template <class V>
HWY_API V DupEven(const V v) {
return detail::InterleaveEven(v, v);
}
// ------------------------------ DupOdd
namespace detail {
HWY_SVE_FOREACH(HWY_SVE_RETV_ARGVV, InterleaveOdd, trn2)
} // namespace detail
template <class V>
HWY_API V DupOdd(const V v) {
return detail::InterleaveOdd(v, v);
}
// ------------------------------ OddEven
#if HWY_TARGET == HWY_SVE2_128 || HWY_TARGET == HWY_SVE2
#define HWY_SVE_ODD_EVEN(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) odd, HWY_SVE_V(BASE, BITS) even) { \
return sv##OP##_##CHAR##BITS(even, odd, /*xor=*/0); \
}
HWY_SVE_FOREACH_UI(HWY_SVE_ODD_EVEN, OddEven, eortb_n)
#undef HWY_SVE_ODD_EVEN
template <class V, HWY_IF_FLOAT_V(V)>
HWY_API V OddEven(const V odd, const V even) {
const DFromV<V> d;
const RebindToUnsigned<decltype(d)> du;
return BitCast(d, OddEven(BitCast(du, odd), BitCast(du, even)));
}
#else
template <class V>
HWY_API V OddEven(const V odd, const V even) {
const auto odd_in_even = detail::Ext<1>(odd, odd);
return detail::InterleaveEven(even, odd_in_even);
}
#endif // HWY_TARGET
// ------------------------------ OddEvenBlocks
template <class V>
HWY_API V OddEvenBlocks(const V odd, const V even) {
const DFromV<V> d;
#if HWY_TARGET == HWY_SVE_256
return ConcatUpperLower(d, odd, even);
#elif HWY_TARGET == HWY_SVE2_128
(void)odd;
(void)d;
return even;
#else
const RebindToUnsigned<decltype(d)> du;
using TU = TFromD<decltype(du)>;
constexpr size_t kShift = CeilLog2(16 / sizeof(TU));
const auto idx_block = ShiftRight<kShift>(Iota(du, 0));
const auto lsb = detail::AndN(idx_block, static_cast<TU>(1));
const svbool_t is_even = detail::EqN(lsb, static_cast<TU>(0));
return IfThenElse(is_even, even, odd);
#endif
}
// ------------------------------ TableLookupLanes
template <class D, class VI>
HWY_API VFromD<RebindToUnsigned<D>> IndicesFromVec(D d, VI vec) {
using TI = TFromV<VI>;
static_assert(sizeof(TFromD<D>) == sizeof(TI), "Index/lane size mismatch");
const RebindToUnsigned<D> du;
const auto indices = BitCast(du, vec);
#if HWY_IS_DEBUG_BUILD
HWY_DASSERT(AllTrue(du, detail::LtN(indices, static_cast<TI>(Lanes(d)))));
#else
(void)d;
#endif
return indices;
}
template <class D, typename TI>
HWY_API VFromD<RebindToUnsigned<D>> SetTableIndices(D d, const TI* idx) {
static_assert(sizeof(TFromD<D>) == sizeof(TI), "Index size must match lane");
return IndicesFromVec(d, LoadU(Rebind<TI, D>(), idx));
}
// <32bit are not part of Highway API, but used in Broadcast.
#define HWY_SVE_TABLE(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) v, HWY_SVE_V(uint, BITS) idx) { \
return sv##OP##_##CHAR##BITS(v, idx); \
}
HWY_SVE_FOREACH(HWY_SVE_TABLE, TableLookupLanes, tbl)
#undef HWY_SVE_TABLE
// ------------------------------ SwapAdjacentBlocks (TableLookupLanes)
namespace detail {
template <typename T, size_t N, int kPow2>
constexpr size_t LanesPerBlock(Simd<T, N, kPow2> /* tag */) {
// We might have a capped vector smaller than a block, so honor that.
return HWY_MIN(16 / sizeof(T), detail::ScaleByPower(N, kPow2));
}
} // namespace detail
template <class V>
HWY_API V SwapAdjacentBlocks(const V v) {
const DFromV<V> d;
#if HWY_TARGET == HWY_SVE_256
return ConcatLowerUpper(d, v, v);
#elif HWY_TARGET == HWY_SVE2_128
(void)d;
return v;
#else
const RebindToUnsigned<decltype(d)> du;
constexpr auto kLanesPerBlock =
static_cast<TFromD<decltype(du)>>(detail::LanesPerBlock(d));
const VFromD<decltype(du)> idx = detail::XorN(Iota(du, 0), kLanesPerBlock);
return TableLookupLanes(v, idx);
#endif
}
// ------------------------------ Reverse
namespace detail {
#define HWY_SVE_REVERSE(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_V(BASE, BITS) v) { \
return sv##OP##_##CHAR##BITS(v); \
}
HWY_SVE_FOREACH(HWY_SVE_REVERSE, ReverseFull, rev)
#undef HWY_SVE_REVERSE
} // namespace detail
template <class D, class V>
HWY_API V Reverse(D d, V v) {
using T = TFromD<D>;
const auto reversed = detail::ReverseFull(v);
if (HWY_SVE_IS_POW2 && detail::IsFull(d)) return reversed;
// Shift right to remove extra (non-pow2 and remainder) lanes.
// TODO(janwas): on SVE2, use WHILEGE.
// Avoids FirstN truncating to the return vector size. Must also avoid Not
// because that is limited to SV_POW2.
const ScalableTag<T> dfull;
const svbool_t all_true = detail::AllPTrue(dfull);
const size_t all_lanes = detail::AllHardwareLanes(hwy::SizeTag<sizeof(T)>());
const svbool_t mask =
svnot_b_z(all_true, FirstN(dfull, all_lanes - Lanes(d)));
return detail::Splice(reversed, reversed, mask);
}
// ------------------------------ Reverse2
template <class D, HWY_IF_LANE_SIZE_D(D, 2)>
HWY_API VFromD<D> Reverse2(D d, const VFromD<D> v) {
const RebindToUnsigned<decltype(d)> du;
const RepartitionToWide<decltype(du)> dw;
return BitCast(d, svrevh_u32_x(detail::PTrue(d), BitCast(dw, v)));
}
template <class D, HWY_IF_LANE_SIZE_D(D, 4)>
HWY_API VFromD<D> Reverse2(D d, const VFromD<D> v) {
const RebindToUnsigned<decltype(d)> du;
const RepartitionToWide<decltype(du)> dw;
return BitCast(d, svrevw_u64_x(detail::PTrue(d), BitCast(dw, v)));
}
template <class D, HWY_IF_LANE_SIZE_D(D, 8)>
HWY_API VFromD<D> Reverse2(D d, const VFromD<D> v) { // 3210
#if HWY_TARGET == HWY_SVE2_128
if (detail::IsFull(d)) {
return detail::Ext<1>(v, v);
}
#endif
(void)d;
const auto odd_in_even = detail::Ext<1>(v, v); // x321
return detail::InterleaveEven(odd_in_even, v); // 2301
}
// ------------------------------ Reverse4 (TableLookupLanes)
template <class D>
HWY_API VFromD<D> Reverse4(D d, const VFromD<D> v) {
if (HWY_TARGET == HWY_SVE_256 && sizeof(TFromD<D>) == 8 &&
detail::IsFull(d)) {
return detail::ReverseFull(v);
}
// TODO(janwas): is this approach faster than Shuffle0123?
const RebindToUnsigned<decltype(d)> du;
const auto idx = detail::XorN(Iota(du, 0), 3);
return TableLookupLanes(v, idx);
}
// ------------------------------ Reverse8 (TableLookupLanes)
template <class D>
HWY_API VFromD<D> Reverse8(D d, const VFromD<D> v) {
const RebindToUnsigned<decltype(d)> du;
const auto idx = detail::XorN(Iota(du, 0), 7);
return TableLookupLanes(v, idx);
}
// ------------------------------ Compress (PromoteTo)
template <typename T>
struct CompressIsPartition {
#if HWY_TARGET == HWY_SVE_256 || HWY_TARGET == HWY_SVE2_128
// Optimization for 64-bit lanes (could also be applied to 32-bit, but that
// requires a larger table).
enum { value = (sizeof(T) == 8) };
#else
enum { value = 0 };
#endif // HWY_TARGET == HWY_SVE_256
};
#define HWY_SVE_COMPRESS(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_V(BASE, BITS) v, svbool_t mask) { \
return sv##OP##_##CHAR##BITS(mask, v); \
}
#if HWY_TARGET == HWY_SVE_256 || HWY_TARGET == HWY_SVE2_128
HWY_SVE_FOREACH_UI32(HWY_SVE_COMPRESS, Compress, compact)
HWY_SVE_FOREACH_F32(HWY_SVE_COMPRESS, Compress, compact)
#else
HWY_SVE_FOREACH_UIF3264(HWY_SVE_COMPRESS, Compress, compact)
#endif
#undef HWY_SVE_COMPRESS
#if HWY_TARGET == HWY_SVE_256 || HWY_IDE
template <class V, HWY_IF_LANE_SIZE_V(V, 8)>
HWY_API V Compress(V v, svbool_t mask) {
const DFromV<V> d;
const RebindToUnsigned<decltype(d)> du64;
// Convert mask into bitfield via horizontal sum (faster than ORV) of masked
// bits 1, 2, 4, 8. Pre-multiply by N so we can use it as an offset for
// SetTableIndices.
const svuint64_t bits = Shl(Set(du64, 1), Iota(du64, 2));
const size_t offset = detail::SumOfLanesM(mask, bits);
// See CompressIsPartition.
alignas(16) static constexpr uint64_t table[4 * 16] = {
// PrintCompress64x4Tables
0, 1, 2, 3, 0, 1, 2, 3, 1, 0, 2, 3, 0, 1, 2, 3, 2, 0, 1, 3, 0, 2,
1, 3, 1, 2, 0, 3, 0, 1, 2, 3, 3, 0, 1, 2, 0, 3, 1, 2, 1, 3, 0, 2,
0, 1, 3, 2, 2, 3, 0, 1, 0, 2, 3, 1, 1, 2, 3, 0, 0, 1, 2, 3};
return TableLookupLanes(v, SetTableIndices(d, table + offset));
}
#endif // HWY_TARGET == HWY_SVE_256
#if HWY_TARGET == HWY_SVE2_128 || HWY_IDE
template <class V, HWY_IF_LANE_SIZE_V(V, 8)>
HWY_API V Compress(V v, svbool_t mask) {
// If mask == 10: swap via splice. A mask of 00 or 11 leaves v unchanged, 10
// swaps upper/lower (the lower half is set to the upper half, and the
// remaining upper half is filled from the lower half of the second v), and
// 01 is invalid because it would ConcatLowerLower. zip1 and AndNot keep 10
// unchanged and map everything else to 00.
const svbool_t maskLL = svzip1_b64(mask, mask); // broadcast lower lane
return detail::Splice(v, v, AndNot(maskLL, mask));
}
#endif // HWY_TARGET == HWY_SVE_256
template <class V, HWY_IF_LANE_SIZE_V(V, 2)>
HWY_API V Compress(V v, svbool_t mask16) {
static_assert(!IsSame<V, svfloat16_t>(), "Must use overload");
const DFromV<V> d16;
// Promote vector and mask to 32-bit
const RepartitionToWide<decltype(d16)> dw;
const auto v32L = PromoteTo(dw, v);
const auto v32H = detail::PromoteUpperTo(dw, v);
const svbool_t mask32L = svunpklo_b(mask16);
const svbool_t mask32H = svunpkhi_b(mask16);
const auto compressedL = Compress(v32L, mask32L);
const auto compressedH = Compress(v32H, mask32H);
// Demote to 16-bit (already in range) - separately so we can splice
const V evenL = BitCast(d16, compressedL);
const V evenH = BitCast(d16, compressedH);
const V v16L = detail::ConcatEvenFull(evenL, evenL); // lower half
const V v16H = detail::ConcatEvenFull(evenH, evenH);
// We need to combine two vectors of non-constexpr length, so the only option
// is Splice, which requires us to synthesize a mask. NOTE: this function uses
// full vectors (SV_ALL instead of SV_POW2), hence we need unmasked svcnt.
const size_t countL = detail::CountTrueFull(dw, mask32L);
const auto compressed_maskL = FirstN(d16, countL);
return detail::Splice(v16H, v16L, compressed_maskL);
}
// Must treat float16_t as integers so we can ConcatEven.
HWY_API svfloat16_t Compress(svfloat16_t v, svbool_t mask16) {
const DFromV<decltype(v)> df;
const RebindToSigned<decltype(df)> di;
return BitCast(df, Compress(BitCast(di, v), mask16));
}
// ------------------------------ CompressNot
template <class V, HWY_IF_NOT_LANE_SIZE_V(V, 8)>
HWY_API V CompressNot(V v, const svbool_t mask) {
return Compress(v, Not(mask));
}
template <class V, HWY_IF_LANE_SIZE_V(V, 8)>
HWY_API V CompressNot(V v, svbool_t mask) {
#if HWY_TARGET == HWY_SVE2_128 || HWY_IDE
// If mask == 01: swap via splice. A mask of 00 or 11 leaves v unchanged, 10
// swaps upper/lower (the lower half is set to the upper half, and the
// remaining upper half is filled from the lower half of the second v), and
// 01 is invalid because it would ConcatLowerLower. zip1 and AndNot map
// 01 to 10, and everything else to 00.
const svbool_t maskLL = svzip1_b64(mask, mask); // broadcast lower lane
return detail::Splice(v, v, AndNot(mask, maskLL));
#endif
#if HWY_TARGET == HWY_SVE_256 || HWY_IDE
const DFromV<V> d;
const RebindToUnsigned<decltype(d)> du64;
// Convert mask into bitfield via horizontal sum (faster than ORV) of masked
// bits 1, 2, 4, 8. Pre-multiply by N so we can use it as an offset for
// SetTableIndices.
const svuint64_t bits = Shl(Set(du64, 1), Iota(du64, 2));
const size_t offset = detail::SumOfLanesM(mask, bits);
// See CompressIsPartition.
alignas(16) static constexpr uint64_t table[4 * 16] = {
// PrintCompressNot64x4Tables
0, 1, 2, 3, 1, 2, 3, 0, 0, 2, 3, 1, 2, 3, 0, 1, 0, 1, 3, 2, 1, 3,
0, 2, 0, 3, 1, 2, 3, 0, 1, 2, 0, 1, 2, 3, 1, 2, 0, 3, 0, 2, 1, 3,
2, 0, 1, 3, 0, 1, 2, 3, 1, 0, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3};
return TableLookupLanes(v, SetTableIndices(d, table + offset));
#endif // HWY_TARGET == HWY_SVE_256
return Compress(v, Not(mask));
}
// ------------------------------ CompressBlocksNot
HWY_API svuint64_t CompressBlocksNot(svuint64_t v, svbool_t mask) {
#if HWY_TARGET == HWY_SVE2_128
(void)mask;
return v;
#endif
#if HWY_TARGET == HWY_SVE_256 || HWY_IDE
uint64_t bits = 0; // predicate reg is 32-bit
CopyBytes<4>(&mask, &bits); // not same size - 64-bit more efficient
// Concatenate LSB for upper and lower blocks, pre-scale by 4 for table idx.
const size_t offset = ((bits & 1) ? 4u : 0u) + ((bits & 0x10000) ? 8u : 0u);
// See CompressIsPartition. Manually generated; flip halves if mask = [0, 1].
alignas(16) static constexpr uint64_t table[4 * 4] = {0, 1, 2, 3, 2, 3, 0, 1,
0, 1, 2, 3, 0, 1, 2, 3};
const ScalableTag<uint64_t> d;
return TableLookupLanes(v, SetTableIndices(d, table + offset));
#endif
return CompressNot(v, mask);
}
// ------------------------------ CompressStore
template <class V, class D>
HWY_API size_t CompressStore(const V v, const svbool_t mask, const D d,
TFromD<D>* HWY_RESTRICT unaligned) {
StoreU(Compress(v, mask), d, unaligned);
return CountTrue(d, mask);
}
// ------------------------------ CompressBlendedStore
template <class V, class D>
HWY_API size_t CompressBlendedStore(const V v, const svbool_t mask, const D d,
TFromD<D>* HWY_RESTRICT unaligned) {
const size_t count = CountTrue(d, mask);
const svbool_t store_mask = FirstN(d, count);
BlendedStore(Compress(v, mask), store_mask, d, unaligned);
return count;
}
// ================================================== BLOCKWISE
// ------------------------------ CombineShiftRightBytes
// Prevent accidentally using these for 128-bit vectors - should not be
// necessary.
#if HWY_TARGET != HWY_SVE2_128
namespace detail {
// For x86-compatible behaviour mandated by Highway API: TableLookupBytes
// offsets are implicitly relative to the start of their 128-bit block.
template <class D, class V>
HWY_INLINE V OffsetsOf128BitBlocks(const D d, const V iota0) {
using T = MakeUnsigned<TFromD<D>>;
return detail::AndNotN(static_cast<T>(LanesPerBlock(d) - 1), iota0);
}
template <size_t kLanes, class D, HWY_IF_LANE_SIZE_D(D, 1)>
svbool_t FirstNPerBlock(D d) {
const RebindToUnsigned<decltype(d)> du;
constexpr size_t kLanesPerBlock = detail::LanesPerBlock(du);
const svuint8_t idx_mod =
svdupq_n_u8(0 % kLanesPerBlock, 1 % kLanesPerBlock, 2 % kLanesPerBlock,
3 % kLanesPerBlock, 4 % kLanesPerBlock, 5 % kLanesPerBlock,
6 % kLanesPerBlock, 7 % kLanesPerBlock, 8 % kLanesPerBlock,
9 % kLanesPerBlock, 10 % kLanesPerBlock, 11 % kLanesPerBlock,
12 % kLanesPerBlock, 13 % kLanesPerBlock, 14 % kLanesPerBlock,
15 % kLanesPerBlock);
return detail::LtN(BitCast(du, idx_mod), kLanes);
}
template <size_t kLanes, class D, HWY_IF_LANE_SIZE_D(D, 2)>
svbool_t FirstNPerBlock(D d) {
const RebindToUnsigned<decltype(d)> du;
constexpr size_t kLanesPerBlock = detail::LanesPerBlock(du);
const svuint16_t idx_mod =
svdupq_n_u16(0 % kLanesPerBlock, 1 % kLanesPerBlock, 2 % kLanesPerBlock,
3 % kLanesPerBlock, 4 % kLanesPerBlock, 5 % kLanesPerBlock,
6 % kLanesPerBlock, 7 % kLanesPerBlock);
return detail::LtN(BitCast(du, idx_mod), kLanes);
}
template <size_t kLanes, class D, HWY_IF_LANE_SIZE_D(D, 4)>
svbool_t FirstNPerBlock(D d) {
const RebindToUnsigned<decltype(d)> du;
constexpr size_t kLanesPerBlock = detail::LanesPerBlock(du);
const svuint32_t idx_mod =
svdupq_n_u32(0 % kLanesPerBlock, 1 % kLanesPerBlock, 2 % kLanesPerBlock,
3 % kLanesPerBlock);
return detail::LtN(BitCast(du, idx_mod), kLanes);
}
template <size_t kLanes, class D, HWY_IF_LANE_SIZE_D(D, 8)>
svbool_t FirstNPerBlock(D d) {
const RebindToUnsigned<decltype(d)> du;
constexpr size_t kLanesPerBlock = detail::LanesPerBlock(du);
const svuint64_t idx_mod =
svdupq_n_u64(0 % kLanesPerBlock, 1 % kLanesPerBlock);
return detail::LtN(BitCast(du, idx_mod), kLanes);
}
} // namespace detail
#endif // HWY_TARGET != HWY_SVE2_128
template <size_t kBytes, class D, class V = VFromD<D>>
HWY_API V CombineShiftRightBytes(const D d, const V hi, const V lo) {
const Repartition<uint8_t, decltype(d)> d8;
const auto hi8 = BitCast(d8, hi);
const auto lo8 = BitCast(d8, lo);
#if HWY_TARGET == HWY_SVE2_128
return BitCast(d, detail::Ext<kBytes>(hi8, lo8));
#else
const auto hi_up = detail::Splice(hi8, hi8, FirstN(d8, 16 - kBytes));
const auto lo_down = detail::Ext<kBytes>(lo8, lo8);
const svbool_t is_lo = detail::FirstNPerBlock<16 - kBytes>(d8);
return BitCast(d, IfThenElse(is_lo, lo_down, hi_up));
#endif
}
// ------------------------------ Shuffle2301
template <class V>
HWY_API V Shuffle2301(const V v) {
const DFromV<V> d;
static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types");
return Reverse2(d, v);
}
// ------------------------------ Shuffle2103
template <class V>
HWY_API V Shuffle2103(const V v) {
const DFromV<V> d;
const Repartition<uint8_t, decltype(d)> d8;
static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types");
const svuint8_t v8 = BitCast(d8, v);
return BitCast(d, CombineShiftRightBytes<12>(d8, v8, v8));
}
// ------------------------------ Shuffle0321
template <class V>
HWY_API V Shuffle0321(const V v) {
const DFromV<V> d;
const Repartition<uint8_t, decltype(d)> d8;
static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types");
const svuint8_t v8 = BitCast(d8, v);
return BitCast(d, CombineShiftRightBytes<4>(d8, v8, v8));
}
// ------------------------------ Shuffle1032
template <class V>
HWY_API V Shuffle1032(const V v) {
const DFromV<V> d;
const Repartition<uint8_t, decltype(d)> d8;
static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types");
const svuint8_t v8 = BitCast(d8, v);
return BitCast(d, CombineShiftRightBytes<8>(d8, v8, v8));
}
// ------------------------------ Shuffle01
template <class V>
HWY_API V Shuffle01(const V v) {
const DFromV<V> d;
const Repartition<uint8_t, decltype(d)> d8;
static_assert(sizeof(TFromD<decltype(d)>) == 8, "Defined for 64-bit types");
const svuint8_t v8 = BitCast(d8, v);
return BitCast(d, CombineShiftRightBytes<8>(d8, v8, v8));
}
// ------------------------------ Shuffle0123
template <class V>
HWY_API V Shuffle0123(const V v) {
return Shuffle2301(Shuffle1032(v));
}
// ------------------------------ ReverseBlocks (Reverse, Shuffle01)
template <class D, class V = VFromD<D>>
HWY_API V ReverseBlocks(D d, V v) {
#if HWY_TARGET == HWY_SVE_256
if (detail::IsFull(d)) {
return SwapAdjacentBlocks(v);
} else if (detail::IsFull(Twice<D>())) {
return v;
}
#elif HWY_TARGET == HWY_SVE2_128
(void)d;
return v;
#endif
const Repartition<uint64_t, D> du64;
return BitCast(d, Shuffle01(Reverse(du64, BitCast(du64, v))));
}
// ------------------------------ TableLookupBytes
template <class V, class VI>
HWY_API VI TableLookupBytes(const V v, const VI idx) {
const DFromV<VI> d;
const Repartition<uint8_t, decltype(d)> du8;
#if HWY_TARGET == HWY_SVE2_128
return BitCast(d, TableLookupLanes(BitCast(du8, v), BitCast(du8, idx)));
#else
const auto offsets128 = detail::OffsetsOf128BitBlocks(du8, Iota(du8, 0));
const auto idx8 = Add(BitCast(du8, idx), offsets128);
return BitCast(d, TableLookupLanes(BitCast(du8, v), idx8));
#endif
}
template <class V, class VI>
HWY_API VI TableLookupBytesOr0(const V v, const VI idx) {
const DFromV<VI> d;
// Mask size must match vector type, so cast everything to this type.
const Repartition<int8_t, decltype(d)> di8;
auto idx8 = BitCast(di8, idx);
const auto msb = detail::LtN(idx8, 0);
const auto lookup = TableLookupBytes(BitCast(di8, v), idx8);
return BitCast(d, IfThenZeroElse(msb, lookup));
}
// ------------------------------ Broadcast
#if HWY_TARGET == HWY_SVE2_128
namespace detail {
#define HWY_SVE_BROADCAST(BASE, CHAR, BITS, HALF, NAME, OP) \
template <int kLane> \
HWY_INLINE HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_V(BASE, BITS) v) { \
return sv##OP##_##CHAR##BITS(v, kLane); \
}
HWY_SVE_FOREACH(HWY_SVE_BROADCAST, BroadcastLane, dup_lane)
#undef HWY_SVE_BROADCAST
} // namespace detail
#endif
template <int kLane, class V>
HWY_API V Broadcast(const V v) {
const DFromV<V> d;
const RebindToUnsigned<decltype(d)> du;
constexpr size_t kLanesPerBlock = detail::LanesPerBlock(du);
static_assert(0 <= kLane && kLane < kLanesPerBlock, "Invalid lane");
#if HWY_TARGET == HWY_SVE2_128
return detail::BroadcastLane<kLane>(v);
#else
auto idx = detail::OffsetsOf128BitBlocks(du, Iota(du, 0));
if (kLane != 0) {
idx = detail::AddN(idx, kLane);
}
return TableLookupLanes(v, idx);
#endif
}
// ------------------------------ ShiftLeftLanes
template <size_t kLanes, class D, class V = VFromD<D>>
HWY_API V ShiftLeftLanes(D d, const V v) {
const auto zero = Zero(d);
const auto shifted = detail::Splice(v, zero, FirstN(d, kLanes));
#if HWY_TARGET == HWY_SVE2_128
return shifted;
#else
// Match x86 semantics by zeroing lower lanes in 128-bit blocks
return IfThenElse(detail::FirstNPerBlock<kLanes>(d), zero, shifted);
#endif
}
template <size_t kLanes, class V>
HWY_API V ShiftLeftLanes(const V v) {
return ShiftLeftLanes<kLanes>(DFromV<V>(), v);
}
// ------------------------------ ShiftRightLanes
template <size_t kLanes, class D, class V = VFromD<D>>
HWY_API V ShiftRightLanes(D d, V v) {
// For capped/fractional vectors, clear upper lanes so we shift in zeros.
if (!detail::IsFull(d)) {
v = IfThenElseZero(detail::MakeMask(d), v);
}
#if HWY_TARGET == HWY_SVE2_128
return detail::Ext<kLanes>(Zero(d), v);
#else
const auto shifted = detail::Ext<kLanes>(v, v);
// Match x86 semantics by zeroing upper lanes in 128-bit blocks
constexpr size_t kLanesPerBlock = detail::LanesPerBlock(d);
const svbool_t mask = detail::FirstNPerBlock<kLanesPerBlock - kLanes>(d);
return IfThenElseZero(mask, shifted);
#endif
}
// ------------------------------ ShiftLeftBytes
template <int kBytes, class D, class V = VFromD<D>>
HWY_API V ShiftLeftBytes(const D d, const V v) {
const Repartition<uint8_t, decltype(d)> d8;
return BitCast(d, ShiftLeftLanes<kBytes>(BitCast(d8, v)));
}
template <int kBytes, class V>
HWY_API V ShiftLeftBytes(const V v) {
return ShiftLeftBytes<kBytes>(DFromV<V>(), v);
}
// ------------------------------ ShiftRightBytes
template <int kBytes, class D, class V = VFromD<D>>
HWY_API V ShiftRightBytes(const D d, const V v) {
const Repartition<uint8_t, decltype(d)> d8;
return BitCast(d, ShiftRightLanes<kBytes>(d8, BitCast(d8, v)));
}
// ------------------------------ ZipLower
template <class V, class DW = RepartitionToWide<DFromV<V>>>
HWY_API VFromD<DW> ZipLower(DW dw, V a, V b) {
const RepartitionToNarrow<DW> dn;
static_assert(IsSame<TFromD<decltype(dn)>, TFromV<V>>(), "D/V mismatch");
return BitCast(dw, InterleaveLower(dn, a, b));
}
template <class V, class D = DFromV<V>, class DW = RepartitionToWide<D>>
HWY_API VFromD<DW> ZipLower(const V a, const V b) {
return BitCast(DW(), InterleaveLower(D(), a, b));
}
// ------------------------------ ZipUpper
template <class V, class DW = RepartitionToWide<DFromV<V>>>
HWY_API VFromD<DW> ZipUpper(DW dw, V a, V b) {
const RepartitionToNarrow<DW> dn;
static_assert(IsSame<TFromD<decltype(dn)>, TFromV<V>>(), "D/V mismatch");
return BitCast(dw, InterleaveUpper(dn, a, b));
}
// ================================================== Ops with dependencies
// ------------------------------ PromoteTo bfloat16 (ZipLower)
template <size_t N, int kPow2>
HWY_API svfloat32_t PromoteTo(Simd<float32_t, N, kPow2> df32,
const svuint16_t v) {
return BitCast(df32, detail::ZipLowerSame(svdup_n_u16(0), v));
}
// ------------------------------ ReorderDemote2To (OddEven)
template <size_t N, int kPow2>
HWY_API svuint16_t ReorderDemote2To(Simd<bfloat16_t, N, kPow2> dbf16,
svfloat32_t a, svfloat32_t b) {
const RebindToUnsigned<decltype(dbf16)> du16;
const Repartition<uint32_t, decltype(dbf16)> du32;
const svuint32_t b_in_even = ShiftRight<16>(BitCast(du32, b));
return BitCast(dbf16, OddEven(BitCast(du16, a), BitCast(du16, b_in_even)));
}
template <size_t N, int kPow2>
HWY_API svint16_t ReorderDemote2To(Simd<int16_t, N, kPow2> d16, svint32_t a,
svint32_t b) {
#if HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128
(void)d16;
const svint16_t a_in_even = svqxtnb_s32(a);
return svqxtnt_s32(a_in_even, b);
#else
const Half<decltype(d16)> dh;
const svint16_t a16 = BitCast(dh, detail::SaturateI<int16_t>(a));
const svint16_t b16 = BitCast(dh, detail::SaturateI<int16_t>(b));
return detail::InterleaveEven(a16, b16);
#endif
}
// ------------------------------ ZeroIfNegative (Lt, IfThenElse)
template <class V>
HWY_API V ZeroIfNegative(const V v) {
return IfThenZeroElse(detail::LtN(v, 0), v);
}
// ------------------------------ BroadcastSignBit (ShiftRight)
template <class V>
HWY_API V BroadcastSignBit(const V v) {
return ShiftRight<sizeof(TFromV<V>) * 8 - 1>(v);
}
// ------------------------------ IfNegativeThenElse (BroadcastSignBit)
template <class V>
HWY_API V IfNegativeThenElse(V v, V yes, V no) {
static_assert(IsSigned<TFromV<V>>(), "Only works for signed/float");
const DFromV<V> d;
const RebindToSigned<decltype(d)> di;
const svbool_t m = MaskFromVec(BitCast(d, BroadcastSignBit(BitCast(di, v))));
return IfThenElse(m, yes, no);
}
// ------------------------------ AverageRound (ShiftRight)
#if HWY_TARGET == HWY_SVE2
HWY_SVE_FOREACH_U08(HWY_SVE_RETV_ARGPVV, AverageRound, rhadd)
HWY_SVE_FOREACH_U16(HWY_SVE_RETV_ARGPVV, AverageRound, rhadd)
#else
template <class V>
V AverageRound(const V a, const V b) {
return ShiftRight<1>(detail::AddN(Add(a, b), 1));
}
#endif // HWY_TARGET == HWY_SVE2
// ------------------------------ LoadMaskBits (TestBit)
// `p` points to at least 8 readable bytes, not all of which need be valid.
template <class D, HWY_IF_LANE_SIZE_D(D, 1)>
HWY_INLINE svbool_t LoadMaskBits(D d, const uint8_t* HWY_RESTRICT bits) {
const RebindToUnsigned<D> du;
const svuint8_t iota = Iota(du, 0);
// Load correct number of bytes (bits/8) with 7 zeros after each.
const svuint8_t bytes = BitCast(du, svld1ub_u64(detail::PTrue(d), bits));
// Replicate bytes 8x such that each byte contains the bit that governs it.
const svuint8_t rep8 = svtbl_u8(bytes, detail::AndNotN(7, iota));
const svuint8_t bit =
svdupq_n_u8(1, 2, 4, 8, 16, 32, 64, 128, 1, 2, 4, 8, 16, 32, 64, 128);
return TestBit(rep8, bit);
}
template <class D, HWY_IF_LANE_SIZE_D(D, 2)>
HWY_INLINE svbool_t LoadMaskBits(D /* tag */,
const uint8_t* HWY_RESTRICT bits) {
const RebindToUnsigned<D> du;
const Repartition<uint8_t, D> du8;
// There may be up to 128 bits; avoid reading past the end.
const svuint8_t bytes = svld1(FirstN(du8, (Lanes(du) + 7) / 8), bits);
// Replicate bytes 16x such that each lane contains the bit that governs it.
const svuint8_t rep16 = svtbl_u8(bytes, ShiftRight<4>(Iota(du8, 0)));
const svuint16_t bit = svdupq_n_u16(1, 2, 4, 8, 16, 32, 64, 128);
return TestBit(BitCast(du, rep16), bit);
}
template <class D, HWY_IF_LANE_SIZE_D(D, 4)>
HWY_INLINE svbool_t LoadMaskBits(D /* tag */,
const uint8_t* HWY_RESTRICT bits) {
const RebindToUnsigned<D> du;
const Repartition<uint8_t, D> du8;
// Upper bound = 2048 bits / 32 bit = 64 bits; at least 8 bytes are readable,
// so we can skip computing the actual length (Lanes(du)+7)/8.
const svuint8_t bytes = svld1(FirstN(du8, 8), bits);
// Replicate bytes 32x such that each lane contains the bit that governs it.
const svuint8_t rep32 = svtbl_u8(bytes, ShiftRight<5>(Iota(du8, 0)));
// 1, 2, 4, 8, 16, 32, 64, 128, 1, 2 ..
const svuint32_t bit = Shl(Set(du, 1), detail::AndN(Iota(du, 0), 7));
return TestBit(BitCast(du, rep32), bit);
}
template <class D, HWY_IF_LANE_SIZE_D(D, 8)>
HWY_INLINE svbool_t LoadMaskBits(D /* tag */,
const uint8_t* HWY_RESTRICT bits) {
const RebindToUnsigned<D> du;
// Max 2048 bits = 32 lanes = 32 input bits; replicate those into each lane.
// The "at least 8 byte" guarantee in quick_reference ensures this is safe.
uint32_t mask_bits;
CopyBytes<4>(bits, &mask_bits); // copy from bytes
const auto vbits = Set(du, mask_bits);
// 2 ^ {0,1, .., 31}, will not have more lanes than that.
const svuint64_t bit = Shl(Set(du, 1), Iota(du, 0));
return TestBit(vbits, bit);
}
// ------------------------------ StoreMaskBits
namespace detail {
// For each mask lane (governing lane type T), store 1 or 0 in BYTE lanes.
template <class T, HWY_IF_LANE_SIZE(T, 1)>
HWY_INLINE svuint8_t BoolFromMask(svbool_t m) {
return svdup_n_u8_z(m, 1);
}
template <class T, HWY_IF_LANE_SIZE(T, 2)>
HWY_INLINE svuint8_t BoolFromMask(svbool_t m) {
const ScalableTag<uint8_t> d8;
const svuint8_t b16 = BitCast(d8, svdup_n_u16_z(m, 1));
return detail::ConcatEvenFull(b16, b16); // lower half
}
template <class T, HWY_IF_LANE_SIZE(T, 4)>
HWY_INLINE svuint8_t BoolFromMask(svbool_t m) {
return U8FromU32(svdup_n_u32_z(m, 1));
}
template <class T, HWY_IF_LANE_SIZE(T, 8)>
HWY_INLINE svuint8_t BoolFromMask(svbool_t m) {
const ScalableTag<uint32_t> d32;
const svuint32_t b64 = BitCast(d32, svdup_n_u64_z(m, 1));
return U8FromU32(detail::ConcatEvenFull(b64, b64)); // lower half
}
// Compacts groups of 8 u8 into 8 contiguous bits in a 64-bit lane.
HWY_INLINE svuint64_t BitsFromBool(svuint8_t x) {
const ScalableTag<uint8_t> d8;
const ScalableTag<uint16_t> d16;
const ScalableTag<uint32_t> d32;
const ScalableTag<uint64_t> d64;
// TODO(janwas): could use SVE2 BDEP, but it's optional.
x = Or(x, BitCast(d8, ShiftRight<7>(BitCast(d16, x))));
x = Or(x, BitCast(d8, ShiftRight<14>(BitCast(d32, x))));
x = Or(x, BitCast(d8, ShiftRight<28>(BitCast(d64, x))));
return BitCast(d64, x);
}
} // namespace detail
// `p` points to at least 8 writable bytes.
// TODO(janwas): specialize for HWY_SVE_256
template <class D>
HWY_API size_t StoreMaskBits(D d, svbool_t m, uint8_t* bits) {
svuint64_t bits_in_u64 =
detail::BitsFromBool(detail::BoolFromMask<TFromD<D>>(m));
const size_t num_bits = Lanes(d);
const size_t num_bytes = (num_bits + 8 - 1) / 8; // Round up, see below
// Truncate each u64 to 8 bits and store to u8.
svst1b_u64(FirstN(ScalableTag<uint64_t>(), num_bytes), bits, bits_in_u64);
// Non-full byte, need to clear the undefined upper bits. Can happen for
// capped/fractional vectors or large T and small hardware vectors.
if (num_bits < 8) {
const int mask = static_cast<int>((1ull << num_bits) - 1);
bits[0] = static_cast<uint8_t>(bits[0] & mask);
}
// Else: we wrote full bytes because num_bits is a power of two >= 8.
return num_bytes;
}
// ------------------------------ CompressBits (LoadMaskBits)
template <class V>
HWY_INLINE V CompressBits(V v, const uint8_t* HWY_RESTRICT bits) {
return Compress(v, LoadMaskBits(DFromV<V>(), bits));
}
// ------------------------------ CompressBitsStore (LoadMaskBits)
template <class D>
HWY_API size_t CompressBitsStore(VFromD<D> v, const uint8_t* HWY_RESTRICT bits,
D d, TFromD<D>* HWY_RESTRICT unaligned) {
return CompressStore(v, LoadMaskBits(d, bits), d, unaligned);
}
// ------------------------------ MulEven (InterleaveEven)
#if HWY_TARGET == HWY_SVE2
namespace detail {
#define HWY_SVE_MUL_EVEN(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, HALF) a, HWY_SVE_V(BASE, HALF) b) { \
return sv##OP##_##CHAR##BITS(a, b); \
}
HWY_SVE_FOREACH_UI64(HWY_SVE_MUL_EVEN, MulEvenNative, mullb)
#undef HWY_SVE_MUL_EVEN
} // namespace detail
#endif
template <class V, class DW = RepartitionToWide<DFromV<V>>>
HWY_API VFromD<DW> MulEven(const V a, const V b) {
#if HWY_TARGET == HWY_SVE2
return BitCast(DW(), detail::MulEvenNative(a, b));
#else
const auto lo = Mul(a, b);
const auto hi = MulHigh(a, b);
return BitCast(DW(), detail::InterleaveEven(lo, hi));
#endif
}
HWY_API svuint64_t MulEven(const svuint64_t a, const svuint64_t b) {
const auto lo = Mul(a, b);
const auto hi = MulHigh(a, b);
return detail::InterleaveEven(lo, hi);
}
HWY_API svuint64_t MulOdd(const svuint64_t a, const svuint64_t b) {
const auto lo = Mul(a, b);
const auto hi = MulHigh(a, b);
return detail::InterleaveOdd(lo, hi);
}
// ------------------------------ ReorderWidenMulAccumulate (MulAdd, ZipLower)
template <size_t N, int kPow2>
HWY_API svfloat32_t ReorderWidenMulAccumulate(Simd<float, N, kPow2> df32,
svuint16_t a, svuint16_t b,
const svfloat32_t sum0,
svfloat32_t& sum1) {
// TODO(janwas): svbfmlalb_f32 if __ARM_FEATURE_SVE_BF16.
const Repartition<uint16_t, decltype(df32)> du16;
const RebindToUnsigned<decltype(df32)> du32;
const svuint16_t zero = Zero(du16);
const svuint32_t a0 = ZipLower(du32, zero, BitCast(du16, a));
const svuint32_t a1 = ZipUpper(du32, zero, BitCast(du16, a));
const svuint32_t b0 = ZipLower(du32, zero, BitCast(du16, b));
const svuint32_t b1 = ZipUpper(du32, zero, BitCast(du16, b));
sum1 = MulAdd(BitCast(df32, a1), BitCast(df32, b1), sum1);
return MulAdd(BitCast(df32, a0), BitCast(df32, b0), sum0);
}
template <size_t N, int kPow2>
HWY_API svint32_t ReorderWidenMulAccumulate(Simd<int32_t, N, kPow2> d32,
svint16_t a, svint16_t b,
const svint32_t sum0,
svint32_t& sum1) {
#if HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128
(void)d32;
sum1 = svmlalt_s32(sum1, a, b);
return svmlalb_s32(sum0, a, b);
#else
const svbool_t pg = detail::PTrue(d32);
const svint32_t a0 = svunpklo_s32(a);
const svint32_t b0 = svunpklo_s32(b);
svint32_t a1, b1;
if (detail::IsFull(d32)) {
a1 = svunpkhi_s32(a);
b1 = svunpkhi_s32(b);
} else {
const Rebind<int16_t, decltype(d32)> d16h;
a1 = svunpklo_s32(UpperHalf(d16h, a));
b1 = svunpklo_s32(UpperHalf(d16h, b));
}
sum1 = svmla_s32_x(pg, sum1, a1, b1);
return svmla_s32_x(pg, sum0, a0, b0);
#endif
}
// ------------------------------ AESRound / CLMul
#if defined(__ARM_FEATURE_SVE2_AES) || \
((HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128) && \
HWY_HAVE_RUNTIME_DISPATCH)
// Per-target flag to prevent generic_ops-inl.h from defining AESRound.
#ifdef HWY_NATIVE_AES
#undef HWY_NATIVE_AES
#else
#define HWY_NATIVE_AES
#endif
HWY_API svuint8_t AESRound(svuint8_t state, svuint8_t round_key) {
// It is not clear whether E and MC fuse like they did on NEON.
const svuint8_t zero = svdup_n_u8(0);
return Xor(svaesmc_u8(svaese_u8(state, zero)), round_key);
}
HWY_API svuint8_t AESLastRound(svuint8_t state, svuint8_t round_key) {
return Xor(svaese_u8(state, svdup_n_u8(0)), round_key);
}
HWY_API svuint64_t CLMulLower(const svuint64_t a, const svuint64_t b) {
return svpmullb_pair(a, b);
}
HWY_API svuint64_t CLMulUpper(const svuint64_t a, const svuint64_t b) {
return svpmullt_pair(a, b);
}
#endif // __ARM_FEATURE_SVE2_AES
// ------------------------------ Lt128
namespace detail {
#define HWY_SVE_DUP(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API svbool_t NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /*d*/, svbool_t m) { \
return sv##OP##_b##BITS(m, m); \
}
HWY_SVE_FOREACH_U(HWY_SVE_DUP, DupEvenB, trn1) // actually for bool
HWY_SVE_FOREACH_U(HWY_SVE_DUP, DupOddB, trn2) // actually for bool
#undef HWY_SVE_DUP
#if HWY_TARGET == HWY_SVE_256 || HWY_IDE
template <class D>
HWY_INLINE svuint64_t Lt128Vec(D d, const svuint64_t a, const svuint64_t b) {
static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
"D must be u64");
const svbool_t eqHx = Eq(a, b); // only odd lanes used
// Convert to vector: more pipelines can execute vector TRN* instructions
// than the predicate version.
const svuint64_t ltHL = VecFromMask(d, Lt(a, b));
// Move into upper lane: ltL if the upper half is equal, otherwise ltH.
// Requires an extra IfThenElse because INSR, EXT, TRN2 are unpredicated.
const svuint64_t ltHx = IfThenElse(eqHx, DupEven(ltHL), ltHL);
// Duplicate upper lane into lower.
return DupOdd(ltHx);
}
#endif
} // namespace detail
template <class D>
HWY_INLINE svbool_t Lt128(D d, const svuint64_t a, const svuint64_t b) {
#if HWY_TARGET == HWY_SVE_256
return MaskFromVec(detail::Lt128Vec(d, a, b));
#else
static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
"D must be u64");
const svbool_t eqHx = Eq(a, b); // only odd lanes used
const svbool_t ltHL = Lt(a, b);
// Move into upper lane: ltL if the upper half is equal, otherwise ltH.
const svbool_t ltHx = svsel_b(eqHx, detail::DupEvenB(d, ltHL), ltHL);
// Duplicate upper lane into lower.
return detail::DupOddB(d, ltHx);
#endif // HWY_TARGET != HWY_SVE_256
}
// ------------------------------ Lt128Upper
template <class D>
HWY_INLINE svbool_t Lt128Upper(D d, svuint64_t a, svuint64_t b) {
static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
"D must be u64");
const svbool_t ltHL = Lt(a, b);
return detail::DupOddB(d, ltHL);
}
// ------------------------------ Eq128, Ne128
#if HWY_TARGET == HWY_SVE_256 || HWY_IDE
namespace detail {
template <class D>
HWY_INLINE svuint64_t Eq128Vec(D d, const svuint64_t a, const svuint64_t b) {
static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
"D must be u64");
// Convert to vector: more pipelines can execute vector TRN* instructions
// than the predicate version.
const svuint64_t eqHL = VecFromMask(d, Eq(a, b));
// Duplicate upper and lower.
const svuint64_t eqHH = DupOdd(eqHL);
const svuint64_t eqLL = DupEven(eqHL);
return And(eqLL, eqHH);
}
template <class D>
HWY_INLINE svuint64_t Ne128Vec(D d, const svuint64_t a, const svuint64_t b) {
static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
"D must be u64");
// Convert to vector: more pipelines can execute vector TRN* instructions
// than the predicate version.
const svuint64_t neHL = VecFromMask(d, Ne(a, b));
// Duplicate upper and lower.
const svuint64_t neHH = DupOdd(neHL);
const svuint64_t neLL = DupEven(neHL);
return Or(neLL, neHH);
}
} // namespace detail
#endif
template <class D>
HWY_INLINE svbool_t Eq128(D d, const svuint64_t a, const svuint64_t b) {
#if HWY_TARGET == HWY_SVE_256
return MaskFromVec(detail::Eq128Vec(d, a, b));
#else
static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
"D must be u64");
const svbool_t eqHL = Eq(a, b);
const svbool_t eqHH = detail::DupOddB(d, eqHL);
const svbool_t eqLL = detail::DupEvenB(d, eqHL);
return And(eqLL, eqHH);
#endif // HWY_TARGET != HWY_SVE_256
}
template <class D>
HWY_INLINE svbool_t Ne128(D d, const svuint64_t a, const svuint64_t b) {
#if HWY_TARGET == HWY_SVE_256
return MaskFromVec(detail::Ne128Vec(d, a, b));
#else
static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
"D must be u64");
const svbool_t neHL = Ne(a, b);
const svbool_t neHH = detail::DupOddB(d, neHL);
const svbool_t neLL = detail::DupEvenB(d, neHL);
return Or(neLL, neHH);
#endif // HWY_TARGET != HWY_SVE_256
}
// ------------------------------ Eq128Upper, Ne128Upper
template <class D>
HWY_INLINE svbool_t Eq128Upper(D d, svuint64_t a, svuint64_t b) {
static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
"D must be u64");
const svbool_t eqHL = Eq(a, b);
return detail::DupOddB(d, eqHL);
}
template <class D>
HWY_INLINE svbool_t Ne128Upper(D d, svuint64_t a, svuint64_t b) {
static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
"D must be u64");
const svbool_t neHL = Ne(a, b);
return detail::DupOddB(d, neHL);
}
// ------------------------------ Min128, Max128 (Lt128)
template <class D>
HWY_INLINE svuint64_t Min128(D d, const svuint64_t a, const svuint64_t b) {
#if HWY_TARGET == HWY_SVE_256
return IfVecThenElse(detail::Lt128Vec(d, a, b), a, b);
#else
return IfThenElse(Lt128(d, a, b), a, b);
#endif
}
template <class D>
HWY_INLINE svuint64_t Max128(D d, const svuint64_t a, const svuint64_t b) {
#if HWY_TARGET == HWY_SVE_256
return IfVecThenElse(detail::Lt128Vec(d, b, a), a, b);
#else
return IfThenElse(Lt128(d, b, a), a, b);
#endif
}
template <class D>
HWY_INLINE svuint64_t Min128Upper(D d, const svuint64_t a, const svuint64_t b) {
return IfThenElse(Lt128Upper(d, a, b), a, b);
}
template <class D>
HWY_INLINE svuint64_t Max128Upper(D d, const svuint64_t a, const svuint64_t b) {
return IfThenElse(Lt128Upper(d, b, a), a, b);
}
// ================================================== END MACROS
namespace detail { // for code folding
#undef HWY_IF_FLOAT_V
#undef HWY_IF_LANE_SIZE_V
#undef HWY_SVE_ALL_PTRUE
#undef HWY_SVE_D
#undef HWY_SVE_FOREACH
#undef HWY_SVE_FOREACH_F
#undef HWY_SVE_FOREACH_F16
#undef HWY_SVE_FOREACH_F32
#undef HWY_SVE_FOREACH_F64
#undef HWY_SVE_FOREACH_I
#undef HWY_SVE_FOREACH_I08
#undef HWY_SVE_FOREACH_I16
#undef HWY_SVE_FOREACH_I32
#undef HWY_SVE_FOREACH_I64
#undef HWY_SVE_FOREACH_IF
#undef HWY_SVE_FOREACH_U
#undef HWY_SVE_FOREACH_U08
#undef HWY_SVE_FOREACH_U16
#undef HWY_SVE_FOREACH_U32
#undef HWY_SVE_FOREACH_U64
#undef HWY_SVE_FOREACH_UI
#undef HWY_SVE_FOREACH_UI08
#undef HWY_SVE_FOREACH_UI16
#undef HWY_SVE_FOREACH_UI32
#undef HWY_SVE_FOREACH_UI64
#undef HWY_SVE_FOREACH_UIF3264
#undef HWY_SVE_PTRUE
#undef HWY_SVE_RETV_ARGPV
#undef HWY_SVE_RETV_ARGPVN
#undef HWY_SVE_RETV_ARGPVV
#undef HWY_SVE_RETV_ARGV
#undef HWY_SVE_RETV_ARGVN
#undef HWY_SVE_RETV_ARGVV
#undef HWY_SVE_T
#undef HWY_SVE_UNDEFINED
#undef HWY_SVE_V
} // namespace detail
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace hwy
HWY_AFTER_NAMESPACE();
|