1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
|
// Copyright 2019 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Single-element vectors and operations.
// External include guard in highway.h - see comment there.
#include <stddef.h>
#include <stdint.h>
#include "hwy/base.h"
#include "hwy/ops/shared-inl.h"
HWY_BEFORE_NAMESPACE();
namespace hwy {
namespace HWY_NAMESPACE {
// Single instruction, single data.
template <typename T>
using Sisd = Simd<T, 1, 0>;
// (Wrapper class required for overloading comparison operators.)
template <typename T>
struct Vec1 {
using PrivateT = T; // only for DFromV
static constexpr size_t kPrivateN = 1; // only for DFromV
HWY_INLINE Vec1() = default;
Vec1(const Vec1&) = default;
Vec1& operator=(const Vec1&) = default;
HWY_INLINE explicit Vec1(const T t) : raw(t) {}
HWY_INLINE Vec1& operator*=(const Vec1 other) {
return *this = (*this * other);
}
HWY_INLINE Vec1& operator/=(const Vec1 other) {
return *this = (*this / other);
}
HWY_INLINE Vec1& operator+=(const Vec1 other) {
return *this = (*this + other);
}
HWY_INLINE Vec1& operator-=(const Vec1 other) {
return *this = (*this - other);
}
HWY_INLINE Vec1& operator&=(const Vec1 other) {
return *this = (*this & other);
}
HWY_INLINE Vec1& operator|=(const Vec1 other) {
return *this = (*this | other);
}
HWY_INLINE Vec1& operator^=(const Vec1 other) {
return *this = (*this ^ other);
}
T raw;
};
// 0 or FF..FF, same size as Vec1.
template <typename T>
class Mask1 {
using Raw = hwy::MakeUnsigned<T>;
public:
static HWY_INLINE Mask1<T> FromBool(bool b) {
Mask1<T> mask;
mask.bits = b ? static_cast<Raw>(~Raw{0}) : 0;
return mask;
}
Raw bits;
};
template <class V>
using DFromV = Simd<typename V::PrivateT, V::kPrivateN, 0>;
template <class V>
using TFromV = typename V::PrivateT;
// ------------------------------ BitCast
template <typename T, typename FromT>
HWY_API Vec1<T> BitCast(Sisd<T> /* tag */, Vec1<FromT> v) {
static_assert(sizeof(T) <= sizeof(FromT), "Promoting is undefined");
T to;
CopyBytes<sizeof(FromT)>(&v.raw, &to); // not same size - ok to shrink
return Vec1<T>(to);
}
// ------------------------------ Set
template <typename T>
HWY_API Vec1<T> Zero(Sisd<T> /* tag */) {
return Vec1<T>(T(0));
}
template <typename T, typename T2>
HWY_API Vec1<T> Set(Sisd<T> /* tag */, const T2 t) {
return Vec1<T>(static_cast<T>(t));
}
template <typename T>
HWY_API Vec1<T> Undefined(Sisd<T> d) {
return Zero(d);
}
template <typename T, typename T2>
HWY_API Vec1<T> Iota(const Sisd<T> /* tag */, const T2 first) {
return Vec1<T>(static_cast<T>(first));
}
template <class D>
using VFromD = decltype(Zero(D()));
// ================================================== LOGICAL
// ------------------------------ Not
template <typename T>
HWY_API Vec1<T> Not(const Vec1<T> v) {
using TU = MakeUnsigned<T>;
const Sisd<TU> du;
return BitCast(Sisd<T>(), Vec1<TU>(static_cast<TU>(~BitCast(du, v).raw)));
}
// ------------------------------ And
template <typename T>
HWY_API Vec1<T> And(const Vec1<T> a, const Vec1<T> b) {
using TU = MakeUnsigned<T>;
const Sisd<TU> du;
return BitCast(Sisd<T>(), Vec1<TU>(BitCast(du, a).raw & BitCast(du, b).raw));
}
template <typename T>
HWY_API Vec1<T> operator&(const Vec1<T> a, const Vec1<T> b) {
return And(a, b);
}
// ------------------------------ AndNot
template <typename T>
HWY_API Vec1<T> AndNot(const Vec1<T> a, const Vec1<T> b) {
using TU = MakeUnsigned<T>;
const Sisd<TU> du;
return BitCast(Sisd<T>(), Vec1<TU>(static_cast<TU>(~BitCast(du, a).raw &
BitCast(du, b).raw)));
}
// ------------------------------ Or
template <typename T>
HWY_API Vec1<T> Or(const Vec1<T> a, const Vec1<T> b) {
using TU = MakeUnsigned<T>;
const Sisd<TU> du;
return BitCast(Sisd<T>(), Vec1<TU>(BitCast(du, a).raw | BitCast(du, b).raw));
}
template <typename T>
HWY_API Vec1<T> operator|(const Vec1<T> a, const Vec1<T> b) {
return Or(a, b);
}
// ------------------------------ Xor
template <typename T>
HWY_API Vec1<T> Xor(const Vec1<T> a, const Vec1<T> b) {
using TU = MakeUnsigned<T>;
const Sisd<TU> du;
return BitCast(Sisd<T>(), Vec1<TU>(BitCast(du, a).raw ^ BitCast(du, b).raw));
}
template <typename T>
HWY_API Vec1<T> operator^(const Vec1<T> a, const Vec1<T> b) {
return Xor(a, b);
}
// ------------------------------ Or3
template <typename T>
HWY_API Vec1<T> Or3(Vec1<T> o1, Vec1<T> o2, Vec1<T> o3) {
return Or(o1, Or(o2, o3));
}
// ------------------------------ OrAnd
template <typename T>
HWY_API Vec1<T> OrAnd(const Vec1<T> o, const Vec1<T> a1, const Vec1<T> a2) {
return Or(o, And(a1, a2));
}
// ------------------------------ IfVecThenElse
template <typename T>
HWY_API Vec1<T> IfVecThenElse(Vec1<T> mask, Vec1<T> yes, Vec1<T> no) {
return IfThenElse(MaskFromVec(mask), yes, no);
}
// ------------------------------ CopySign
template <typename T>
HWY_API Vec1<T> CopySign(const Vec1<T> magn, const Vec1<T> sign) {
static_assert(IsFloat<T>(), "Only makes sense for floating-point");
const auto msb = SignBit(Sisd<T>());
return Or(AndNot(msb, magn), And(msb, sign));
}
template <typename T>
HWY_API Vec1<T> CopySignToAbs(const Vec1<T> abs, const Vec1<T> sign) {
static_assert(IsFloat<T>(), "Only makes sense for floating-point");
return Or(abs, And(SignBit(Sisd<T>()), sign));
}
// ------------------------------ BroadcastSignBit
template <typename T>
HWY_API Vec1<T> BroadcastSignBit(const Vec1<T> v) {
// This is used inside ShiftRight, so we cannot implement in terms of it.
return v.raw < 0 ? Vec1<T>(T(-1)) : Vec1<T>(0);
}
// ------------------------------ PopulationCount
#ifdef HWY_NATIVE_POPCNT
#undef HWY_NATIVE_POPCNT
#else
#define HWY_NATIVE_POPCNT
#endif
template <typename T>
HWY_API Vec1<T> PopulationCount(Vec1<T> v) {
return Vec1<T>(static_cast<T>(PopCount(v.raw)));
}
// ------------------------------ Mask
template <typename TFrom, typename TTo>
HWY_API Mask1<TTo> RebindMask(Sisd<TTo> /*tag*/, Mask1<TFrom> m) {
static_assert(sizeof(TFrom) == sizeof(TTo), "Must have same size");
return Mask1<TTo>{m.bits};
}
// v must be 0 or FF..FF.
template <typename T>
HWY_API Mask1<T> MaskFromVec(const Vec1<T> v) {
Mask1<T> mask;
CopySameSize(&v, &mask);
return mask;
}
template <typename T>
Vec1<T> VecFromMask(const Mask1<T> mask) {
Vec1<T> v;
CopySameSize(&mask, &v);
return v;
}
template <typename T>
Vec1<T> VecFromMask(Sisd<T> /* tag */, const Mask1<T> mask) {
Vec1<T> v;
CopySameSize(&mask, &v);
return v;
}
template <typename T>
HWY_API Mask1<T> FirstN(Sisd<T> /*tag*/, size_t n) {
return Mask1<T>::FromBool(n != 0);
}
// Returns mask ? yes : no.
template <typename T>
HWY_API Vec1<T> IfThenElse(const Mask1<T> mask, const Vec1<T> yes,
const Vec1<T> no) {
return mask.bits ? yes : no;
}
template <typename T>
HWY_API Vec1<T> IfThenElseZero(const Mask1<T> mask, const Vec1<T> yes) {
return mask.bits ? yes : Vec1<T>(0);
}
template <typename T>
HWY_API Vec1<T> IfThenZeroElse(const Mask1<T> mask, const Vec1<T> no) {
return mask.bits ? Vec1<T>(0) : no;
}
template <typename T>
HWY_API Vec1<T> IfNegativeThenElse(Vec1<T> v, Vec1<T> yes, Vec1<T> no) {
return v.raw < 0 ? yes : no;
}
template <typename T>
HWY_API Vec1<T> ZeroIfNegative(const Vec1<T> v) {
return v.raw < 0 ? Vec1<T>(0) : v;
}
// ------------------------------ Mask logical
template <typename T>
HWY_API Mask1<T> Not(const Mask1<T> m) {
return MaskFromVec(Not(VecFromMask(Sisd<T>(), m)));
}
template <typename T>
HWY_API Mask1<T> And(const Mask1<T> a, Mask1<T> b) {
const Sisd<T> d;
return MaskFromVec(And(VecFromMask(d, a), VecFromMask(d, b)));
}
template <typename T>
HWY_API Mask1<T> AndNot(const Mask1<T> a, Mask1<T> b) {
const Sisd<T> d;
return MaskFromVec(AndNot(VecFromMask(d, a), VecFromMask(d, b)));
}
template <typename T>
HWY_API Mask1<T> Or(const Mask1<T> a, Mask1<T> b) {
const Sisd<T> d;
return MaskFromVec(Or(VecFromMask(d, a), VecFromMask(d, b)));
}
template <typename T>
HWY_API Mask1<T> Xor(const Mask1<T> a, Mask1<T> b) {
const Sisd<T> d;
return MaskFromVec(Xor(VecFromMask(d, a), VecFromMask(d, b)));
}
template <typename T>
HWY_API Mask1<T> ExclusiveNeither(const Mask1<T> a, Mask1<T> b) {
const Sisd<T> d;
return MaskFromVec(AndNot(VecFromMask(d, a), Not(VecFromMask(d, b))));
}
// ================================================== SHIFTS
// ------------------------------ ShiftLeft/ShiftRight (BroadcastSignBit)
template <int kBits, typename T>
HWY_API Vec1<T> ShiftLeft(const Vec1<T> v) {
static_assert(0 <= kBits && kBits < sizeof(T) * 8, "Invalid shift");
return Vec1<T>(
static_cast<T>(static_cast<hwy::MakeUnsigned<T>>(v.raw) << kBits));
}
template <int kBits, typename T>
HWY_API Vec1<T> ShiftRight(const Vec1<T> v) {
static_assert(0 <= kBits && kBits < sizeof(T) * 8, "Invalid shift");
#if __cplusplus >= 202002L
// Signed right shift is now guaranteed to be arithmetic (rounding toward
// negative infinity, i.e. shifting in the sign bit).
return Vec1<T>(static_cast<T>(v.raw >> kBits));
#else
if (IsSigned<T>()) {
// Emulate arithmetic shift using only logical (unsigned) shifts, because
// signed shifts are still implementation-defined.
using TU = hwy::MakeUnsigned<T>;
const Sisd<TU> du;
const TU shifted = static_cast<TU>(BitCast(du, v).raw >> kBits);
const TU sign = BitCast(du, BroadcastSignBit(v)).raw;
const size_t sign_shift =
static_cast<size_t>(static_cast<int>(sizeof(TU)) * 8 - 1 - kBits);
const TU upper = static_cast<TU>(sign << sign_shift);
return BitCast(Sisd<T>(), Vec1<TU>(shifted | upper));
} else { // T is unsigned
return Vec1<T>(static_cast<T>(v.raw >> kBits));
}
#endif
}
// ------------------------------ RotateRight (ShiftRight)
namespace detail {
// For partial specialization: kBits == 0 results in an invalid shift count
template <int kBits>
struct RotateRight {
template <typename T>
HWY_INLINE Vec1<T> operator()(const Vec1<T> v) const {
return Or(ShiftRight<kBits>(v), ShiftLeft<sizeof(T) * 8 - kBits>(v));
}
};
template <>
struct RotateRight<0> {
template <typename T>
HWY_INLINE Vec1<T> operator()(const Vec1<T> v) const {
return v;
}
};
} // namespace detail
template <int kBits, typename T>
HWY_API Vec1<T> RotateRight(const Vec1<T> v) {
static_assert(0 <= kBits && kBits < sizeof(T) * 8, "Invalid shift");
return detail::RotateRight<kBits>()(v);
}
// ------------------------------ ShiftLeftSame (BroadcastSignBit)
template <typename T>
HWY_API Vec1<T> ShiftLeftSame(const Vec1<T> v, int bits) {
return Vec1<T>(
static_cast<T>(static_cast<hwy::MakeUnsigned<T>>(v.raw) << bits));
}
template <typename T>
HWY_API Vec1<T> ShiftRightSame(const Vec1<T> v, int bits) {
#if __cplusplus >= 202002L
// Signed right shift is now guaranteed to be arithmetic (rounding toward
// negative infinity, i.e. shifting in the sign bit).
return Vec1<T>(static_cast<T>(v.raw >> bits));
#else
if (IsSigned<T>()) {
// Emulate arithmetic shift using only logical (unsigned) shifts, because
// signed shifts are still implementation-defined.
using TU = hwy::MakeUnsigned<T>;
const Sisd<TU> du;
const TU shifted = static_cast<TU>(BitCast(du, v).raw >> bits);
const TU sign = BitCast(du, BroadcastSignBit(v)).raw;
const size_t sign_shift =
static_cast<size_t>(static_cast<int>(sizeof(TU)) * 8 - 1 - bits);
const TU upper = static_cast<TU>(sign << sign_shift);
return BitCast(Sisd<T>(), Vec1<TU>(shifted | upper));
} else { // T is unsigned
return Vec1<T>(static_cast<T>(v.raw >> bits));
}
#endif
}
// ------------------------------ Shl
// Single-lane => same as ShiftLeftSame except for the argument type.
template <typename T>
HWY_API Vec1<T> operator<<(const Vec1<T> v, const Vec1<T> bits) {
return ShiftLeftSame(v, static_cast<int>(bits.raw));
}
template <typename T>
HWY_API Vec1<T> operator>>(const Vec1<T> v, const Vec1<T> bits) {
return ShiftRightSame(v, static_cast<int>(bits.raw));
}
// ================================================== ARITHMETIC
template <typename T>
HWY_API Vec1<T> operator+(Vec1<T> a, Vec1<T> b) {
const uint64_t a64 = static_cast<uint64_t>(a.raw);
const uint64_t b64 = static_cast<uint64_t>(b.raw);
return Vec1<T>(static_cast<T>((a64 + b64) & static_cast<uint64_t>(~T(0))));
}
HWY_API Vec1<float> operator+(const Vec1<float> a, const Vec1<float> b) {
return Vec1<float>(a.raw + b.raw);
}
HWY_API Vec1<double> operator+(const Vec1<double> a, const Vec1<double> b) {
return Vec1<double>(a.raw + b.raw);
}
template <typename T>
HWY_API Vec1<T> operator-(Vec1<T> a, Vec1<T> b) {
const uint64_t a64 = static_cast<uint64_t>(a.raw);
const uint64_t b64 = static_cast<uint64_t>(b.raw);
return Vec1<T>(static_cast<T>((a64 - b64) & static_cast<uint64_t>(~T(0))));
}
HWY_API Vec1<float> operator-(const Vec1<float> a, const Vec1<float> b) {
return Vec1<float>(a.raw - b.raw);
}
HWY_API Vec1<double> operator-(const Vec1<double> a, const Vec1<double> b) {
return Vec1<double>(a.raw - b.raw);
}
// ------------------------------ SumsOf8
HWY_API Vec1<uint64_t> SumsOf8(const Vec1<uint8_t> v) {
return Vec1<uint64_t>(v.raw);
}
// ------------------------------ SaturatedAdd
// Returns a + b clamped to the destination range.
// Unsigned
HWY_API Vec1<uint8_t> SaturatedAdd(const Vec1<uint8_t> a,
const Vec1<uint8_t> b) {
return Vec1<uint8_t>(
static_cast<uint8_t>(HWY_MIN(HWY_MAX(0, a.raw + b.raw), 255)));
}
HWY_API Vec1<uint16_t> SaturatedAdd(const Vec1<uint16_t> a,
const Vec1<uint16_t> b) {
return Vec1<uint16_t>(
static_cast<uint16_t>(HWY_MIN(HWY_MAX(0, a.raw + b.raw), 65535)));
}
// Signed
HWY_API Vec1<int8_t> SaturatedAdd(const Vec1<int8_t> a, const Vec1<int8_t> b) {
return Vec1<int8_t>(
static_cast<int8_t>(HWY_MIN(HWY_MAX(-128, a.raw + b.raw), 127)));
}
HWY_API Vec1<int16_t> SaturatedAdd(const Vec1<int16_t> a,
const Vec1<int16_t> b) {
return Vec1<int16_t>(
static_cast<int16_t>(HWY_MIN(HWY_MAX(-32768, a.raw + b.raw), 32767)));
}
// ------------------------------ Saturating subtraction
// Returns a - b clamped to the destination range.
// Unsigned
HWY_API Vec1<uint8_t> SaturatedSub(const Vec1<uint8_t> a,
const Vec1<uint8_t> b) {
return Vec1<uint8_t>(
static_cast<uint8_t>(HWY_MIN(HWY_MAX(0, a.raw - b.raw), 255)));
}
HWY_API Vec1<uint16_t> SaturatedSub(const Vec1<uint16_t> a,
const Vec1<uint16_t> b) {
return Vec1<uint16_t>(
static_cast<uint16_t>(HWY_MIN(HWY_MAX(0, a.raw - b.raw), 65535)));
}
// Signed
HWY_API Vec1<int8_t> SaturatedSub(const Vec1<int8_t> a, const Vec1<int8_t> b) {
return Vec1<int8_t>(
static_cast<int8_t>(HWY_MIN(HWY_MAX(-128, a.raw - b.raw), 127)));
}
HWY_API Vec1<int16_t> SaturatedSub(const Vec1<int16_t> a,
const Vec1<int16_t> b) {
return Vec1<int16_t>(
static_cast<int16_t>(HWY_MIN(HWY_MAX(-32768, a.raw - b.raw), 32767)));
}
// ------------------------------ Average
// Returns (a + b + 1) / 2
HWY_API Vec1<uint8_t> AverageRound(const Vec1<uint8_t> a,
const Vec1<uint8_t> b) {
return Vec1<uint8_t>(static_cast<uint8_t>((a.raw + b.raw + 1) / 2));
}
HWY_API Vec1<uint16_t> AverageRound(const Vec1<uint16_t> a,
const Vec1<uint16_t> b) {
return Vec1<uint16_t>(static_cast<uint16_t>((a.raw + b.raw + 1) / 2));
}
// ------------------------------ Absolute value
template <typename T>
HWY_API Vec1<T> Abs(const Vec1<T> a) {
const T i = a.raw;
return (i >= 0 || i == hwy::LimitsMin<T>()) ? a : Vec1<T>(static_cast<T>(-i));
}
HWY_API Vec1<float> Abs(const Vec1<float> a) {
return Vec1<float>(fabsf(a.raw));
}
HWY_API Vec1<double> Abs(const Vec1<double> a) {
return Vec1<double>(fabs(a.raw));
}
// ------------------------------ Min/Max
// <cmath> may be unavailable, so implement our own.
namespace detail {
static inline float Abs(float f) {
uint32_t i;
CopyBytes<4>(&f, &i);
i &= 0x7FFFFFFFu;
CopyBytes<4>(&i, &f);
return f;
}
static inline double Abs(double f) {
uint64_t i;
CopyBytes<8>(&f, &i);
i &= 0x7FFFFFFFFFFFFFFFull;
CopyBytes<8>(&i, &f);
return f;
}
static inline bool SignBit(float f) {
uint32_t i;
CopyBytes<4>(&f, &i);
return (i >> 31) != 0;
}
static inline bool SignBit(double f) {
uint64_t i;
CopyBytes<8>(&f, &i);
return (i >> 63) != 0;
}
} // namespace detail
template <typename T, HWY_IF_NOT_FLOAT(T)>
HWY_API Vec1<T> Min(const Vec1<T> a, const Vec1<T> b) {
return Vec1<T>(HWY_MIN(a.raw, b.raw));
}
template <typename T, HWY_IF_FLOAT(T)>
HWY_API Vec1<T> Min(const Vec1<T> a, const Vec1<T> b) {
if (isnan(a.raw)) return b;
if (isnan(b.raw)) return a;
return Vec1<T>(HWY_MIN(a.raw, b.raw));
}
template <typename T, HWY_IF_NOT_FLOAT(T)>
HWY_API Vec1<T> Max(const Vec1<T> a, const Vec1<T> b) {
return Vec1<T>(HWY_MAX(a.raw, b.raw));
}
template <typename T, HWY_IF_FLOAT(T)>
HWY_API Vec1<T> Max(const Vec1<T> a, const Vec1<T> b) {
if (isnan(a.raw)) return b;
if (isnan(b.raw)) return a;
return Vec1<T>(HWY_MAX(a.raw, b.raw));
}
// ------------------------------ Floating-point negate
template <typename T, HWY_IF_FLOAT(T)>
HWY_API Vec1<T> Neg(const Vec1<T> v) {
return Xor(v, SignBit(Sisd<T>()));
}
template <typename T, HWY_IF_NOT_FLOAT(T)>
HWY_API Vec1<T> Neg(const Vec1<T> v) {
return Zero(Sisd<T>()) - v;
}
// ------------------------------ mul/div
template <typename T, HWY_IF_FLOAT(T)>
HWY_API Vec1<T> operator*(const Vec1<T> a, const Vec1<T> b) {
return Vec1<T>(static_cast<T>(double(a.raw) * b.raw));
}
template <typename T, HWY_IF_SIGNED(T)>
HWY_API Vec1<T> operator*(const Vec1<T> a, const Vec1<T> b) {
return Vec1<T>(static_cast<T>(int64_t(a.raw) * b.raw));
}
template <typename T, HWY_IF_UNSIGNED(T)>
HWY_API Vec1<T> operator*(const Vec1<T> a, const Vec1<T> b) {
return Vec1<T>(static_cast<T>(uint64_t(a.raw) * b.raw));
}
template <typename T>
HWY_API Vec1<T> operator/(const Vec1<T> a, const Vec1<T> b) {
return Vec1<T>(a.raw / b.raw);
}
// Returns the upper 16 bits of a * b in each lane.
HWY_API Vec1<int16_t> MulHigh(const Vec1<int16_t> a, const Vec1<int16_t> b) {
return Vec1<int16_t>(static_cast<int16_t>((a.raw * b.raw) >> 16));
}
HWY_API Vec1<uint16_t> MulHigh(const Vec1<uint16_t> a, const Vec1<uint16_t> b) {
// Cast to uint32_t first to prevent overflow. Otherwise the result of
// uint16_t * uint16_t is in "int" which may overflow. In practice the result
// is the same but this way it is also defined.
return Vec1<uint16_t>(static_cast<uint16_t>(
(static_cast<uint32_t>(a.raw) * static_cast<uint32_t>(b.raw)) >> 16));
}
HWY_API Vec1<int16_t> MulFixedPoint15(Vec1<int16_t> a, Vec1<int16_t> b) {
return Vec1<int16_t>(static_cast<int16_t>((2 * a.raw * b.raw + 32768) >> 16));
}
// Multiplies even lanes (0, 2 ..) and returns the double-wide result.
HWY_API Vec1<int64_t> MulEven(const Vec1<int32_t> a, const Vec1<int32_t> b) {
const int64_t a64 = a.raw;
return Vec1<int64_t>(a64 * b.raw);
}
HWY_API Vec1<uint64_t> MulEven(const Vec1<uint32_t> a, const Vec1<uint32_t> b) {
const uint64_t a64 = a.raw;
return Vec1<uint64_t>(a64 * b.raw);
}
// Approximate reciprocal
HWY_API Vec1<float> ApproximateReciprocal(const Vec1<float> v) {
// Zero inputs are allowed, but callers are responsible for replacing the
// return value with something else (typically using IfThenElse). This check
// avoids a ubsan error. The return value is arbitrary.
if (v.raw == 0.0f) return Vec1<float>(0.0f);
return Vec1<float>(1.0f / v.raw);
}
// Absolute value of difference.
HWY_API Vec1<float> AbsDiff(const Vec1<float> a, const Vec1<float> b) {
return Abs(a - b);
}
// ------------------------------ Floating-point multiply-add variants
template <typename T>
HWY_API Vec1<T> MulAdd(const Vec1<T> mul, const Vec1<T> x, const Vec1<T> add) {
return mul * x + add;
}
template <typename T>
HWY_API Vec1<T> NegMulAdd(const Vec1<T> mul, const Vec1<T> x,
const Vec1<T> add) {
return add - mul * x;
}
template <typename T>
HWY_API Vec1<T> MulSub(const Vec1<T> mul, const Vec1<T> x, const Vec1<T> sub) {
return mul * x - sub;
}
template <typename T>
HWY_API Vec1<T> NegMulSub(const Vec1<T> mul, const Vec1<T> x,
const Vec1<T> sub) {
return Neg(mul) * x - sub;
}
// ------------------------------ Floating-point square root
// Approximate reciprocal square root
HWY_API Vec1<float> ApproximateReciprocalSqrt(const Vec1<float> v) {
float f = v.raw;
const float half = f * 0.5f;
uint32_t bits;
CopySameSize(&f, &bits);
// Initial guess based on log2(f)
bits = 0x5F3759DF - (bits >> 1);
CopySameSize(&bits, &f);
// One Newton-Raphson iteration
return Vec1<float>(f * (1.5f - (half * f * f)));
}
// Square root
HWY_API Vec1<float> Sqrt(const Vec1<float> v) {
return Vec1<float>(sqrtf(v.raw));
}
HWY_API Vec1<double> Sqrt(const Vec1<double> v) {
return Vec1<double>(sqrt(v.raw));
}
// ------------------------------ Floating-point rounding
template <typename T>
HWY_API Vec1<T> Round(const Vec1<T> v) {
using TI = MakeSigned<T>;
if (!(Abs(v).raw < MantissaEnd<T>())) { // Huge or NaN
return v;
}
const T bias = v.raw < T(0.0) ? T(-0.5) : T(0.5);
const TI rounded = static_cast<TI>(v.raw + bias);
if (rounded == 0) return CopySignToAbs(Vec1<T>(0), v);
// Round to even
if ((rounded & 1) && detail::Abs(static_cast<T>(rounded) - v.raw) == T(0.5)) {
return Vec1<T>(static_cast<T>(rounded - (v.raw < T(0) ? -1 : 1)));
}
return Vec1<T>(static_cast<T>(rounded));
}
// Round-to-nearest even.
HWY_API Vec1<int32_t> NearestInt(const Vec1<float> v) {
using T = float;
using TI = int32_t;
const T abs = Abs(v).raw;
const bool is_sign = detail::SignBit(v.raw);
if (!(abs < MantissaEnd<T>())) { // Huge or NaN
// Check if too large to cast or NaN
if (!(abs <= static_cast<T>(LimitsMax<TI>()))) {
return Vec1<TI>(is_sign ? LimitsMin<TI>() : LimitsMax<TI>());
}
return Vec1<int32_t>(static_cast<TI>(v.raw));
}
const T bias = v.raw < T(0.0) ? T(-0.5) : T(0.5);
const TI rounded = static_cast<TI>(v.raw + bias);
if (rounded == 0) return Vec1<int32_t>(0);
// Round to even
if ((rounded & 1) && detail::Abs(static_cast<T>(rounded) - v.raw) == T(0.5)) {
return Vec1<TI>(rounded - (is_sign ? -1 : 1));
}
return Vec1<TI>(rounded);
}
template <typename T>
HWY_API Vec1<T> Trunc(const Vec1<T> v) {
using TI = MakeSigned<T>;
if (!(Abs(v).raw <= MantissaEnd<T>())) { // Huge or NaN
return v;
}
const TI truncated = static_cast<TI>(v.raw);
if (truncated == 0) return CopySignToAbs(Vec1<T>(0), v);
return Vec1<T>(static_cast<T>(truncated));
}
template <typename Float, typename Bits, int kMantissaBits, int kExponentBits,
class V>
V Ceiling(const V v) {
const Bits kExponentMask = (1ull << kExponentBits) - 1;
const Bits kMantissaMask = (1ull << kMantissaBits) - 1;
const Bits kBias = kExponentMask / 2;
Float f = v.raw;
const bool positive = f > Float(0.0);
Bits bits;
CopySameSize(&v, &bits);
const int exponent =
static_cast<int>(((bits >> kMantissaBits) & kExponentMask) - kBias);
// Already an integer.
if (exponent >= kMantissaBits) return v;
// |v| <= 1 => 0 or 1.
if (exponent < 0) return positive ? V(1) : V(-0.0);
const Bits mantissa_mask = kMantissaMask >> exponent;
// Already an integer
if ((bits & mantissa_mask) == 0) return v;
// Clear fractional bits and round up
if (positive) bits += (kMantissaMask + 1) >> exponent;
bits &= ~mantissa_mask;
CopySameSize(&bits, &f);
return V(f);
}
template <typename Float, typename Bits, int kMantissaBits, int kExponentBits,
class V>
V Floor(const V v) {
const Bits kExponentMask = (1ull << kExponentBits) - 1;
const Bits kMantissaMask = (1ull << kMantissaBits) - 1;
const Bits kBias = kExponentMask / 2;
Float f = v.raw;
const bool negative = f < Float(0.0);
Bits bits;
CopySameSize(&v, &bits);
const int exponent =
static_cast<int>(((bits >> kMantissaBits) & kExponentMask) - kBias);
// Already an integer.
if (exponent >= kMantissaBits) return v;
// |v| <= 1 => -1 or 0.
if (exponent < 0) return V(negative ? Float(-1.0) : Float(0.0));
const Bits mantissa_mask = kMantissaMask >> exponent;
// Already an integer
if ((bits & mantissa_mask) == 0) return v;
// Clear fractional bits and round down
if (negative) bits += (kMantissaMask + 1) >> exponent;
bits &= ~mantissa_mask;
CopySameSize(&bits, &f);
return V(f);
}
// Toward +infinity, aka ceiling
HWY_API Vec1<float> Ceil(const Vec1<float> v) {
return Ceiling<float, uint32_t, 23, 8>(v);
}
HWY_API Vec1<double> Ceil(const Vec1<double> v) {
return Ceiling<double, uint64_t, 52, 11>(v);
}
// Toward -infinity, aka floor
HWY_API Vec1<float> Floor(const Vec1<float> v) {
return Floor<float, uint32_t, 23, 8>(v);
}
HWY_API Vec1<double> Floor(const Vec1<double> v) {
return Floor<double, uint64_t, 52, 11>(v);
}
// ================================================== COMPARE
template <typename T>
HWY_API Mask1<T> operator==(const Vec1<T> a, const Vec1<T> b) {
return Mask1<T>::FromBool(a.raw == b.raw);
}
template <typename T>
HWY_API Mask1<T> operator!=(const Vec1<T> a, const Vec1<T> b) {
return Mask1<T>::FromBool(a.raw != b.raw);
}
template <typename T>
HWY_API Mask1<T> TestBit(const Vec1<T> v, const Vec1<T> bit) {
static_assert(!hwy::IsFloat<T>(), "Only integer vectors supported");
return (v & bit) == bit;
}
template <typename T>
HWY_API Mask1<T> operator<(const Vec1<T> a, const Vec1<T> b) {
return Mask1<T>::FromBool(a.raw < b.raw);
}
template <typename T>
HWY_API Mask1<T> operator>(const Vec1<T> a, const Vec1<T> b) {
return Mask1<T>::FromBool(a.raw > b.raw);
}
template <typename T>
HWY_API Mask1<T> operator<=(const Vec1<T> a, const Vec1<T> b) {
return Mask1<T>::FromBool(a.raw <= b.raw);
}
template <typename T>
HWY_API Mask1<T> operator>=(const Vec1<T> a, const Vec1<T> b) {
return Mask1<T>::FromBool(a.raw >= b.raw);
}
// ------------------------------ Floating-point classification (==)
template <typename T>
HWY_API Mask1<T> IsNaN(const Vec1<T> v) {
// std::isnan returns false for 0x7F..FF in clang AVX3 builds, so DIY.
MakeUnsigned<T> bits;
CopySameSize(&v, &bits);
bits += bits;
bits >>= 1; // clear sign bit
// NaN if all exponent bits are set and the mantissa is not zero.
return Mask1<T>::FromBool(bits > ExponentMask<T>());
}
HWY_API Mask1<float> IsInf(const Vec1<float> v) {
const Sisd<float> d;
const RebindToUnsigned<decltype(d)> du;
const Vec1<uint32_t> vu = BitCast(du, v);
// 'Shift left' to clear the sign bit, check for exponent=max and mantissa=0.
return RebindMask(d, (vu + vu) == Set(du, 0xFF000000u));
}
HWY_API Mask1<double> IsInf(const Vec1<double> v) {
const Sisd<double> d;
const RebindToUnsigned<decltype(d)> du;
const Vec1<uint64_t> vu = BitCast(du, v);
// 'Shift left' to clear the sign bit, check for exponent=max and mantissa=0.
return RebindMask(d, (vu + vu) == Set(du, 0xFFE0000000000000ull));
}
HWY_API Mask1<float> IsFinite(const Vec1<float> v) {
const Vec1<uint32_t> vu = BitCast(Sisd<uint32_t>(), v);
// Shift left to clear the sign bit, check whether exponent != max value.
return Mask1<float>::FromBool((vu.raw << 1) < 0xFF000000u);
}
HWY_API Mask1<double> IsFinite(const Vec1<double> v) {
const Vec1<uint64_t> vu = BitCast(Sisd<uint64_t>(), v);
// Shift left to clear the sign bit, check whether exponent != max value.
return Mask1<double>::FromBool((vu.raw << 1) < 0xFFE0000000000000ull);
}
// ================================================== MEMORY
// ------------------------------ Load
template <typename T>
HWY_API Vec1<T> Load(Sisd<T> /* tag */, const T* HWY_RESTRICT aligned) {
T t;
CopySameSize(aligned, &t);
return Vec1<T>(t);
}
template <typename T>
HWY_API Vec1<T> MaskedLoad(Mask1<T> m, Sisd<T> d,
const T* HWY_RESTRICT aligned) {
return IfThenElseZero(m, Load(d, aligned));
}
template <typename T>
HWY_API Vec1<T> LoadU(Sisd<T> d, const T* HWY_RESTRICT p) {
return Load(d, p);
}
// In some use cases, "load single lane" is sufficient; otherwise avoid this.
template <typename T>
HWY_API Vec1<T> LoadDup128(Sisd<T> d, const T* HWY_RESTRICT aligned) {
return Load(d, aligned);
}
// ------------------------------ Store
template <typename T>
HWY_API void Store(const Vec1<T> v, Sisd<T> /* tag */,
T* HWY_RESTRICT aligned) {
CopySameSize(&v.raw, aligned);
}
template <typename T>
HWY_API void StoreU(const Vec1<T> v, Sisd<T> d, T* HWY_RESTRICT p) {
return Store(v, d, p);
}
template <typename T>
HWY_API void BlendedStore(const Vec1<T> v, Mask1<T> m, Sisd<T> d,
T* HWY_RESTRICT p) {
if (!m.bits) return;
StoreU(v, d, p);
}
// ------------------------------ LoadInterleaved2/3/4
// Per-target flag to prevent generic_ops-inl.h from defining StoreInterleaved2.
#ifdef HWY_NATIVE_LOAD_STORE_INTERLEAVED
#undef HWY_NATIVE_LOAD_STORE_INTERLEAVED
#else
#define HWY_NATIVE_LOAD_STORE_INTERLEAVED
#endif
template <typename T>
HWY_API void LoadInterleaved2(Sisd<T> d, const T* HWY_RESTRICT unaligned,
Vec1<T>& v0, Vec1<T>& v1) {
v0 = LoadU(d, unaligned + 0);
v1 = LoadU(d, unaligned + 1);
}
template <typename T>
HWY_API void LoadInterleaved3(Sisd<T> d, const T* HWY_RESTRICT unaligned,
Vec1<T>& v0, Vec1<T>& v1, Vec1<T>& v2) {
v0 = LoadU(d, unaligned + 0);
v1 = LoadU(d, unaligned + 1);
v2 = LoadU(d, unaligned + 2);
}
template <typename T>
HWY_API void LoadInterleaved4(Sisd<T> d, const T* HWY_RESTRICT unaligned,
Vec1<T>& v0, Vec1<T>& v1, Vec1<T>& v2,
Vec1<T>& v3) {
v0 = LoadU(d, unaligned + 0);
v1 = LoadU(d, unaligned + 1);
v2 = LoadU(d, unaligned + 2);
v3 = LoadU(d, unaligned + 3);
}
// ------------------------------ StoreInterleaved2/3/4
template <typename T>
HWY_API void StoreInterleaved2(const Vec1<T> v0, const Vec1<T> v1, Sisd<T> d,
T* HWY_RESTRICT unaligned) {
StoreU(v0, d, unaligned + 0);
StoreU(v1, d, unaligned + 1);
}
template <typename T>
HWY_API void StoreInterleaved3(const Vec1<T> v0, const Vec1<T> v1,
const Vec1<T> v2, Sisd<T> d,
T* HWY_RESTRICT unaligned) {
StoreU(v0, d, unaligned + 0);
StoreU(v1, d, unaligned + 1);
StoreU(v2, d, unaligned + 2);
}
template <typename T>
HWY_API void StoreInterleaved4(const Vec1<T> v0, const Vec1<T> v1,
const Vec1<T> v2, const Vec1<T> v3, Sisd<T> d,
T* HWY_RESTRICT unaligned) {
StoreU(v0, d, unaligned + 0);
StoreU(v1, d, unaligned + 1);
StoreU(v2, d, unaligned + 2);
StoreU(v3, d, unaligned + 3);
}
// ------------------------------ Stream
template <typename T>
HWY_API void Stream(const Vec1<T> v, Sisd<T> d, T* HWY_RESTRICT aligned) {
return Store(v, d, aligned);
}
// ------------------------------ Scatter
template <typename T, typename Offset>
HWY_API void ScatterOffset(Vec1<T> v, Sisd<T> d, T* base,
const Vec1<Offset> offset) {
static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
uint8_t* const base8 = reinterpret_cast<uint8_t*>(base) + offset.raw;
return Store(v, d, reinterpret_cast<T*>(base8));
}
template <typename T, typename Index>
HWY_API void ScatterIndex(Vec1<T> v, Sisd<T> d, T* HWY_RESTRICT base,
const Vec1<Index> index) {
static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
return Store(v, d, base + index.raw);
}
// ------------------------------ Gather
template <typename T, typename Offset>
HWY_API Vec1<T> GatherOffset(Sisd<T> d, const T* base,
const Vec1<Offset> offset) {
static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
const intptr_t addr =
reinterpret_cast<intptr_t>(base) + static_cast<intptr_t>(offset.raw);
return Load(d, reinterpret_cast<const T*>(addr));
}
template <typename T, typename Index>
HWY_API Vec1<T> GatherIndex(Sisd<T> d, const T* HWY_RESTRICT base,
const Vec1<Index> index) {
static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
return Load(d, base + index.raw);
}
// ================================================== CONVERT
// ConvertTo and DemoteTo with floating-point input and integer output truncate
// (rounding toward zero).
template <typename FromT, typename ToT>
HWY_API Vec1<ToT> PromoteTo(Sisd<ToT> /* tag */, Vec1<FromT> from) {
static_assert(sizeof(ToT) > sizeof(FromT), "Not promoting");
// For bits Y > X, floatX->floatY and intX->intY are always representable.
return Vec1<ToT>(static_cast<ToT>(from.raw));
}
// MSVC 19.10 cannot deduce the argument type if HWY_IF_FLOAT(FromT) is here,
// so we overload for FromT=double and ToT={float,int32_t}.
HWY_API Vec1<float> DemoteTo(Sisd<float> /* tag */, Vec1<double> from) {
// Prevent ubsan errors when converting float to narrower integer/float
if (isinf(from.raw) ||
fabs(from.raw) > static_cast<double>(HighestValue<float>())) {
return Vec1<float>(detail::SignBit(from.raw) ? LowestValue<float>()
: HighestValue<float>());
}
return Vec1<float>(static_cast<float>(from.raw));
}
HWY_API Vec1<int32_t> DemoteTo(Sisd<int32_t> /* tag */, Vec1<double> from) {
// Prevent ubsan errors when converting int32_t to narrower integer/int32_t
if (isinf(from.raw) ||
fabs(from.raw) > static_cast<double>(HighestValue<int32_t>())) {
return Vec1<int32_t>(detail::SignBit(from.raw) ? LowestValue<int32_t>()
: HighestValue<int32_t>());
}
return Vec1<int32_t>(static_cast<int32_t>(from.raw));
}
template <typename FromT, typename ToT>
HWY_API Vec1<ToT> DemoteTo(Sisd<ToT> /* tag */, Vec1<FromT> from) {
static_assert(!IsFloat<FromT>(), "FromT=double are handled above");
static_assert(sizeof(ToT) < sizeof(FromT), "Not demoting");
// Int to int: choose closest value in ToT to `from` (avoids UB)
from.raw = HWY_MIN(HWY_MAX(LimitsMin<ToT>(), from.raw), LimitsMax<ToT>());
return Vec1<ToT>(static_cast<ToT>(from.raw));
}
HWY_API Vec1<float> PromoteTo(Sisd<float> /* tag */, const Vec1<float16_t> v) {
uint16_t bits16;
CopySameSize(&v.raw, &bits16);
const uint32_t sign = static_cast<uint32_t>(bits16 >> 15);
const uint32_t biased_exp = (bits16 >> 10) & 0x1F;
const uint32_t mantissa = bits16 & 0x3FF;
// Subnormal or zero
if (biased_exp == 0) {
const float subnormal =
(1.0f / 16384) * (static_cast<float>(mantissa) * (1.0f / 1024));
return Vec1<float>(sign ? -subnormal : subnormal);
}
// Normalized: convert the representation directly (faster than ldexp/tables).
const uint32_t biased_exp32 = biased_exp + (127 - 15);
const uint32_t mantissa32 = mantissa << (23 - 10);
const uint32_t bits32 = (sign << 31) | (biased_exp32 << 23) | mantissa32;
float out;
CopySameSize(&bits32, &out);
return Vec1<float>(out);
}
HWY_API Vec1<float> PromoteTo(Sisd<float> d, const Vec1<bfloat16_t> v) {
return Set(d, F32FromBF16(v.raw));
}
HWY_API Vec1<float16_t> DemoteTo(Sisd<float16_t> /* tag */,
const Vec1<float> v) {
uint32_t bits32;
CopySameSize(&v.raw, &bits32);
const uint32_t sign = bits32 >> 31;
const uint32_t biased_exp32 = (bits32 >> 23) & 0xFF;
const uint32_t mantissa32 = bits32 & 0x7FFFFF;
const int32_t exp = HWY_MIN(static_cast<int32_t>(biased_exp32) - 127, 15);
// Tiny or zero => zero.
Vec1<float16_t> out;
if (exp < -24) {
const uint16_t zero = 0;
CopySameSize(&zero, &out.raw);
return out;
}
uint32_t biased_exp16, mantissa16;
// exp = [-24, -15] => subnormal
if (exp < -14) {
biased_exp16 = 0;
const uint32_t sub_exp = static_cast<uint32_t>(-14 - exp);
HWY_DASSERT(1 <= sub_exp && sub_exp < 11);
mantissa16 = static_cast<uint32_t>((1u << (10 - sub_exp)) +
(mantissa32 >> (13 + sub_exp)));
} else {
// exp = [-14, 15]
biased_exp16 = static_cast<uint32_t>(exp + 15);
HWY_DASSERT(1 <= biased_exp16 && biased_exp16 < 31);
mantissa16 = mantissa32 >> 13;
}
HWY_DASSERT(mantissa16 < 1024);
const uint32_t bits16 = (sign << 15) | (biased_exp16 << 10) | mantissa16;
HWY_DASSERT(bits16 < 0x10000);
const uint16_t narrowed = static_cast<uint16_t>(bits16); // big-endian safe
CopySameSize(&narrowed, &out.raw);
return out;
}
HWY_API Vec1<bfloat16_t> DemoteTo(Sisd<bfloat16_t> d, const Vec1<float> v) {
return Set(d, BF16FromF32(v.raw));
}
template <typename FromT, typename ToT, HWY_IF_FLOAT(FromT)>
HWY_API Vec1<ToT> ConvertTo(Sisd<ToT> /* tag */, Vec1<FromT> from) {
static_assert(sizeof(ToT) == sizeof(FromT), "Should have same size");
// float## -> int##: return closest representable value. We cannot exactly
// represent LimitsMax<ToT> in FromT, so use double.
const double f = static_cast<double>(from.raw);
if (isinf(from.raw) || fabs(f) > static_cast<double>(LimitsMax<ToT>())) {
return Vec1<ToT>(detail::SignBit(from.raw) ? LimitsMin<ToT>()
: LimitsMax<ToT>());
}
return Vec1<ToT>(static_cast<ToT>(from.raw));
}
template <typename FromT, typename ToT, HWY_IF_NOT_FLOAT(FromT)>
HWY_API Vec1<ToT> ConvertTo(Sisd<ToT> /* tag */, Vec1<FromT> from) {
static_assert(sizeof(ToT) == sizeof(FromT), "Should have same size");
// int## -> float##: no check needed
return Vec1<ToT>(static_cast<ToT>(from.raw));
}
HWY_API Vec1<uint8_t> U8FromU32(const Vec1<uint32_t> v) {
return DemoteTo(Sisd<uint8_t>(), v);
}
// ------------------------------ Truncations
HWY_API Vec1<uint8_t> TruncateTo(Sisd<uint8_t> /* tag */,
const Vec1<uint64_t> v) {
return Vec1<uint8_t>{static_cast<uint8_t>(v.raw & 0xFF)};
}
HWY_API Vec1<uint16_t> TruncateTo(Sisd<uint16_t> /* tag */,
const Vec1<uint64_t> v) {
return Vec1<uint16_t>{static_cast<uint16_t>(v.raw & 0xFFFF)};
}
HWY_API Vec1<uint32_t> TruncateTo(Sisd<uint32_t> /* tag */,
const Vec1<uint64_t> v) {
return Vec1<uint32_t>{static_cast<uint32_t>(v.raw & 0xFFFFFFFFu)};
}
HWY_API Vec1<uint8_t> TruncateTo(Sisd<uint8_t> /* tag */,
const Vec1<uint32_t> v) {
return Vec1<uint8_t>{static_cast<uint8_t>(v.raw & 0xFF)};
}
HWY_API Vec1<uint16_t> TruncateTo(Sisd<uint16_t> /* tag */,
const Vec1<uint32_t> v) {
return Vec1<uint16_t>{static_cast<uint16_t>(v.raw & 0xFFFF)};
}
HWY_API Vec1<uint8_t> TruncateTo(Sisd<uint8_t> /* tag */,
const Vec1<uint16_t> v) {
return Vec1<uint8_t>{static_cast<uint8_t>(v.raw & 0xFF)};
}
// ================================================== COMBINE
// UpperHalf, ZeroExtendVector, Combine, Concat* are unsupported.
template <typename T>
HWY_API Vec1<T> LowerHalf(Vec1<T> v) {
return v;
}
template <typename T>
HWY_API Vec1<T> LowerHalf(Sisd<T> /* tag */, Vec1<T> v) {
return v;
}
// ================================================== SWIZZLE
template <typename T>
HWY_API T GetLane(const Vec1<T> v) {
return v.raw;
}
template <typename T>
HWY_API T ExtractLane(const Vec1<T> v, size_t i) {
HWY_DASSERT(i == 0);
(void)i;
return v.raw;
}
template <typename T>
HWY_API Vec1<T> InsertLane(Vec1<T> v, size_t i, T t) {
HWY_DASSERT(i == 0);
(void)i;
v.raw = t;
return v;
}
template <typename T>
HWY_API Vec1<T> DupEven(Vec1<T> v) {
return v;
}
// DupOdd is unsupported.
template <typename T>
HWY_API Vec1<T> OddEven(Vec1<T> /* odd */, Vec1<T> even) {
return even;
}
template <typename T>
HWY_API Vec1<T> OddEvenBlocks(Vec1<T> /* odd */, Vec1<T> even) {
return even;
}
// ------------------------------ SwapAdjacentBlocks
template <typename T>
HWY_API Vec1<T> SwapAdjacentBlocks(Vec1<T> v) {
return v;
}
// ------------------------------ TableLookupLanes
// Returned by SetTableIndices for use by TableLookupLanes.
template <typename T>
struct Indices1 {
MakeSigned<T> raw;
};
template <typename T, typename TI>
HWY_API Indices1<T> IndicesFromVec(Sisd<T>, Vec1<TI> vec) {
static_assert(sizeof(T) == sizeof(TI), "Index size must match lane size");
HWY_DASSERT(vec.raw == 0);
return Indices1<T>{vec.raw};
}
template <typename T, typename TI>
HWY_API Indices1<T> SetTableIndices(Sisd<T> d, const TI* idx) {
return IndicesFromVec(d, LoadU(Sisd<TI>(), idx));
}
template <typename T>
HWY_API Vec1<T> TableLookupLanes(const Vec1<T> v, const Indices1<T> /* idx */) {
return v;
}
// ------------------------------ ReverseBlocks
// Single block: no change
template <typename T>
HWY_API Vec1<T> ReverseBlocks(Sisd<T> /* tag */, const Vec1<T> v) {
return v;
}
// ------------------------------ Reverse
template <typename T>
HWY_API Vec1<T> Reverse(Sisd<T> /* tag */, const Vec1<T> v) {
return v;
}
// Must not be called:
template <typename T>
HWY_API Vec1<T> Reverse2(Sisd<T> /* tag */, const Vec1<T> v) {
return v;
}
template <typename T>
HWY_API Vec1<T> Reverse4(Sisd<T> /* tag */, const Vec1<T> v) {
return v;
}
template <typename T>
HWY_API Vec1<T> Reverse8(Sisd<T> /* tag */, const Vec1<T> v) {
return v;
}
// ================================================== BLOCKWISE
// Shift*Bytes, CombineShiftRightBytes, Interleave*, Shuffle* are unsupported.
// ------------------------------ Broadcast/splat any lane
template <int kLane, typename T>
HWY_API Vec1<T> Broadcast(const Vec1<T> v) {
static_assert(kLane == 0, "Scalar only has one lane");
return v;
}
// ------------------------------ TableLookupBytes, TableLookupBytesOr0
template <typename T, typename TI>
HWY_API Vec1<TI> TableLookupBytes(const Vec1<T> in, const Vec1<TI> indices) {
uint8_t in_bytes[sizeof(T)];
uint8_t idx_bytes[sizeof(T)];
uint8_t out_bytes[sizeof(T)];
CopyBytes<sizeof(T)>(&in, &in_bytes); // copy to bytes
CopyBytes<sizeof(T)>(&indices, &idx_bytes);
for (size_t i = 0; i < sizeof(T); ++i) {
out_bytes[i] = in_bytes[idx_bytes[i]];
}
TI out;
CopyBytes<sizeof(TI)>(&out_bytes, &out);
return Vec1<TI>{out};
}
template <typename T, typename TI>
HWY_API Vec1<TI> TableLookupBytesOr0(const Vec1<T> in, const Vec1<TI> indices) {
uint8_t in_bytes[sizeof(T)];
uint8_t idx_bytes[sizeof(T)];
uint8_t out_bytes[sizeof(T)];
CopyBytes<sizeof(T)>(&in, &in_bytes); // copy to bytes
CopyBytes<sizeof(T)>(&indices, &idx_bytes);
for (size_t i = 0; i < sizeof(T); ++i) {
out_bytes[i] = idx_bytes[i] & 0x80 ? 0 : in_bytes[idx_bytes[i]];
}
TI out;
CopyBytes<sizeof(TI)>(&out_bytes, &out);
return Vec1<TI>{out};
}
// ------------------------------ ZipLower
HWY_API Vec1<uint16_t> ZipLower(const Vec1<uint8_t> a, const Vec1<uint8_t> b) {
return Vec1<uint16_t>(static_cast<uint16_t>((uint32_t(b.raw) << 8) + a.raw));
}
HWY_API Vec1<uint32_t> ZipLower(const Vec1<uint16_t> a,
const Vec1<uint16_t> b) {
return Vec1<uint32_t>((uint32_t(b.raw) << 16) + a.raw);
}
HWY_API Vec1<uint64_t> ZipLower(const Vec1<uint32_t> a,
const Vec1<uint32_t> b) {
return Vec1<uint64_t>((uint64_t(b.raw) << 32) + a.raw);
}
HWY_API Vec1<int16_t> ZipLower(const Vec1<int8_t> a, const Vec1<int8_t> b) {
return Vec1<int16_t>(static_cast<int16_t>((int32_t(b.raw) << 8) + a.raw));
}
HWY_API Vec1<int32_t> ZipLower(const Vec1<int16_t> a, const Vec1<int16_t> b) {
return Vec1<int32_t>((int32_t(b.raw) << 16) + a.raw);
}
HWY_API Vec1<int64_t> ZipLower(const Vec1<int32_t> a, const Vec1<int32_t> b) {
return Vec1<int64_t>((int64_t(b.raw) << 32) + a.raw);
}
template <typename T, typename TW = MakeWide<T>, class VW = Vec1<TW>>
HWY_API VW ZipLower(Sisd<TW> /* tag */, Vec1<T> a, Vec1<T> b) {
return VW(static_cast<TW>((TW{b.raw} << (sizeof(T) * 8)) + a.raw));
}
// ================================================== MASK
template <typename T>
HWY_API bool AllFalse(Sisd<T> /* tag */, const Mask1<T> mask) {
return mask.bits == 0;
}
template <typename T>
HWY_API bool AllTrue(Sisd<T> /* tag */, const Mask1<T> mask) {
return mask.bits != 0;
}
// `p` points to at least 8 readable bytes, not all of which need be valid.
template <typename T>
HWY_API Mask1<T> LoadMaskBits(Sisd<T> /* tag */,
const uint8_t* HWY_RESTRICT bits) {
return Mask1<T>::FromBool((bits[0] & 1) != 0);
}
// `p` points to at least 8 writable bytes.
template <typename T>
HWY_API size_t StoreMaskBits(Sisd<T> d, const Mask1<T> mask, uint8_t* bits) {
*bits = AllTrue(d, mask);
return 1;
}
template <typename T>
HWY_API size_t CountTrue(Sisd<T> /* tag */, const Mask1<T> mask) {
return mask.bits == 0 ? 0 : 1;
}
template <typename T>
HWY_API intptr_t FindFirstTrue(Sisd<T> /* tag */, const Mask1<T> mask) {
return mask.bits == 0 ? -1 : 0;
}
template <typename T>
HWY_API size_t FindKnownFirstTrue(Sisd<T> /* tag */, const Mask1<T> /* m */) {
return 0; // There is only one lane and we know it is true.
}
// ------------------------------ Compress, CompressBits
template <typename T>
struct CompressIsPartition {
enum { value = 1 };
};
template <typename T>
HWY_API Vec1<T> Compress(Vec1<T> v, const Mask1<T> /* mask */) {
// A single lane is already partitioned by definition.
return v;
}
template <typename T>
HWY_API Vec1<T> CompressNot(Vec1<T> v, const Mask1<T> /* mask */) {
// A single lane is already partitioned by definition.
return v;
}
// ------------------------------ CompressStore
template <typename T>
HWY_API size_t CompressStore(Vec1<T> v, const Mask1<T> mask, Sisd<T> d,
T* HWY_RESTRICT unaligned) {
StoreU(Compress(v, mask), d, unaligned);
return CountTrue(d, mask);
}
// ------------------------------ CompressBlendedStore
template <typename T>
HWY_API size_t CompressBlendedStore(Vec1<T> v, const Mask1<T> mask, Sisd<T> d,
T* HWY_RESTRICT unaligned) {
if (!mask.bits) return 0;
StoreU(v, d, unaligned);
return 1;
}
// ------------------------------ CompressBits
template <typename T>
HWY_API Vec1<T> CompressBits(Vec1<T> v, const uint8_t* HWY_RESTRICT /*bits*/) {
return v;
}
// ------------------------------ CompressBitsStore
template <typename T>
HWY_API size_t CompressBitsStore(Vec1<T> v, const uint8_t* HWY_RESTRICT bits,
Sisd<T> d, T* HWY_RESTRICT unaligned) {
const Mask1<T> mask = LoadMaskBits(d, bits);
StoreU(Compress(v, mask), d, unaligned);
return CountTrue(d, mask);
}
// ------------------------------ ReorderWidenMulAccumulate (MulAdd, ZipLower)
HWY_API Vec1<float> ReorderWidenMulAccumulate(Sisd<float> /* tag */,
Vec1<bfloat16_t> a,
Vec1<bfloat16_t> b,
const Vec1<float> sum0,
Vec1<float>& /* sum1 */) {
return MulAdd(Vec1<float>(F32FromBF16(a.raw)),
Vec1<float>(F32FromBF16(b.raw)), sum0);
}
HWY_API Vec1<int32_t> ReorderWidenMulAccumulate(Sisd<int32_t> /* tag */,
Vec1<int16_t> a,
Vec1<int16_t> b,
const Vec1<int32_t> sum0,
Vec1<int32_t>& /* sum1 */) {
return Vec1<int32_t>(a.raw * b.raw + sum0.raw);
}
// ================================================== REDUCTIONS
// Sum of all lanes, i.e. the only one.
template <typename T>
HWY_API Vec1<T> SumOfLanes(Sisd<T> /* tag */, const Vec1<T> v) {
return v;
}
template <typename T>
HWY_API Vec1<T> MinOfLanes(Sisd<T> /* tag */, const Vec1<T> v) {
return v;
}
template <typename T>
HWY_API Vec1<T> MaxOfLanes(Sisd<T> /* tag */, const Vec1<T> v) {
return v;
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace hwy
HWY_AFTER_NAMESPACE();
|