summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_processing/gain_controller2_unittest.cc
blob: 88a93b0cdbf1ad9c03e1eb41d469c7ec4e9f10da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
/*
 *  Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_processing/gain_controller2.h"

#include <algorithm>
#include <cmath>
#include <memory>
#include <numeric>
#include <tuple>

#include "api/array_view.h"
#include "modules/audio_processing/agc2/agc2_testing_common.h"
#include "modules/audio_processing/audio_buffer.h"
#include "modules/audio_processing/test/audio_buffer_tools.h"
#include "modules/audio_processing/test/bitexactness_tools.h"
#include "rtc_base/checks.h"
#include "test/gtest.h"

namespace webrtc {
namespace test {
namespace {

using Agc2Config = AudioProcessing::Config::GainController2;

// Sets all the samples in `ab` to `value`.
void SetAudioBufferSamples(float value, AudioBuffer& ab) {
  for (size_t k = 0; k < ab.num_channels(); ++k) {
    std::fill(ab.channels()[k], ab.channels()[k] + ab.num_frames(), value);
  }
}

float RunAgc2WithConstantInput(GainController2& agc2,
                               float input_level,
                               int num_frames,
                               int sample_rate_hz) {
  const int num_samples = rtc::CheckedDivExact(sample_rate_hz, 100);
  AudioBuffer ab(sample_rate_hz, 1, sample_rate_hz, 1, sample_rate_hz, 1);

  // Give time to the level estimator to converge.
  for (int i = 0; i < num_frames + 1; ++i) {
    SetAudioBufferSamples(input_level, ab);
    agc2.Process(/*speech_probability=*/absl::nullopt, &ab);
  }

  // Return the last sample from the last processed frame.
  return ab.channels()[0][num_samples - 1];
}

std::unique_ptr<GainController2> CreateAgc2FixedDigitalMode(
    float fixed_gain_db,
    int sample_rate_hz) {
  Agc2Config config;
  config.adaptive_digital.enabled = false;
  config.fixed_digital.gain_db = fixed_gain_db;
  EXPECT_TRUE(GainController2::Validate(config));
  return std::make_unique<GainController2>(config, sample_rate_hz,
                                           /*num_channels=*/1,
                                           /*use_internal_vad=*/true);
}

}  // namespace

TEST(GainController2, CheckDefaultConfig) {
  Agc2Config config;
  EXPECT_TRUE(GainController2::Validate(config));
}

TEST(GainController2, CheckFixedDigitalConfig) {
  Agc2Config config;
  // Attenuation is not allowed.
  config.fixed_digital.gain_db = -5.0f;
  EXPECT_FALSE(GainController2::Validate(config));
  // No gain is allowed.
  config.fixed_digital.gain_db = 0.0f;
  EXPECT_TRUE(GainController2::Validate(config));
  // Positive gain is allowed.
  config.fixed_digital.gain_db = 15.0f;
  EXPECT_TRUE(GainController2::Validate(config));
}

TEST(GainController2, CheckHeadroomDb) {
  Agc2Config config;
  config.adaptive_digital.headroom_db = -1.0f;
  EXPECT_FALSE(GainController2::Validate(config));
  config.adaptive_digital.headroom_db = 0.0f;
  EXPECT_TRUE(GainController2::Validate(config));
  config.adaptive_digital.headroom_db = 5.0f;
  EXPECT_TRUE(GainController2::Validate(config));
}

TEST(GainController2, CheckMaxGainDb) {
  Agc2Config config;
  config.adaptive_digital.max_gain_db = -1.0f;
  EXPECT_FALSE(GainController2::Validate(config));
  config.adaptive_digital.max_gain_db = 0.0f;
  EXPECT_FALSE(GainController2::Validate(config));
  config.adaptive_digital.max_gain_db = 5.0f;
  EXPECT_TRUE(GainController2::Validate(config));
}

TEST(GainController2, CheckInitialGainDb) {
  Agc2Config config;
  config.adaptive_digital.initial_gain_db = -1.0f;
  EXPECT_FALSE(GainController2::Validate(config));
  config.adaptive_digital.initial_gain_db = 0.0f;
  EXPECT_TRUE(GainController2::Validate(config));
  config.adaptive_digital.initial_gain_db = 5.0f;
  EXPECT_TRUE(GainController2::Validate(config));
}

TEST(GainController2, CheckAdaptiveDigitalMaxGainChangeSpeedConfig) {
  Agc2Config config;
  config.adaptive_digital.max_gain_change_db_per_second = -1.0f;
  EXPECT_FALSE(GainController2::Validate(config));
  config.adaptive_digital.max_gain_change_db_per_second = 0.0f;
  EXPECT_FALSE(GainController2::Validate(config));
  config.adaptive_digital.max_gain_change_db_per_second = 5.0f;
  EXPECT_TRUE(GainController2::Validate(config));
}

TEST(GainController2, CheckAdaptiveDigitalMaxOutputNoiseLevelConfig) {
  Agc2Config config;
  config.adaptive_digital.max_output_noise_level_dbfs = 5.0f;
  EXPECT_FALSE(GainController2::Validate(config));
  config.adaptive_digital.max_output_noise_level_dbfs = 0.0f;
  EXPECT_TRUE(GainController2::Validate(config));
  config.adaptive_digital.max_output_noise_level_dbfs = -5.0f;
  EXPECT_TRUE(GainController2::Validate(config));
}

// Checks that the default config is applied.
TEST(GainController2, ApplyDefaultConfig) {
  auto gain_controller2 = std::make_unique<GainController2>(
      Agc2Config{}, /*sample_rate_hz=*/16000, /*num_channels=*/2,
      /*use_internal_vad=*/true);
  EXPECT_TRUE(gain_controller2.get());
}

TEST(GainController2FixedDigital, GainShouldChangeOnSetGain) {
  constexpr float kInputLevel = 1000.0f;
  constexpr size_t kNumFrames = 5;
  constexpr size_t kSampleRateHz = 8000;
  constexpr float kGain0Db = 0.0f;
  constexpr float kGain20Db = 20.0f;

  auto agc2_fixed = CreateAgc2FixedDigitalMode(kGain0Db, kSampleRateHz);

  // Signal level is unchanged with 0 db gain.
  EXPECT_FLOAT_EQ(RunAgc2WithConstantInput(*agc2_fixed, kInputLevel, kNumFrames,
                                           kSampleRateHz),
                  kInputLevel);

  // +20 db should increase signal by a factor of 10.
  agc2_fixed->SetFixedGainDb(kGain20Db);
  EXPECT_FLOAT_EQ(RunAgc2WithConstantInput(*agc2_fixed, kInputLevel, kNumFrames,
                                           kSampleRateHz),
                  kInputLevel * 10);
}

TEST(GainController2FixedDigital, ChangeFixedGainShouldBeFastAndTimeInvariant) {
  // Number of frames required for the fixed gain controller to adapt on the
  // input signal when the gain changes.
  constexpr size_t kNumFrames = 5;

  constexpr float kInputLevel = 1000.0f;
  constexpr size_t kSampleRateHz = 8000;
  constexpr float kGainDbLow = 0.0f;
  constexpr float kGainDbHigh = 25.0f;
  static_assert(kGainDbLow < kGainDbHigh, "");

  auto agc2_fixed = CreateAgc2FixedDigitalMode(kGainDbLow, kSampleRateHz);

  // Start with a lower gain.
  const float output_level_pre = RunAgc2WithConstantInput(
      *agc2_fixed, kInputLevel, kNumFrames, kSampleRateHz);

  // Increase gain.
  agc2_fixed->SetFixedGainDb(kGainDbHigh);
  static_cast<void>(RunAgc2WithConstantInput(*agc2_fixed, kInputLevel,
                                             kNumFrames, kSampleRateHz));

  // Back to the lower gain.
  agc2_fixed->SetFixedGainDb(kGainDbLow);
  const float output_level_post = RunAgc2WithConstantInput(
      *agc2_fixed, kInputLevel, kNumFrames, kSampleRateHz);

  EXPECT_EQ(output_level_pre, output_level_post);
}

class FixedDigitalTest
    : public ::testing::TestWithParam<std::tuple<float, float, int, bool>> {
 protected:
  float gain_db_min() const { return std::get<0>(GetParam()); }
  float gain_db_max() const { return std::get<1>(GetParam()); }
  int sample_rate_hz() const { return std::get<2>(GetParam()); }
  bool saturation_expected() const { return std::get<3>(GetParam()); }
};

TEST_P(FixedDigitalTest, CheckSaturationBehaviorWithLimiter) {
  for (const float gain_db : test::LinSpace(gain_db_min(), gain_db_max(), 10)) {
    SCOPED_TRACE(gain_db);
    auto agc2_fixed = CreateAgc2FixedDigitalMode(gain_db, sample_rate_hz());
    const float processed_sample =
        RunAgc2WithConstantInput(*agc2_fixed, /*input_level=*/32767.0f,
                                 /*num_frames=*/5, sample_rate_hz());
    if (saturation_expected()) {
      EXPECT_FLOAT_EQ(processed_sample, 32767.0f);
    } else {
      EXPECT_LT(processed_sample, 32767.0f);
    }
  }
}

static_assert(test::kLimiterMaxInputLevelDbFs < 10, "");
INSTANTIATE_TEST_SUITE_P(
    GainController2,
    FixedDigitalTest,
    ::testing::Values(
        // When gain < `test::kLimiterMaxInputLevelDbFs`, the limiter will not
        // saturate the signal (at any sample rate).
        std::make_tuple(0.1f,
                        test::kLimiterMaxInputLevelDbFs - 0.01f,
                        8000,
                        false),
        std::make_tuple(0.1,
                        test::kLimiterMaxInputLevelDbFs - 0.01f,
                        48000,
                        false),
        // When gain > `test::kLimiterMaxInputLevelDbFs`, the limiter will
        // saturate the signal (at any sample rate).
        std::make_tuple(test::kLimiterMaxInputLevelDbFs + 0.01f,
                        10.0f,
                        8000,
                        true),
        std::make_tuple(test::kLimiterMaxInputLevelDbFs + 0.01f,
                        10.0f,
                        48000,
                        true)));

// Processes a test audio file and checks that the gain applied at the end of
// the recording is close to the expected value.
TEST(GainController2, CheckFinalGainWithAdaptiveDigitalController) {
  constexpr int kSampleRateHz = AudioProcessing::kSampleRate48kHz;
  constexpr int kStereo = 2;

  // Create AGC2 enabling only the adaptive digital controller.
  Agc2Config config;
  config.fixed_digital.gain_db = 0.0f;
  config.adaptive_digital.enabled = true;
  GainController2 agc2(config, kSampleRateHz, kStereo,
                       /*use_internal_vad=*/true);

  test::InputAudioFile input_file(
      test::GetApmCaptureTestVectorFileName(kSampleRateHz),
      /*loop_at_end=*/true);
  const StreamConfig stream_config(kSampleRateHz, kStereo);

  // Init buffers.
  constexpr int kFrameDurationMs = 10;
  std::vector<float> frame(kStereo * stream_config.num_frames());
  AudioBuffer audio_buffer(kSampleRateHz, kStereo, kSampleRateHz, kStereo,
                           kSampleRateHz, kStereo);

  // Simulate.
  constexpr float kGainDb = -6.0f;
  const float gain = std::pow(10.0f, kGainDb / 20.0f);
  constexpr int kDurationMs = 10000;
  constexpr int kNumFramesToProcess = kDurationMs / kFrameDurationMs;
  for (int i = 0; i < kNumFramesToProcess; ++i) {
    ReadFloatSamplesFromStereoFile(stream_config.num_frames(),
                                   stream_config.num_channels(), &input_file,
                                   frame);
    // Apply a fixed gain to the input audio.
    for (float& x : frame) {
      x *= gain;
    }
    test::CopyVectorToAudioBuffer(stream_config, frame, &audio_buffer);
    agc2.Process(/*speech_probability=*/absl::nullopt, &audio_buffer);
  }

  // Estimate the applied gain by processing a probing frame.
  SetAudioBufferSamples(/*value=*/1.0f, audio_buffer);
  agc2.Process(/*speech_probability=*/absl::nullopt, &audio_buffer);
  const float applied_gain_db =
      20.0f * std::log10(audio_buffer.channels_const()[0][0]);

  constexpr float kExpectedGainDb = 5.6f;
  constexpr float kToleranceDb = 0.3f;
  EXPECT_NEAR(applied_gain_db, kExpectedGainDb, kToleranceDb);
}

// Processes a test audio file and checks that the injected speech probability
// is ignored when the internal VAD is used.
TEST(GainController2,
     CheckInjectedVadProbabilityNotUsedWithAdaptiveDigitalController) {
  constexpr int kSampleRateHz = AudioProcessing::kSampleRate48kHz;
  constexpr int kStereo = 2;

  // Create AGC2 enabling only the adaptive digital controller.
  Agc2Config config;
  config.fixed_digital.gain_db = 0.0f;
  config.adaptive_digital.enabled = true;
  GainController2 agc2(config, kSampleRateHz, kStereo,
                       /*use_internal_vad=*/true);
  GainController2 agc2_reference(config, kSampleRateHz, kStereo,
                                 /*use_internal_vad=*/true);

  test::InputAudioFile input_file(
      test::GetApmCaptureTestVectorFileName(kSampleRateHz),
      /*loop_at_end=*/true);
  const StreamConfig stream_config(kSampleRateHz, kStereo);

  // Init buffers.
  constexpr int kFrameDurationMs = 10;
  std::vector<float> frame(kStereo * stream_config.num_frames());
  AudioBuffer audio_buffer(kSampleRateHz, kStereo, kSampleRateHz, kStereo,
                           kSampleRateHz, kStereo);
  AudioBuffer audio_buffer_reference(kSampleRateHz, kStereo, kSampleRateHz,
                                     kStereo, kSampleRateHz, kStereo);

  // Simulate.
  constexpr float kGainDb = -6.0f;
  const float gain = std::pow(10.0f, kGainDb / 20.0f);
  constexpr int kDurationMs = 10000;
  constexpr int kNumFramesToProcess = kDurationMs / kFrameDurationMs;
  constexpr float kSpeechProbabilities[] = {1.0f, 0.3f};
  constexpr float kEpsilon = 0.0001f;
  bool all_samples_zero = true;
  for (int i = 0, j = 0; i < kNumFramesToProcess; ++i, j = 1 - j) {
    ReadFloatSamplesFromStereoFile(stream_config.num_frames(),
                                   stream_config.num_channels(), &input_file,
                                   frame);
    // Apply a fixed gain to the input audio.
    for (float& x : frame) {
      x *= gain;
    }
    test::CopyVectorToAudioBuffer(stream_config, frame, &audio_buffer);
    agc2.Process(kSpeechProbabilities[j], &audio_buffer);
    test::CopyVectorToAudioBuffer(stream_config, frame,
                                  &audio_buffer_reference);
    agc2_reference.Process(absl::nullopt, &audio_buffer_reference);

    // Check the output buffers.
    for (int i = 0; i < kStereo; ++i) {
      for (int j = 0; j < static_cast<int>(audio_buffer.num_frames()); ++j) {
        all_samples_zero &=
            fabs(audio_buffer.channels_const()[i][j]) < kEpsilon;
        EXPECT_FLOAT_EQ(audio_buffer.channels_const()[i][j],
                        audio_buffer_reference.channels_const()[i][j]);
      }
    }
  }
  EXPECT_FALSE(all_samples_zero);
}

// Processes a test audio file and checks that the injected speech probability
// is not ignored when the internal VAD is not used.
TEST(GainController2,
     CheckInjectedVadProbabilityUsedWithAdaptiveDigitalController) {
  constexpr int kSampleRateHz = AudioProcessing::kSampleRate48kHz;
  constexpr int kStereo = 2;

  // Create AGC2 enabling only the adaptive digital controller.
  Agc2Config config;
  config.fixed_digital.gain_db = 0.0f;
  config.adaptive_digital.enabled = true;
  GainController2 agc2(config, kSampleRateHz, kStereo,
                       /*use_internal_vad=*/false);
  GainController2 agc2_reference(config, kSampleRateHz, kStereo,
                                 /*use_internal_vad=*/true);

  test::InputAudioFile input_file(
      test::GetApmCaptureTestVectorFileName(kSampleRateHz),
      /*loop_at_end=*/true);
  const StreamConfig stream_config(kSampleRateHz, kStereo);

  // Init buffers.
  constexpr int kFrameDurationMs = 10;
  std::vector<float> frame(kStereo * stream_config.num_frames());
  AudioBuffer audio_buffer(kSampleRateHz, kStereo, kSampleRateHz, kStereo,
                           kSampleRateHz, kStereo);
  AudioBuffer audio_buffer_reference(kSampleRateHz, kStereo, kSampleRateHz,
                                     kStereo, kSampleRateHz, kStereo);
  // Simulate.
  constexpr float kGainDb = -6.0f;
  const float gain = std::pow(10.0f, kGainDb / 20.0f);
  constexpr int kDurationMs = 10000;
  constexpr int kNumFramesToProcess = kDurationMs / kFrameDurationMs;
  constexpr float kSpeechProbabilities[] = {1.0f, 0.3f};
  constexpr float kEpsilon = 0.0001f;
  bool all_samples_zero = true;
  bool all_samples_equal = true;
  for (int i = 0, j = 0; i < kNumFramesToProcess; ++i, j = 1 - j) {
    ReadFloatSamplesFromStereoFile(stream_config.num_frames(),
                                   stream_config.num_channels(), &input_file,
                                   frame);
    // Apply a fixed gain to the input audio.
    for (float& x : frame) {
      x *= gain;
    }
    test::CopyVectorToAudioBuffer(stream_config, frame, &audio_buffer);
    agc2.Process(kSpeechProbabilities[j], &audio_buffer);
    test::CopyVectorToAudioBuffer(stream_config, frame,
                                  &audio_buffer_reference);
    agc2_reference.Process(absl::nullopt, &audio_buffer_reference);
    // Check the output buffers.
    for (int i = 0; i < kStereo; ++i) {
      for (int j = 0; j < static_cast<int>(audio_buffer.num_frames()); ++j) {
        all_samples_zero &=
            fabs(audio_buffer.channels_const()[i][j]) < kEpsilon;
        all_samples_equal &=
            fabs(audio_buffer.channels_const()[i][j] -
                 audio_buffer_reference.channels_const()[i][j]) < kEpsilon;
      }
    }
  }
  EXPECT_FALSE(all_samples_zero);
  EXPECT_FALSE(all_samples_equal);
}

// Processes a test audio file and checks that the output is equal when
// an injected speech probability from `VoiceActivityDetectorWrapper` and
// the speech probability computed by the internal VAD are the same.
TEST(GainController2,
     CheckEqualResultFromInjectedVadProbabilityWithAdaptiveDigitalController) {
  constexpr int kSampleRateHz = AudioProcessing::kSampleRate48kHz;
  constexpr int kStereo = 2;

  // Create AGC2 enabling only the adaptive digital controller.
  Agc2Config config;
  config.fixed_digital.gain_db = 0.0f;
  config.adaptive_digital.enabled = true;
  GainController2 agc2(config, kSampleRateHz, kStereo,
                       /*use_internal_vad=*/false);
  GainController2 agc2_reference(config, kSampleRateHz, kStereo,
                                 /*use_internal_vad=*/true);
  VoiceActivityDetectorWrapper vad(config.adaptive_digital.vad_reset_period_ms,
                                   GetAvailableCpuFeatures(), kSampleRateHz);
  test::InputAudioFile input_file(
      test::GetApmCaptureTestVectorFileName(kSampleRateHz),
      /*loop_at_end=*/true);
  const StreamConfig stream_config(kSampleRateHz, kStereo);

  // Init buffers.
  constexpr int kFrameDurationMs = 10;
  std::vector<float> frame(kStereo * stream_config.num_frames());
  AudioBuffer audio_buffer(kSampleRateHz, kStereo, kSampleRateHz, kStereo,
                           kSampleRateHz, kStereo);
  AudioBuffer audio_buffer_reference(kSampleRateHz, kStereo, kSampleRateHz,
                                     kStereo, kSampleRateHz, kStereo);

  // Simulate.
  constexpr float kGainDb = -6.0f;
  const float gain = std::pow(10.0f, kGainDb / 20.0f);
  constexpr int kDurationMs = 10000;
  constexpr int kNumFramesToProcess = kDurationMs / kFrameDurationMs;
  for (int i = 0; i < kNumFramesToProcess; ++i) {
    ReadFloatSamplesFromStereoFile(stream_config.num_frames(),
                                   stream_config.num_channels(), &input_file,
                                   frame);
    // Apply a fixed gain to the input audio.
    for (float& x : frame) {
      x *= gain;
    }
    test::CopyVectorToAudioBuffer(stream_config, frame,
                                  &audio_buffer_reference);
    agc2_reference.Process(absl::nullopt, &audio_buffer_reference);
    test::CopyVectorToAudioBuffer(stream_config, frame, &audio_buffer);
    agc2.Process(vad.Analyze(AudioFrameView<const float>(
                     audio_buffer.channels(), audio_buffer.num_channels(),
                     audio_buffer.num_frames())),
                 &audio_buffer);
    // Check the output buffer.
    for (int i = 0; i < kStereo; ++i) {
      for (int j = 0; j < static_cast<int>(audio_buffer.num_frames()); ++j) {
        EXPECT_FLOAT_EQ(audio_buffer.channels_const()[i][j],
                        audio_buffer_reference.channels_const()[i][j]);
      }
    }
  }
}

}  // namespace test
}  // namespace webrtc