1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/ns/noise_estimator.h"
#include <algorithm>
#include "modules/audio_processing/ns/fast_math.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
// Log(i).
constexpr std::array<float, 129> log_table = {
0.f, 0.f, 0.f, 0.f, 0.f, 1.609438f, 1.791759f,
1.945910f, 2.079442f, 2.197225f, 2.302585f, 2.397895f, 2.484907f, 2.564949f,
2.639057f, 2.708050f, 2.772589f, 2.833213f, 2.890372f, 2.944439f, 2.995732f,
3.044522f, 3.091043f, 3.135494f, 3.178054f, 3.218876f, 3.258097f, 3.295837f,
3.332205f, 3.367296f, 3.401197f, 3.433987f, 3.465736f, 3.496507f, 3.526361f,
3.555348f, 3.583519f, 3.610918f, 3.637586f, 3.663562f, 3.688879f, 3.713572f,
3.737669f, 3.761200f, 3.784190f, 3.806663f, 3.828641f, 3.850147f, 3.871201f,
3.891820f, 3.912023f, 3.931826f, 3.951244f, 3.970292f, 3.988984f, 4.007333f,
4.025352f, 4.043051f, 4.060443f, 4.077538f, 4.094345f, 4.110874f, 4.127134f,
4.143135f, 4.158883f, 4.174387f, 4.189655f, 4.204693f, 4.219508f, 4.234107f,
4.248495f, 4.262680f, 4.276666f, 4.290460f, 4.304065f, 4.317488f, 4.330733f,
4.343805f, 4.356709f, 4.369448f, 4.382027f, 4.394449f, 4.406719f, 4.418841f,
4.430817f, 4.442651f, 4.454347f, 4.465908f, 4.477337f, 4.488636f, 4.499810f,
4.510859f, 4.521789f, 4.532599f, 4.543295f, 4.553877f, 4.564348f, 4.574711f,
4.584968f, 4.595119f, 4.605170f, 4.615121f, 4.624973f, 4.634729f, 4.644391f,
4.653960f, 4.663439f, 4.672829f, 4.682131f, 4.691348f, 4.700480f, 4.709530f,
4.718499f, 4.727388f, 4.736198f, 4.744932f, 4.753591f, 4.762174f, 4.770685f,
4.779124f, 4.787492f, 4.795791f, 4.804021f, 4.812184f, 4.820282f, 4.828314f,
4.836282f, 4.844187f, 4.852030f};
} // namespace
NoiseEstimator::NoiseEstimator(const SuppressionParams& suppression_params)
: suppression_params_(suppression_params) {
noise_spectrum_.fill(0.f);
prev_noise_spectrum_.fill(0.f);
conservative_noise_spectrum_.fill(0.f);
parametric_noise_spectrum_.fill(0.f);
}
void NoiseEstimator::PrepareAnalysis() {
std::copy(noise_spectrum_.begin(), noise_spectrum_.end(),
prev_noise_spectrum_.begin());
}
void NoiseEstimator::PreUpdate(
int32_t num_analyzed_frames,
rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum,
float signal_spectral_sum) {
quantile_noise_estimator_.Estimate(signal_spectrum, noise_spectrum_);
if (num_analyzed_frames < kShortStartupPhaseBlocks) {
// Compute simplified noise model during startup.
const size_t kStartBand = 5;
float sum_log_i_log_magn = 0.f;
float sum_log_i = 0.f;
float sum_log_i_square = 0.f;
float sum_log_magn = 0.f;
for (size_t i = kStartBand; i < kFftSizeBy2Plus1; ++i) {
float log_i = log_table[i];
sum_log_i += log_i;
sum_log_i_square += log_i * log_i;
float log_signal = LogApproximation(signal_spectrum[i]);
sum_log_magn += log_signal;
sum_log_i_log_magn += log_i * log_signal;
}
// Estimate the parameter for the level of the white noise.
constexpr float kOneByFftSizeBy2Plus1 = 1.f / kFftSizeBy2Plus1;
white_noise_level_ += signal_spectral_sum * kOneByFftSizeBy2Plus1 *
suppression_params_.over_subtraction_factor;
// Estimate pink noise parameters.
float denom = sum_log_i_square * (kFftSizeBy2Plus1 - kStartBand) -
sum_log_i * sum_log_i;
float num =
sum_log_i_square * sum_log_magn - sum_log_i * sum_log_i_log_magn;
RTC_DCHECK_NE(denom, 0.f);
float pink_noise_adjustment = num / denom;
// Constrain the estimated spectrum to be positive.
pink_noise_adjustment = std::max(pink_noise_adjustment, 0.f);
pink_noise_numerator_ += pink_noise_adjustment;
num = sum_log_i * sum_log_magn -
(kFftSizeBy2Plus1 - kStartBand) * sum_log_i_log_magn;
RTC_DCHECK_NE(denom, 0.f);
pink_noise_adjustment = num / denom;
// Constrain the pink noise power to be in the interval [0, 1].
pink_noise_adjustment = std::max(std::min(pink_noise_adjustment, 1.f), 0.f);
pink_noise_exp_ += pink_noise_adjustment;
const float one_by_num_analyzed_frames_plus_1 =
1.f / (num_analyzed_frames + 1.f);
// Calculate the frequency-independent parts of parametric noise estimate.
float parametric_exp = 0.f;
float parametric_num = 0.f;
if (pink_noise_exp_ > 0.f) {
// Use pink noise estimate.
parametric_num = ExpApproximation(pink_noise_numerator_ *
one_by_num_analyzed_frames_plus_1);
parametric_num *= num_analyzed_frames + 1.f;
parametric_exp = pink_noise_exp_ * one_by_num_analyzed_frames_plus_1;
}
constexpr float kOneByShortStartupPhaseBlocks =
1.f / kShortStartupPhaseBlocks;
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
// Estimate the background noise using the white and pink noise
// parameters.
if (pink_noise_exp_ == 0.f) {
// Use white noise estimate.
parametric_noise_spectrum_[i] = white_noise_level_;
} else {
// Use pink noise estimate.
float use_band = i < kStartBand ? kStartBand : i;
float denom = PowApproximation(use_band, parametric_exp);
RTC_DCHECK_NE(denom, 0.f);
parametric_noise_spectrum_[i] = parametric_num / denom;
}
}
// Weight quantile noise with modeled noise.
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
noise_spectrum_[i] *= num_analyzed_frames;
float tmp = parametric_noise_spectrum_[i] *
(kShortStartupPhaseBlocks - num_analyzed_frames);
noise_spectrum_[i] += tmp * one_by_num_analyzed_frames_plus_1;
noise_spectrum_[i] *= kOneByShortStartupPhaseBlocks;
}
}
}
void NoiseEstimator::PostUpdate(
rtc::ArrayView<const float> speech_probability,
rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum) {
// Time-avg parameter for noise_spectrum update.
constexpr float kNoiseUpdate = 0.9f;
float gamma = kNoiseUpdate;
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
const float prob_speech = speech_probability[i];
const float prob_non_speech = 1.f - prob_speech;
// Temporary noise update used for speech frames if update value is less
// than previous.
float noise_update_tmp =
gamma * prev_noise_spectrum_[i] +
(1.f - gamma) * (prob_non_speech * signal_spectrum[i] +
prob_speech * prev_noise_spectrum_[i]);
// Time-constant based on speech/noise_spectrum state.
float gamma_old = gamma;
// Increase gamma for frame likely to be seech.
constexpr float kProbRange = .2f;
gamma = prob_speech > kProbRange ? .99f : kNoiseUpdate;
// Conservative noise_spectrum update.
if (prob_speech < kProbRange) {
conservative_noise_spectrum_[i] +=
0.05f * (signal_spectrum[i] - conservative_noise_spectrum_[i]);
}
// Noise_spectrum update.
if (gamma == gamma_old) {
noise_spectrum_[i] = noise_update_tmp;
} else {
noise_spectrum_[i] =
gamma * prev_noise_spectrum_[i] +
(1.f - gamma) * (prob_non_speech * signal_spectrum[i] +
prob_speech * prev_noise_spectrum_[i]);
// Allow for noise_spectrum update downwards: If noise_spectrum update
// decreases the noise_spectrum, it is safe, so allow it to happen.
noise_spectrum_[i] = std::min(noise_spectrum_[i], noise_update_tmp);
}
}
}
} // namespace webrtc
|