1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/pacing/bitrate_prober.h"
#include <algorithm>
#include "absl/memory/memory.h"
#include "api/rtc_event_log/rtc_event.h"
#include "api/rtc_event_log/rtc_event_log.h"
#include "logging/rtc_event_log/events/rtc_event_probe_cluster_created.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
// The min probe packet size is scaled with the bitrate we're probing at.
// This defines the max min probe packet size, meaning that on high bitrates
// we have a min probe packet size of 200 bytes.
constexpr DataSize kMinProbePacketSize = DataSize::Bytes(200);
constexpr TimeDelta kProbeClusterTimeout = TimeDelta::Seconds(5);
} // namespace
BitrateProberConfig::BitrateProberConfig(
const FieldTrialsView* key_value_config)
: min_probe_delta("min_probe_delta", TimeDelta::Millis(1)),
max_probe_delay("max_probe_delay", TimeDelta::Millis(10)) {
ParseFieldTrial({&min_probe_delta, &max_probe_delay},
key_value_config->Lookup("WebRTC-Bwe-ProbingBehavior"));
}
BitrateProber::~BitrateProber() {
RTC_HISTOGRAM_COUNTS_1000("WebRTC.BWE.Probing.TotalProbeClustersRequested",
total_probe_count_);
RTC_HISTOGRAM_COUNTS_1000("WebRTC.BWE.Probing.TotalFailedProbeClusters",
total_failed_probe_count_);
}
BitrateProber::BitrateProber(const FieldTrialsView& field_trials)
: probing_state_(ProbingState::kDisabled),
next_probe_time_(Timestamp::PlusInfinity()),
total_probe_count_(0),
total_failed_probe_count_(0),
config_(&field_trials) {
SetEnabled(true);
}
void BitrateProber::SetEnabled(bool enable) {
if (enable) {
if (probing_state_ == ProbingState::kDisabled) {
probing_state_ = ProbingState::kInactive;
RTC_LOG(LS_INFO) << "Bandwidth probing enabled, set to inactive";
}
} else {
probing_state_ = ProbingState::kDisabled;
RTC_LOG(LS_INFO) << "Bandwidth probing disabled";
}
}
void BitrateProber::OnIncomingPacket(DataSize packet_size) {
// Don't initialize probing unless we have something large enough to start
// probing.
if (probing_state_ == ProbingState::kInactive && !clusters_.empty() &&
packet_size >= std::min(RecommendedMinProbeSize(), kMinProbePacketSize)) {
// Send next probe right away.
next_probe_time_ = Timestamp::MinusInfinity();
probing_state_ = ProbingState::kActive;
}
}
void BitrateProber::CreateProbeCluster(
const ProbeClusterConfig& cluster_config) {
RTC_DCHECK(probing_state_ != ProbingState::kDisabled);
total_probe_count_++;
while (!clusters_.empty() &&
cluster_config.at_time - clusters_.front().requested_at >
kProbeClusterTimeout) {
clusters_.pop();
total_failed_probe_count_++;
}
ProbeCluster cluster;
cluster.requested_at = cluster_config.at_time;
cluster.pace_info.probe_cluster_min_probes =
cluster_config.target_probe_count;
cluster.pace_info.probe_cluster_min_bytes =
(cluster_config.target_data_rate * cluster_config.target_duration)
.bytes();
RTC_DCHECK_GE(cluster.pace_info.probe_cluster_min_bytes, 0);
cluster.pace_info.send_bitrate_bps = cluster_config.target_data_rate.bps();
cluster.pace_info.probe_cluster_id = cluster_config.id;
clusters_.push(cluster);
RTC_LOG(LS_INFO) << "Probe cluster (bitrate:min bytes:min packets): ("
<< cluster.pace_info.send_bitrate_bps << ":"
<< cluster.pace_info.probe_cluster_min_bytes << ":"
<< cluster.pace_info.probe_cluster_min_probes << ")";
// If we are already probing, continue to do so. Otherwise set it to
// kInactive and wait for OnIncomingPacket to start the probing.
if (probing_state_ != ProbingState::kActive)
probing_state_ = ProbingState::kInactive;
}
Timestamp BitrateProber::NextProbeTime(Timestamp now) const {
// Probing is not active or probing is already complete.
if (probing_state_ != ProbingState::kActive || clusters_.empty()) {
return Timestamp::PlusInfinity();
}
return next_probe_time_;
}
absl::optional<PacedPacketInfo> BitrateProber::CurrentCluster(Timestamp now) {
if (clusters_.empty() || probing_state_ != ProbingState::kActive) {
return absl::nullopt;
}
if (next_probe_time_.IsFinite() &&
now - next_probe_time_ > config_.max_probe_delay.Get()) {
RTC_DLOG(LS_WARNING) << "Probe delay too high"
" (next_ms:"
<< next_probe_time_.ms() << ", now_ms: " << now.ms()
<< "), discarding probe cluster.";
clusters_.pop();
if (clusters_.empty()) {
probing_state_ = ProbingState::kSuspended;
return absl::nullopt;
}
}
PacedPacketInfo info = clusters_.front().pace_info;
info.probe_cluster_bytes_sent = clusters_.front().sent_bytes;
return info;
}
// Probe size is recommended based on the probe bitrate required. We choose
// a minimum of twice `kMinProbeDeltaMs` interval to allow scheduling to be
// feasible.
DataSize BitrateProber::RecommendedMinProbeSize() const {
if (clusters_.empty()) {
return DataSize::Zero();
}
DataRate send_rate =
DataRate::BitsPerSec(clusters_.front().pace_info.send_bitrate_bps);
return 2 * send_rate * config_.min_probe_delta;
}
void BitrateProber::ProbeSent(Timestamp now, DataSize size) {
RTC_DCHECK(probing_state_ == ProbingState::kActive);
RTC_DCHECK(!size.IsZero());
if (!clusters_.empty()) {
ProbeCluster* cluster = &clusters_.front();
if (cluster->sent_probes == 0) {
RTC_DCHECK(cluster->started_at.IsInfinite());
cluster->started_at = now;
}
cluster->sent_bytes += size.bytes<int>();
cluster->sent_probes += 1;
next_probe_time_ = CalculateNextProbeTime(*cluster);
if (cluster->sent_bytes >= cluster->pace_info.probe_cluster_min_bytes &&
cluster->sent_probes >= cluster->pace_info.probe_cluster_min_probes) {
RTC_HISTOGRAM_COUNTS_100000("WebRTC.BWE.Probing.ProbeClusterSizeInBytes",
cluster->sent_bytes);
RTC_HISTOGRAM_COUNTS_100("WebRTC.BWE.Probing.ProbesPerCluster",
cluster->sent_probes);
RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.Probing.TimePerProbeCluster",
(now - cluster->started_at).ms());
clusters_.pop();
}
if (clusters_.empty()) {
probing_state_ = ProbingState::kSuspended;
}
}
}
Timestamp BitrateProber::CalculateNextProbeTime(
const ProbeCluster& cluster) const {
RTC_CHECK_GT(cluster.pace_info.send_bitrate_bps, 0);
RTC_CHECK(cluster.started_at.IsFinite());
// Compute the time delta from the cluster start to ensure probe bitrate stays
// close to the target bitrate. Result is in milliseconds.
DataSize sent_bytes = DataSize::Bytes(cluster.sent_bytes);
DataRate send_bitrate =
DataRate::BitsPerSec(cluster.pace_info.send_bitrate_bps);
TimeDelta delta = sent_bytes / send_bitrate;
return cluster.started_at + delta;
}
} // namespace webrtc
|