summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/video_coding/timing/timing_unittest.cc
blob: 8633c0de39a0963997bb8c7bd80498ac393ea870 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/*
 *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/video_coding/timing/timing.h"

#include "api/units/frequency.h"
#include "api/units/time_delta.h"
#include "system_wrappers/include/clock.h"
#include "test/gtest.h"
#include "test/scoped_key_value_config.h"

namespace webrtc {
namespace {

constexpr Frequency k25Fps = Frequency::Hertz(25);
constexpr Frequency k90kHz = Frequency::KiloHertz(90);

}  // namespace

TEST(ReceiverTimingTest, JitterDelay) {
  test::ScopedKeyValueConfig field_trials;
  SimulatedClock clock(0);
  VCMTiming timing(&clock, field_trials);
  timing.Reset();

  uint32_t timestamp = 0;
  timing.UpdateCurrentDelay(timestamp);

  timing.Reset();

  timing.IncomingTimestamp(timestamp, clock.CurrentTime());
  TimeDelta jitter_delay = TimeDelta::Millis(20);
  timing.SetJitterDelay(jitter_delay);
  timing.UpdateCurrentDelay(timestamp);
  timing.set_render_delay(TimeDelta::Zero());
  auto wait_time = timing.MaxWaitingTime(
      timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
      /*too_many_frames_queued=*/false);
  // First update initializes the render time. Since we have no decode delay
  // we get wait_time = renderTime - now - renderDelay = jitter.
  EXPECT_EQ(jitter_delay, wait_time);

  jitter_delay += TimeDelta::Millis(VCMTiming::kDelayMaxChangeMsPerS + 10);
  timestamp += 90000;
  clock.AdvanceTimeMilliseconds(1000);
  timing.SetJitterDelay(jitter_delay);
  timing.UpdateCurrentDelay(timestamp);
  wait_time = timing.MaxWaitingTime(
      timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
      /*too_many_frames_queued=*/false);
  // Since we gradually increase the delay we only get 100 ms every second.
  EXPECT_EQ(jitter_delay - TimeDelta::Millis(10), wait_time);

  timestamp += 90000;
  clock.AdvanceTimeMilliseconds(1000);
  timing.UpdateCurrentDelay(timestamp);
  wait_time = timing.MaxWaitingTime(
      timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
      /*too_many_frames_queued=*/false);
  EXPECT_EQ(jitter_delay, wait_time);

  // Insert frames without jitter, verify that this gives the exact wait time.
  const int kNumFrames = 300;
  for (int i = 0; i < kNumFrames; i++) {
    clock.AdvanceTime(1 / k25Fps);
    timestamp += k90kHz / k25Fps;
    timing.IncomingTimestamp(timestamp, clock.CurrentTime());
  }
  timing.UpdateCurrentDelay(timestamp);
  wait_time = timing.MaxWaitingTime(
      timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
      /*too_many_frames_queued=*/false);
  EXPECT_EQ(jitter_delay, wait_time);

  // Add decode time estimates for 1 second.
  const TimeDelta kDecodeTime = TimeDelta::Millis(10);
  for (int i = 0; i < k25Fps.hertz(); i++) {
    clock.AdvanceTime(kDecodeTime);
    timing.StopDecodeTimer(kDecodeTime, clock.CurrentTime());
    timestamp += k90kHz / k25Fps;
    clock.AdvanceTime(1 / k25Fps - kDecodeTime);
    timing.IncomingTimestamp(timestamp, clock.CurrentTime());
  }
  timing.UpdateCurrentDelay(timestamp);
  wait_time = timing.MaxWaitingTime(
      timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
      /*too_many_frames_queued=*/false);
  EXPECT_EQ(jitter_delay, wait_time);

  const TimeDelta kMinTotalDelay = TimeDelta::Millis(200);
  timing.set_min_playout_delay(kMinTotalDelay);
  clock.AdvanceTimeMilliseconds(5000);
  timestamp += 5 * 90000;
  timing.UpdateCurrentDelay(timestamp);
  const TimeDelta kRenderDelay = TimeDelta::Millis(10);
  timing.set_render_delay(kRenderDelay);
  wait_time = timing.MaxWaitingTime(
      timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
      /*too_many_frames_queued=*/false);
  // We should at least have kMinTotalDelayMs - decodeTime (10) - renderTime
  // (10) to wait.
  EXPECT_EQ(kMinTotalDelay - kDecodeTime - kRenderDelay, wait_time);
  // The total video delay should be equal to the min total delay.
  EXPECT_EQ(kMinTotalDelay, timing.TargetVideoDelay());

  // Reset playout delay.
  timing.set_min_playout_delay(TimeDelta::Zero());
  clock.AdvanceTimeMilliseconds(5000);
  timestamp += 5 * 90000;
  timing.UpdateCurrentDelay(timestamp);
}

TEST(ReceiverTimingTest, TimestampWrapAround) {
  constexpr auto kStartTime = Timestamp::Millis(1337);
  test::ScopedKeyValueConfig field_trials;
  SimulatedClock clock(kStartTime);
  VCMTiming timing(&clock, field_trials);

  // Provoke a wrap-around. The fifth frame will have wrapped at 25 fps.
  constexpr uint32_t kRtpTicksPerFrame = k90kHz / k25Fps;
  uint32_t timestamp = 0xFFFFFFFFu - 3 * kRtpTicksPerFrame;
  for (int i = 0; i < 5; ++i) {
    timing.IncomingTimestamp(timestamp, clock.CurrentTime());
    clock.AdvanceTime(1 / k25Fps);
    timestamp += kRtpTicksPerFrame;
    EXPECT_EQ(kStartTime + 3 / k25Fps,
              timing.RenderTime(0xFFFFFFFFu, clock.CurrentTime()));
    // One ms later in 90 kHz.
    EXPECT_EQ(kStartTime + 3 / k25Fps + TimeDelta::Millis(1),
              timing.RenderTime(89u, clock.CurrentTime()));
  }
}

TEST(ReceiverTimingTest, UseLowLatencyRenderer) {
  test::ScopedKeyValueConfig field_trials;
  SimulatedClock clock(0);
  VCMTiming timing(&clock, field_trials);
  timing.Reset();
  // Default is false.
  EXPECT_FALSE(timing.RenderParameters().use_low_latency_rendering);
  // False if min playout delay > 0.
  timing.set_min_playout_delay(TimeDelta::Millis(10));
  timing.set_max_playout_delay(TimeDelta::Millis(20));
  EXPECT_FALSE(timing.RenderParameters().use_low_latency_rendering);
  // True if min==0, max > 0.
  timing.set_min_playout_delay(TimeDelta::Zero());
  EXPECT_TRUE(timing.RenderParameters().use_low_latency_rendering);
  // True if min==max==0.
  timing.set_max_playout_delay(TimeDelta::Zero());
  EXPECT_TRUE(timing.RenderParameters().use_low_latency_rendering);
  // True also for max playout delay==500 ms.
  timing.set_max_playout_delay(TimeDelta::Millis(500));
  EXPECT_TRUE(timing.RenderParameters().use_low_latency_rendering);
  // False if max playout delay > 500 ms.
  timing.set_max_playout_delay(TimeDelta::Millis(501));
  EXPECT_FALSE(timing.RenderParameters().use_low_latency_rendering);
}

TEST(ReceiverTimingTest, MaxWaitingTimeIsZeroForZeroRenderTime) {
  // This is the default path when the RTP playout delay header extension is set
  // to min==0 and max==0.
  constexpr int64_t kStartTimeUs = 3.15e13;  // About one year in us.
  constexpr TimeDelta kTimeDelta = 1 / Frequency::Hertz(60);
  constexpr Timestamp kZeroRenderTime = Timestamp::Zero();
  SimulatedClock clock(kStartTimeUs);
  test::ScopedKeyValueConfig field_trials;
  VCMTiming timing(&clock, field_trials);
  timing.Reset();
  timing.set_max_playout_delay(TimeDelta::Zero());
  for (int i = 0; i < 10; ++i) {
    clock.AdvanceTime(kTimeDelta);
    Timestamp now = clock.CurrentTime();
    EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
                                    /*too_many_frames_queued=*/false),
              TimeDelta::Zero());
  }
  // Another frame submitted at the same time also returns a negative max
  // waiting time.
  Timestamp now = clock.CurrentTime();
  EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
                                  /*too_many_frames_queued=*/false),
            TimeDelta::Zero());
  // MaxWaitingTime should be less than zero even if there's a burst of frames.
  EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
                                  /*too_many_frames_queued=*/false),
            TimeDelta::Zero());
  EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
                                  /*too_many_frames_queued=*/false),
            TimeDelta::Zero());
  EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
                                  /*too_many_frames_queued=*/false),
            TimeDelta::Zero());
}

TEST(ReceiverTimingTest, MaxWaitingTimeZeroDelayPacingExperiment) {
  // The minimum pacing is enabled by a field trial and active if the RTP
  // playout delay header extension is set to min==0.
  constexpr TimeDelta kMinPacing = TimeDelta::Millis(3);
  test::ScopedKeyValueConfig field_trials(
      "WebRTC-ZeroPlayoutDelay/min_pacing:3ms/");
  constexpr int64_t kStartTimeUs = 3.15e13;  // About one year in us.
  constexpr TimeDelta kTimeDelta = 1 / Frequency::Hertz(60);
  constexpr auto kZeroRenderTime = Timestamp::Zero();
  SimulatedClock clock(kStartTimeUs);
  VCMTiming timing(&clock, field_trials);
  timing.Reset();
  // MaxWaitingTime() returns zero for evenly spaced video frames.
  for (int i = 0; i < 10; ++i) {
    clock.AdvanceTime(kTimeDelta);
    Timestamp now = clock.CurrentTime();
    EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
                                    /*too_many_frames_queued=*/false),
              TimeDelta::Zero());
    timing.SetLastDecodeScheduledTimestamp(now);
  }
  // Another frame submitted at the same time is paced according to the field
  // trial setting.
  auto now = clock.CurrentTime();
  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
                                  /*too_many_frames_queued=*/false),
            kMinPacing);
  // If there's a burst of frames, the wait time is calculated based on next
  // decode time.
  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
                                  /*too_many_frames_queued=*/false),
            kMinPacing);
  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
                                  /*too_many_frames_queued=*/false),
            kMinPacing);
  // Allow a few ms to pass, this should be subtracted from the MaxWaitingTime.
  constexpr TimeDelta kTwoMs = TimeDelta::Millis(2);
  clock.AdvanceTime(kTwoMs);
  now = clock.CurrentTime();
  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
                                  /*too_many_frames_queued=*/false),
            kMinPacing - kTwoMs);
  // A frame is decoded at the current time, the wait time should be restored to
  // pacing delay.
  timing.SetLastDecodeScheduledTimestamp(now);
  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
                                  /*too_many_frames_queued=*/false),
            kMinPacing);
}

TEST(ReceiverTimingTest, DefaultMaxWaitingTimeUnaffectedByPacingExperiment) {
  // The minimum pacing is enabled by a field trial but should not have any
  // effect if render_time_ms is greater than 0;
  test::ScopedKeyValueConfig field_trials(
      "WebRTC-ZeroPlayoutDelay/min_pacing:3ms/");
  constexpr int64_t kStartTimeUs = 3.15e13;  // About one year in us.
  const TimeDelta kTimeDelta = TimeDelta::Millis(1000.0 / 60.0);
  SimulatedClock clock(kStartTimeUs);
  VCMTiming timing(&clock, field_trials);
  timing.Reset();
  clock.AdvanceTime(kTimeDelta);
  auto now = clock.CurrentTime();
  Timestamp render_time = now + TimeDelta::Millis(30);
  // Estimate the internal processing delay from the first frame.
  TimeDelta estimated_processing_delay =
      (render_time - now) -
      timing.MaxWaitingTime(render_time, now,
                            /*too_many_frames_queued=*/false);
  EXPECT_GT(estimated_processing_delay, TimeDelta::Zero());

  // Any other frame submitted at the same time should be scheduled according to
  // its render time.
  for (int i = 0; i < 5; ++i) {
    render_time += kTimeDelta;
    EXPECT_EQ(timing.MaxWaitingTime(render_time, now,
                                    /*too_many_frames_queued=*/false),
              render_time - now - estimated_processing_delay);
  }
}

TEST(ReceiverTimingTest, MaxWaitingTimeReturnsZeroIfTooManyFramesQueuedIsTrue) {
  // The minimum pacing is enabled by a field trial and active if the RTP
  // playout delay header extension is set to min==0.
  constexpr TimeDelta kMinPacing = TimeDelta::Millis(3);
  test::ScopedKeyValueConfig field_trials(
      "WebRTC-ZeroPlayoutDelay/min_pacing:3ms/");
  constexpr int64_t kStartTimeUs = 3.15e13;  // About one year in us.
  const TimeDelta kTimeDelta = TimeDelta::Millis(1000.0 / 60.0);
  constexpr auto kZeroRenderTime = Timestamp::Zero();
  SimulatedClock clock(kStartTimeUs);
  VCMTiming timing(&clock, field_trials);
  timing.Reset();
  // MaxWaitingTime() returns zero for evenly spaced video frames.
  for (int i = 0; i < 10; ++i) {
    clock.AdvanceTime(kTimeDelta);
    auto now = clock.CurrentTime();
    EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
                                    /*too_many_frames_queued=*/false),
              TimeDelta::Zero());
    timing.SetLastDecodeScheduledTimestamp(now);
  }
  // Another frame submitted at the same time is paced according to the field
  // trial setting.
  auto now_ms = clock.CurrentTime();
  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now_ms,
                                  /*too_many_frames_queued=*/false),
            kMinPacing);
  // MaxWaitingTime returns 0 even if there's a burst of frames if
  // too_many_frames_queued is set to true.
  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now_ms,
                                  /*too_many_frames_queued=*/true),
            TimeDelta::Zero());
  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now_ms,
                                  /*too_many_frames_queued=*/true),
            TimeDelta::Zero());
}

TEST(ReceiverTimingTest, UpdateCurrentDelayCapsWhenOffByMicroseconds) {
  test::ScopedKeyValueConfig field_trials;
  SimulatedClock clock(0);
  VCMTiming timing(&clock, field_trials);
  timing.Reset();

  // Set larger initial current delay.
  timing.set_min_playout_delay(TimeDelta::Millis(200));
  timing.UpdateCurrentDelay(Timestamp::Millis(900), Timestamp::Millis(1000));

  // Add a few microseconds to ensure that the delta of decode time is 0 after
  // rounding, and should reset to the target delay.
  timing.set_min_playout_delay(TimeDelta::Millis(50));
  Timestamp decode_time = Timestamp::Millis(1337);
  Timestamp render_time =
      decode_time + TimeDelta::Millis(10) + TimeDelta::Micros(37);
  timing.UpdateCurrentDelay(render_time, decode_time);
  EXPECT_EQ(timing.GetTimings().current_delay, timing.TargetVideoDelay());
}

}  // namespace webrtc