summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/rtc_base/units/unit_base.h
blob: e0a926fb8d84d9cff339381b2f82c742bc70acc6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
/*
 *  Copyright 2018 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#ifndef RTC_BASE_UNITS_UNIT_BASE_H_
#define RTC_BASE_UNITS_UNIT_BASE_H_

#include <stdint.h>

#include <algorithm>
#include <cmath>
#include <limits>
#include <type_traits>

#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"

namespace webrtc {
namespace rtc_units_impl {

// UnitBase is a base class for implementing custom value types with a specific
// unit. It provides type safety and commonly useful operations. The underlying
// storage is always an int64_t, it's up to the unit implementation to choose
// what scale it represents.
//
// It's used like:
// class MyUnit: public UnitBase<MyUnit> {...};
//
// Unit_T is the subclass representing the specific unit.
template <class Unit_T>
class UnitBase {
 public:
  UnitBase() = delete;
  static constexpr Unit_T Zero() { return Unit_T(0); }
  static constexpr Unit_T PlusInfinity() { return Unit_T(PlusInfinityVal()); }
  static constexpr Unit_T MinusInfinity() { return Unit_T(MinusInfinityVal()); }

  constexpr bool IsZero() const { return value_ == 0; }
  constexpr bool IsFinite() const { return !IsInfinite(); }
  constexpr bool IsInfinite() const {
    return value_ == PlusInfinityVal() || value_ == MinusInfinityVal();
  }
  constexpr bool IsPlusInfinity() const { return value_ == PlusInfinityVal(); }
  constexpr bool IsMinusInfinity() const {
    return value_ == MinusInfinityVal();
  }

  constexpr bool operator==(const UnitBase<Unit_T>& other) const {
    return value_ == other.value_;
  }
  constexpr bool operator!=(const UnitBase<Unit_T>& other) const {
    return value_ != other.value_;
  }
  constexpr bool operator<=(const UnitBase<Unit_T>& other) const {
    return value_ <= other.value_;
  }
  constexpr bool operator>=(const UnitBase<Unit_T>& other) const {
    return value_ >= other.value_;
  }
  constexpr bool operator>(const UnitBase<Unit_T>& other) const {
    return value_ > other.value_;
  }
  constexpr bool operator<(const UnitBase<Unit_T>& other) const {
    return value_ < other.value_;
  }
  constexpr Unit_T RoundTo(const Unit_T& resolution) const {
    RTC_DCHECK(IsFinite());
    RTC_DCHECK(resolution.IsFinite());
    RTC_DCHECK_GT(resolution.value_, 0);
    return Unit_T((value_ + resolution.value_ / 2) / resolution.value_) *
           resolution.value_;
  }
  constexpr Unit_T RoundUpTo(const Unit_T& resolution) const {
    RTC_DCHECK(IsFinite());
    RTC_DCHECK(resolution.IsFinite());
    RTC_DCHECK_GT(resolution.value_, 0);
    return Unit_T((value_ + resolution.value_ - 1) / resolution.value_) *
           resolution.value_;
  }
  constexpr Unit_T RoundDownTo(const Unit_T& resolution) const {
    RTC_DCHECK(IsFinite());
    RTC_DCHECK(resolution.IsFinite());
    RTC_DCHECK_GT(resolution.value_, 0);
    return Unit_T(value_ / resolution.value_) * resolution.value_;
  }

 protected:
  template <
      typename T,
      typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
  static constexpr Unit_T FromValue(T value) {
    if (Unit_T::one_sided)
      RTC_DCHECK_GE(value, 0);
    RTC_DCHECK_GT(value, MinusInfinityVal());
    RTC_DCHECK_LT(value, PlusInfinityVal());
    return Unit_T(rtc::dchecked_cast<int64_t>(value));
  }
  template <typename T,
            typename std::enable_if<std::is_floating_point<T>::value>::type* =
                nullptr>
  static constexpr Unit_T FromValue(T value) {
    if (value == std::numeric_limits<T>::infinity()) {
      return PlusInfinity();
    } else if (value == -std::numeric_limits<T>::infinity()) {
      return MinusInfinity();
    } else {
      RTC_DCHECK(!std::isnan(value));
      return FromValue(rtc::dchecked_cast<int64_t>(value));
    }
  }

  template <
      typename T,
      typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
  static constexpr Unit_T FromFraction(int64_t denominator, T value) {
    if (Unit_T::one_sided)
      RTC_DCHECK_GE(value, 0);
    RTC_DCHECK_GT(value, MinusInfinityVal() / denominator);
    RTC_DCHECK_LT(value, PlusInfinityVal() / denominator);
    return Unit_T(rtc::dchecked_cast<int64_t>(value * denominator));
  }
  template <typename T,
            typename std::enable_if<std::is_floating_point<T>::value>::type* =
                nullptr>
  static constexpr Unit_T FromFraction(int64_t denominator, T value) {
    return FromValue(value * denominator);
  }

  template <typename T = int64_t>
  constexpr typename std::enable_if<std::is_integral<T>::value, T>::type
  ToValue() const {
    RTC_DCHECK(IsFinite());
    return rtc::dchecked_cast<T>(value_);
  }
  template <typename T>
  constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
  ToValue() const {
    return IsPlusInfinity()
               ? std::numeric_limits<T>::infinity()
               : IsMinusInfinity() ? -std::numeric_limits<T>::infinity()
                                   : value_;
  }
  template <typename T>
  constexpr T ToValueOr(T fallback_value) const {
    return IsFinite() ? value_ : fallback_value;
  }

  template <int64_t Denominator, typename T = int64_t>
  constexpr typename std::enable_if<std::is_integral<T>::value, T>::type
  ToFraction() const {
    RTC_DCHECK(IsFinite());
    if (Unit_T::one_sided) {
      return rtc::dchecked_cast<T>(
          DivRoundPositiveToNearest(value_, Denominator));
    } else {
      return rtc::dchecked_cast<T>(DivRoundToNearest(value_, Denominator));
    }
  }
  template <int64_t Denominator, typename T>
  constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
  ToFraction() const {
    return ToValue<T>() * (1 / static_cast<T>(Denominator));
  }

  template <int64_t Denominator>
  constexpr int64_t ToFractionOr(int64_t fallback_value) const {
    return IsFinite() ? Unit_T::one_sided
                            ? DivRoundPositiveToNearest(value_, Denominator)
                            : DivRoundToNearest(value_, Denominator)
                      : fallback_value;
  }

  template <int64_t Factor, typename T = int64_t>
  constexpr typename std::enable_if<std::is_integral<T>::value, T>::type
  ToMultiple() const {
    RTC_DCHECK_GE(ToValue(), std::numeric_limits<T>::min() / Factor);
    RTC_DCHECK_LE(ToValue(), std::numeric_limits<T>::max() / Factor);
    return rtc::dchecked_cast<T>(ToValue() * Factor);
  }
  template <int64_t Factor, typename T>
  constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
  ToMultiple() const {
    return ToValue<T>() * Factor;
  }

  explicit constexpr UnitBase(int64_t value) : value_(value) {}

 private:
  template <class RelativeUnit_T>
  friend class RelativeUnit;

  static inline constexpr int64_t PlusInfinityVal() {
    return std::numeric_limits<int64_t>::max();
  }
  static inline constexpr int64_t MinusInfinityVal() {
    return std::numeric_limits<int64_t>::min();
  }

  constexpr Unit_T& AsSubClassRef() { return static_cast<Unit_T&>(*this); }
  constexpr const Unit_T& AsSubClassRef() const {
    return static_cast<const Unit_T&>(*this);
  }
  // Assumes that n >= 0 and d > 0.
  static constexpr int64_t DivRoundPositiveToNearest(int64_t n, int64_t d) {
    return (n + d / 2) / d;
  }
  // Assumes that d > 0.
  static constexpr int64_t DivRoundToNearest(int64_t n, int64_t d) {
    return (n + (n >= 0 ? d / 2 : -d / 2)) / d;
  }

  int64_t value_;
};

// Extends UnitBase to provide operations for relative units, that is, units
// that have a meaningful relation between values such that a += b is a
// sensible thing to do. For a,b <- same unit.
template <class Unit_T>
class RelativeUnit : public UnitBase<Unit_T> {
 public:
  constexpr Unit_T Clamped(Unit_T min_value, Unit_T max_value) const {
    return std::max(min_value,
                    std::min(UnitBase<Unit_T>::AsSubClassRef(), max_value));
  }
  constexpr void Clamp(Unit_T min_value, Unit_T max_value) {
    *this = Clamped(min_value, max_value);
  }
  constexpr Unit_T operator+(const Unit_T other) const {
    if (this->IsPlusInfinity() || other.IsPlusInfinity()) {
      RTC_DCHECK(!this->IsMinusInfinity());
      RTC_DCHECK(!other.IsMinusInfinity());
      return this->PlusInfinity();
    } else if (this->IsMinusInfinity() || other.IsMinusInfinity()) {
      RTC_DCHECK(!this->IsPlusInfinity());
      RTC_DCHECK(!other.IsPlusInfinity());
      return this->MinusInfinity();
    }
    return UnitBase<Unit_T>::FromValue(this->ToValue() + other.ToValue());
  }
  constexpr Unit_T operator-(const Unit_T other) const {
    if (this->IsPlusInfinity() || other.IsMinusInfinity()) {
      RTC_DCHECK(!this->IsMinusInfinity());
      RTC_DCHECK(!other.IsPlusInfinity());
      return this->PlusInfinity();
    } else if (this->IsMinusInfinity() || other.IsPlusInfinity()) {
      RTC_DCHECK(!this->IsPlusInfinity());
      RTC_DCHECK(!other.IsMinusInfinity());
      return this->MinusInfinity();
    }
    return UnitBase<Unit_T>::FromValue(this->ToValue() - other.ToValue());
  }
  constexpr Unit_T& operator+=(const Unit_T other) {
    *this = *this + other;
    return this->AsSubClassRef();
  }
  constexpr Unit_T& operator-=(const Unit_T other) {
    *this = *this - other;
    return this->AsSubClassRef();
  }
  constexpr double operator/(const Unit_T other) const {
    return UnitBase<Unit_T>::template ToValue<double>() /
           other.template ToValue<double>();
  }
  template <typename T,
            typename std::enable_if_t<std::is_floating_point_v<T>>* = nullptr>
  constexpr Unit_T operator/(T scalar) const {
    return UnitBase<Unit_T>::FromValue(std::llround(this->ToValue() / scalar));
  }
  template <typename T,
            typename std::enable_if_t<std::is_integral_v<T>>* = nullptr>
  constexpr Unit_T operator/(T scalar) const {
    return UnitBase<Unit_T>::FromValue(this->ToValue() / scalar);
  }
  constexpr Unit_T operator*(double scalar) const {
    return UnitBase<Unit_T>::FromValue(std::llround(this->ToValue() * scalar));
  }
  constexpr Unit_T operator*(int64_t scalar) const {
    return UnitBase<Unit_T>::FromValue(this->ToValue() * scalar);
  }
  constexpr Unit_T operator*(int32_t scalar) const {
    return UnitBase<Unit_T>::FromValue(this->ToValue() * scalar);
  }
  constexpr Unit_T operator*(size_t scalar) const {
    return UnitBase<Unit_T>::FromValue(this->ToValue() * scalar);
  }

 protected:
  using UnitBase<Unit_T>::UnitBase;
};

template <class Unit_T>
inline constexpr Unit_T operator*(double scalar, RelativeUnit<Unit_T> other) {
  return other * scalar;
}
template <class Unit_T>
inline constexpr Unit_T operator*(int64_t scalar, RelativeUnit<Unit_T> other) {
  return other * scalar;
}
template <class Unit_T>
inline constexpr Unit_T operator*(int32_t scalar, RelativeUnit<Unit_T> other) {
  return other * scalar;
}
template <class Unit_T>
inline constexpr Unit_T operator*(size_t scalar, RelativeUnit<Unit_T> other) {
  return other * scalar;
}

template <class Unit_T>
inline constexpr Unit_T operator-(RelativeUnit<Unit_T> other) {
  if (other.IsPlusInfinity())
    return UnitBase<Unit_T>::MinusInfinity();
  if (other.IsMinusInfinity())
    return UnitBase<Unit_T>::PlusInfinity();
  return -1 * other;
}

}  // namespace rtc_units_impl

}  // namespace webrtc

#endif  // RTC_BASE_UNITS_UNIT_BASE_H_