summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/sdk/android/api/org/webrtc/YuvConverter.java
blob: c855d4be41ea0237b35deb7588b3b78a9b1f22f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
/*
 *  Copyright 2015 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

package org.webrtc;

import android.graphics.Matrix;
import android.opengl.GLES20;
import android.opengl.GLException;
import androidx.annotation.Nullable;
import java.nio.ByteBuffer;
import org.webrtc.VideoFrame.I420Buffer;
import org.webrtc.VideoFrame.TextureBuffer;

/**
 * Class for converting OES textures to a YUV ByteBuffer. It can be constructed on any thread, but
 * should only be operated from a single thread with an active EGL context.
 */
public final class YuvConverter {
  private static final String TAG = "YuvConverter";

  private static final String FRAGMENT_SHADER =
      // Difference in texture coordinate corresponding to one
      // sub-pixel in the x direction.
      "uniform vec2 xUnit;\n"
      // Color conversion coefficients, including constant term
      + "uniform vec4 coeffs;\n"
      + "\n"
      + "void main() {\n"
      // Since the alpha read from the texture is always 1, this could
      // be written as a mat4 x vec4 multiply. However, that seems to
      // give a worse framerate, possibly because the additional
      // multiplies by 1.0 consume resources.
      + "  gl_FragColor.r = coeffs.a + dot(coeffs.rgb,\n"
      + "      sample(tc - 1.5 * xUnit).rgb);\n"
      + "  gl_FragColor.g = coeffs.a + dot(coeffs.rgb,\n"
      + "      sample(tc - 0.5 * xUnit).rgb);\n"
      + "  gl_FragColor.b = coeffs.a + dot(coeffs.rgb,\n"
      + "      sample(tc + 0.5 * xUnit).rgb);\n"
      + "  gl_FragColor.a = coeffs.a + dot(coeffs.rgb,\n"
      + "      sample(tc + 1.5 * xUnit).rgb);\n"
      + "}\n";

  private static class ShaderCallbacks implements GlGenericDrawer.ShaderCallbacks {
    // Y'UV444 to RGB888, see https://en.wikipedia.org/wiki/YUV#Y%E2%80%B2UV444_to_RGB888_conversion
    // We use the ITU-R BT.601 coefficients for Y, U and V.
    // The values in Wikipedia are inaccurate, the accurate values derived from the spec are:
    // Y = 0.299 * R + 0.587 * G + 0.114 * B
    // U = -0.168736 * R - 0.331264 * G + 0.5 * B + 0.5
    // V = 0.5 * R - 0.418688 * G - 0.0813124 * B + 0.5
    // To map the Y-values to range [16-235] and U- and V-values to range [16-240], the matrix has
    // been multiplied with matrix:
    // {{219 / 255, 0, 0, 16 / 255},
    // {0, 224 / 255, 0, 16 / 255},
    // {0, 0, 224 / 255, 16 / 255},
    // {0, 0, 0, 1}}
    private static final float[] yCoeffs =
        new float[] {0.256788f, 0.504129f, 0.0979059f, 0.0627451f};
    private static final float[] uCoeffs =
        new float[] {-0.148223f, -0.290993f, 0.439216f, 0.501961f};
    private static final float[] vCoeffs =
        new float[] {0.439216f, -0.367788f, -0.0714274f, 0.501961f};

    private int xUnitLoc;
    private int coeffsLoc;

    private float[] coeffs;
    private float stepSize;

    public void setPlaneY() {
      coeffs = yCoeffs;
      stepSize = 1.0f;
    }

    public void setPlaneU() {
      coeffs = uCoeffs;
      stepSize = 2.0f;
    }

    public void setPlaneV() {
      coeffs = vCoeffs;
      stepSize = 2.0f;
    }

    @Override
    public void onNewShader(GlShader shader) {
      xUnitLoc = shader.getUniformLocation("xUnit");
      coeffsLoc = shader.getUniformLocation("coeffs");
    }

    @Override
    public void onPrepareShader(GlShader shader, float[] texMatrix, int frameWidth, int frameHeight,
        int viewportWidth, int viewportHeight) {
      GLES20.glUniform4fv(coeffsLoc, /* count= */ 1, coeffs, /* offset= */ 0);
      // Matrix * (1;0;0;0) / (width / stepSize). Note that OpenGL uses column major order.
      GLES20.glUniform2f(
          xUnitLoc, stepSize * texMatrix[0] / frameWidth, stepSize * texMatrix[1] / frameWidth);
    }
  }

  private final ThreadUtils.ThreadChecker threadChecker = new ThreadUtils.ThreadChecker();
  private final GlTextureFrameBuffer i420TextureFrameBuffer =
      new GlTextureFrameBuffer(GLES20.GL_RGBA);
  private final ShaderCallbacks shaderCallbacks = new ShaderCallbacks();
  private final GlGenericDrawer drawer = new GlGenericDrawer(FRAGMENT_SHADER, shaderCallbacks);
  private final VideoFrameDrawer videoFrameDrawer;

  /**
   * This class should be constructed on a thread that has an active EGL context.
   */
  public YuvConverter() {
    this(new VideoFrameDrawer());
  }

  public YuvConverter(VideoFrameDrawer videoFrameDrawer) {
    this.videoFrameDrawer = videoFrameDrawer;
    threadChecker.detachThread();
  }

  /** Converts the texture buffer to I420. */
  @Nullable
  public I420Buffer convert(TextureBuffer inputTextureBuffer) {
    try {
      return convertInternal(inputTextureBuffer);
    } catch (GLException e) {
      Logging.w(TAG, "Failed to convert TextureBuffer", e);
    }
    return null;
  }

  private I420Buffer convertInternal(TextureBuffer inputTextureBuffer) {
    TextureBuffer preparedBuffer = (TextureBuffer) videoFrameDrawer.prepareBufferForViewportSize(
        inputTextureBuffer, inputTextureBuffer.getWidth(), inputTextureBuffer.getHeight());

    // We draw into a buffer laid out like
    //
    //    +---------+
    //    |         |
    //    |  Y      |
    //    |         |
    //    |         |
    //    +----+----+
    //    | U  | V  |
    //    |    |    |
    //    +----+----+
    //
    // In memory, we use the same stride for all of Y, U and V. The
    // U data starts at offset `height` * `stride` from the Y data,
    // and the V data starts at at offset |stride/2| from the U
    // data, with rows of U and V data alternating.
    //
    // Now, it would have made sense to allocate a pixel buffer with
    // a single byte per pixel (EGL10.EGL_COLOR_BUFFER_TYPE,
    // EGL10.EGL_LUMINANCE_BUFFER,), but that seems to be
    // unsupported by devices. So do the following hack: Allocate an
    // RGBA buffer, of width `stride`/4. To render each of these
    // large pixels, sample the texture at 4 different x coordinates
    // and store the results in the four components.
    //
    // Since the V data needs to start on a boundary of such a
    // larger pixel, it is not sufficient that `stride` is even, it
    // has to be a multiple of 8 pixels.
    final int frameWidth = preparedBuffer.getWidth();
    final int frameHeight = preparedBuffer.getHeight();
    final int stride = ((frameWidth + 7) / 8) * 8;
    final int uvHeight = (frameHeight + 1) / 2;
    // Total height of the combined memory layout.
    final int totalHeight = frameHeight + uvHeight;
    final ByteBuffer i420ByteBuffer = JniCommon.nativeAllocateByteBuffer(stride * totalHeight);
    // Viewport width is divided by four since we are squeezing in four color bytes in each RGBA
    // pixel.
    final int viewportWidth = stride / 4;

    // Produce a frame buffer starting at top-left corner, not bottom-left.
    final Matrix renderMatrix = new Matrix();
    renderMatrix.preTranslate(0.5f, 0.5f);
    renderMatrix.preScale(1f, -1f);
    renderMatrix.preTranslate(-0.5f, -0.5f);

    i420TextureFrameBuffer.setSize(viewportWidth, totalHeight);

    // Bind our framebuffer.
    GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, i420TextureFrameBuffer.getFrameBufferId());
    GlUtil.checkNoGLES2Error("glBindFramebuffer");

    // Draw Y.
    shaderCallbacks.setPlaneY();
    VideoFrameDrawer.drawTexture(drawer, preparedBuffer, renderMatrix, frameWidth, frameHeight,
        /* viewportX= */ 0, /* viewportY= */ 0, viewportWidth,
        /* viewportHeight= */ frameHeight);

    // Draw U.
    shaderCallbacks.setPlaneU();
    VideoFrameDrawer.drawTexture(drawer, preparedBuffer, renderMatrix, frameWidth, frameHeight,
        /* viewportX= */ 0, /* viewportY= */ frameHeight, viewportWidth / 2,
        /* viewportHeight= */ uvHeight);

    // Draw V.
    shaderCallbacks.setPlaneV();
    VideoFrameDrawer.drawTexture(drawer, preparedBuffer, renderMatrix, frameWidth, frameHeight,
        /* viewportX= */ viewportWidth / 2, /* viewportY= */ frameHeight, viewportWidth / 2,
        /* viewportHeight= */ uvHeight);

    GLES20.glReadPixels(0, 0, i420TextureFrameBuffer.getWidth(), i420TextureFrameBuffer.getHeight(),
        GLES20.GL_RGBA, GLES20.GL_UNSIGNED_BYTE, i420ByteBuffer);

    GlUtil.checkNoGLES2Error("YuvConverter.convert");

    // Restore normal framebuffer.
    GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, 0);

    // Prepare Y, U, and V ByteBuffer slices.
    final int yPos = 0;
    final int uPos = yPos + stride * frameHeight;
    // Rows of U and V alternate in the buffer, so V data starts after the first row of U.
    final int vPos = uPos + stride / 2;

    i420ByteBuffer.position(yPos);
    i420ByteBuffer.limit(yPos + stride * frameHeight);
    final ByteBuffer dataY = i420ByteBuffer.slice();

    i420ByteBuffer.position(uPos);
    // The last row does not have padding.
    final int uvSize = stride * (uvHeight - 1) + stride / 2;
    i420ByteBuffer.limit(uPos + uvSize);
    final ByteBuffer dataU = i420ByteBuffer.slice();

    i420ByteBuffer.position(vPos);
    i420ByteBuffer.limit(vPos + uvSize);
    final ByteBuffer dataV = i420ByteBuffer.slice();

    preparedBuffer.release();

    return JavaI420Buffer.wrap(frameWidth, frameHeight, dataY, stride, dataU, stride, dataV, stride,
        () -> { JniCommon.nativeFreeByteBuffer(i420ByteBuffer); });
  }

  public void release() {
    threadChecker.checkIsOnValidThread();
    drawer.release();
    i420TextureFrameBuffer.release();
    videoFrameDrawer.release();
    // Allow this class to be reused.
    threadChecker.detachThread();
  }
}