summaryrefslogtreecommitdiffstats
path: root/third_party/python/taskcluster_taskgraph/taskgraph/optimize/base.py
blob: 367b94e1de05aa3c153b044514ab018c52ca9564 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
"""
The objective of optimization is to remove as many tasks from the graph as
possible, as efficiently as possible, thereby delivering useful results as
quickly as possible.  For example, ideally if only a test script is modified in
a push, then the resulting graph contains only the corresponding test suite
task.

See ``taskcluster/docs/optimization.rst`` for more information.
"""

import datetime
import logging
from abc import ABCMeta, abstractmethod, abstractproperty
from collections import defaultdict

from slugid import nice as slugid

from taskgraph.graph import Graph
from taskgraph.taskgraph import TaskGraph
from taskgraph.util.parameterization import resolve_task_references, resolve_timestamps
from taskgraph.util.python_path import import_sibling_modules

logger = logging.getLogger(__name__)
registry = {}


def register_strategy(name, args=()):
    def wrap(cls):
        if name not in registry:
            registry[name] = cls(*args)
            if not hasattr(registry[name], "description"):
                registry[name].description = name
        return cls

    return wrap


def optimize_task_graph(
    target_task_graph,
    requested_tasks,
    params,
    do_not_optimize,
    decision_task_id,
    existing_tasks=None,
    strategy_override=None,
):
    """
    Perform task optimization, returning a taskgraph and a map from label to
    assigned taskId, including replacement tasks.
    """
    label_to_taskid = {}
    if not existing_tasks:
        existing_tasks = {}

    # instantiate the strategies for this optimization process
    strategies = registry.copy()
    if strategy_override:
        strategies.update(strategy_override)

    optimizations = _get_optimizations(target_task_graph, strategies)

    removed_tasks = remove_tasks(
        target_task_graph=target_task_graph,
        requested_tasks=requested_tasks,
        optimizations=optimizations,
        params=params,
        do_not_optimize=do_not_optimize,
    )

    replaced_tasks = replace_tasks(
        target_task_graph=target_task_graph,
        optimizations=optimizations,
        params=params,
        do_not_optimize=do_not_optimize,
        label_to_taskid=label_to_taskid,
        existing_tasks=existing_tasks,
        removed_tasks=removed_tasks,
    )

    return (
        get_subgraph(
            target_task_graph,
            removed_tasks,
            replaced_tasks,
            label_to_taskid,
            decision_task_id,
        ),
        label_to_taskid,
    )


def _get_optimizations(target_task_graph, strategies):
    def optimizations(label):
        task = target_task_graph.tasks[label]
        if task.optimization:
            opt_by, arg = list(task.optimization.items())[0]
            strategy = strategies[opt_by]
            if hasattr(strategy, "description"):
                opt_by += f" ({strategy.description})"
            return (opt_by, strategy, arg)
        else:
            return ("never", strategies["never"], None)

    return optimizations


def _log_optimization(verb, opt_counts, opt_reasons=None):
    if opt_reasons:
        message = "optimize: {label} {action} because of {reason}"
        for label, (action, reason) in opt_reasons.items():
            logger.debug(message.format(label=label, action=action, reason=reason))

    if opt_counts:
        logger.info(
            f"{verb.title()} "
            + ", ".join(f"{c} tasks by {b}" for b, c in sorted(opt_counts.items()))
            + " during optimization."
        )
    else:
        logger.info(f"No tasks {verb} during optimization")


def remove_tasks(
    target_task_graph, requested_tasks, params, optimizations, do_not_optimize
):
    """
    Implement the "Removing Tasks" phase, returning a set of task labels of all removed tasks.
    """
    opt_counts = defaultdict(int)
    opt_reasons = {}
    removed = set()
    dependents_of = target_task_graph.graph.reverse_links_dict()
    tasks = target_task_graph.tasks
    prune_candidates = set()

    # Traverse graph so dependents (child nodes) are guaranteed to be processed
    # first.
    for label in target_task_graph.graph.visit_preorder():
        # Dependents that can be pruned away (shouldn't cause this task to run).
        # Only dependents that either:
        #   A) Explicitly reference this task in their 'if_dependencies' list, or
        #   B) Don't have an 'if_dependencies' attribute (i.e are in 'prune_candidates'
        #      because they should be removed but have prune_deps themselves)
        # should be considered.
        prune_deps = {
            l
            for l in dependents_of[label]
            if l in prune_candidates
            if not tasks[l].if_dependencies or label in tasks[l].if_dependencies
        }

        def _keep(reason):
            """Mark a task as being kept in the graph. Also recursively removes
            any dependents from `prune_candidates`, assuming they should be
            kept because of this task.
            """
            opt_reasons[label] = ("kept", reason)

            # Removes dependents that were in 'prune_candidates' from a task
            # that ended up being kept (and therefore the dependents should
            # also be kept).
            queue = list(prune_deps)
            while queue:
                l = queue.pop()

                # If l is a prune_dep of multiple tasks it could be queued up
                # multiple times. Guard against it being already removed.
                if l not in prune_candidates:
                    continue

                # If a task doesn't set 'if_dependencies' itself (rather it was
                # added to 'prune_candidates' due to one of its depenendents),
                # then we shouldn't remove it.
                if not tasks[l].if_dependencies:
                    continue

                prune_candidates.remove(l)
                queue.extend([r for r in dependents_of[l] if r in prune_candidates])

        def _remove(reason):
            """Potentially mark a task as being removed from the graph. If the
            task has dependents that can be pruned, add this task to
            `prune_candidates` rather than removing it.
            """
            if prune_deps:
                # If there are prune_deps, unsure if we can remove this task yet.
                prune_candidates.add(label)
            else:
                opt_reasons[label] = ("removed", reason)
                opt_counts[reason] += 1
                removed.add(label)

        # if we're not allowed to optimize, that's easy..
        if label in do_not_optimize:
            _keep("do not optimize")
            continue

        # If there are remaining tasks depending on this one, do not remove.
        if any(
            l for l in dependents_of[label] if l not in removed and l not in prune_deps
        ):
            _keep("dependent tasks")
            continue

        # Some tasks in the task graph only exist because they were required
        # by a task that has just been optimized away. They can now be removed.
        if label not in requested_tasks:
            _remove("dependents optimized")
            continue

        # Call the optimization strategy.
        task = tasks[label]
        opt_by, opt, arg = optimizations(label)
        if opt.should_remove_task(task, params, arg):
            _remove(opt_by)
            continue

        # Some tasks should only run if their dependency was also run. Since we
        # haven't processed dependencies yet, we add them to a list of
        # candidate tasks for pruning.
        if task.if_dependencies:
            opt_reasons[label] = ("kept", opt_by)
            prune_candidates.add(label)
        else:
            _keep(opt_by)

    if prune_candidates:
        reason = "if-dependencies pruning"
        for label in prune_candidates:
            # There's an edge case where a triangle graph can cause a
            # dependency to stay in 'prune_candidates' when the dependent
            # remains. Do a final check to ensure we don't create any bad
            # edges.
            dependents = any(
                d
                for d in dependents_of[label]
                if d not in prune_candidates
                if d not in removed
            )
            if dependents:
                opt_reasons[label] = ("kept", "dependent tasks")
                continue
            removed.add(label)
            opt_counts[reason] += 1
            opt_reasons[label] = ("removed", reason)

    _log_optimization("removed", opt_counts, opt_reasons)
    return removed


def replace_tasks(
    target_task_graph,
    params,
    optimizations,
    do_not_optimize,
    label_to_taskid,
    removed_tasks,
    existing_tasks,
):
    """
    Implement the "Replacing Tasks" phase, returning a set of task labels of
    all replaced tasks. The replacement taskIds are added to label_to_taskid as
    a side-effect.
    """
    opt_counts = defaultdict(int)
    replaced = set()
    dependents_of = target_task_graph.graph.reverse_links_dict()
    dependencies_of = target_task_graph.graph.links_dict()

    for label in target_task_graph.graph.visit_postorder():
        # if we're not allowed to optimize, that's easy..
        if label in do_not_optimize:
            continue

        # if this task depends on un-replaced, un-removed tasks, do not replace
        if any(
            l not in replaced and l not in removed_tasks for l in dependencies_of[label]
        ):
            continue

        # if the task already exists, that's an easy replacement
        repl = existing_tasks.get(label)
        if repl:
            label_to_taskid[label] = repl
            replaced.add(label)
            opt_counts["existing_tasks"] += 1
            continue

        # call the optimization strategy
        task = target_task_graph.tasks[label]
        opt_by, opt, arg = optimizations(label)

        # compute latest deadline of dependents (if any)
        dependents = [target_task_graph.tasks[l] for l in dependents_of[label]]
        deadline = None
        if dependents:
            now = datetime.datetime.utcnow()
            deadline = max(
                resolve_timestamps(now, task.task["deadline"]) for task in dependents
            )
        repl = opt.should_replace_task(task, params, deadline, arg)
        if repl:
            if repl is True:
                # True means remove this task; get_subgraph will catch any
                # problems with removed tasks being depended on
                removed_tasks.add(label)
            else:
                label_to_taskid[label] = repl
                replaced.add(label)
            opt_counts[opt_by] += 1
            continue

    _log_optimization("replaced", opt_counts)
    return replaced


def get_subgraph(
    target_task_graph,
    removed_tasks,
    replaced_tasks,
    label_to_taskid,
    decision_task_id,
):
    """
    Return the subgraph of target_task_graph consisting only of
    non-optimized tasks and edges between them.

    To avoid losing track of taskIds for tasks optimized away, this method
    simultaneously substitutes real taskIds for task labels in the graph, and
    populates each task definition's `dependencies` key with the appropriate
    taskIds.  Task references are resolved in the process.
    """

    # check for any dependency edges from included to removed tasks
    bad_edges = [
        (l, r, n)
        for l, r, n in target_task_graph.graph.edges
        if l not in removed_tasks and r in removed_tasks
    ]
    if bad_edges:
        probs = ", ".join(
            f"{l} depends on {r} as {n} but it has been removed"
            for l, r, n in bad_edges
        )
        raise Exception("Optimization error: " + probs)

    # fill in label_to_taskid for anything not removed or replaced
    assert replaced_tasks <= set(label_to_taskid)
    for label in sorted(
        target_task_graph.graph.nodes - removed_tasks - set(label_to_taskid)
    ):
        label_to_taskid[label] = slugid()

    # resolve labels to taskIds and populate task['dependencies']
    tasks_by_taskid = {}
    named_links_dict = target_task_graph.graph.named_links_dict()
    omit = removed_tasks | replaced_tasks
    for label, task in target_task_graph.tasks.items():
        if label in omit:
            continue
        task.task_id = label_to_taskid[label]
        named_task_dependencies = {
            name: label_to_taskid[label]
            for name, label in named_links_dict.get(label, {}).items()
        }

        # Add remaining soft dependencies
        if task.soft_dependencies:
            named_task_dependencies.update(
                {
                    label: label_to_taskid[label]
                    for label in task.soft_dependencies
                    if label in label_to_taskid and label not in omit
                }
            )

        task.task = resolve_task_references(
            task.label,
            task.task,
            task_id=task.task_id,
            decision_task_id=decision_task_id,
            dependencies=named_task_dependencies,
        )
        deps = task.task.setdefault("dependencies", [])
        deps.extend(sorted(named_task_dependencies.values()))
        tasks_by_taskid[task.task_id] = task

    # resolve edges to taskIds
    edges_by_taskid = (
        (label_to_taskid.get(left), label_to_taskid.get(right), name)
        for (left, right, name) in target_task_graph.graph.edges
    )
    # ..and drop edges that are no longer entirely in the task graph
    #   (note that this omits edges to replaced tasks, but they are still in task.dependnecies)
    edges_by_taskid = {
        (left, right, name)
        for (left, right, name) in edges_by_taskid
        if left in tasks_by_taskid and right in tasks_by_taskid
    }

    return TaskGraph(tasks_by_taskid, Graph(set(tasks_by_taskid), edges_by_taskid))


@register_strategy("never")
class OptimizationStrategy:
    def should_remove_task(self, task, params, arg):
        """Determine whether to optimize this task by removing it.  Returns
        True to remove."""
        return False

    def should_replace_task(self, task, params, deadline, arg):
        """Determine whether to optimize this task by replacing it.  Returns a
        taskId to replace this task, True to replace with nothing, or False to
        keep the task."""
        return False


@register_strategy("always")
class Always(OptimizationStrategy):
    def should_remove_task(self, task, params, arg):
        return True


class CompositeStrategy(OptimizationStrategy, metaclass=ABCMeta):
    def __init__(self, *substrategies, **kwargs):
        self.substrategies = []
        missing = set()
        for sub in substrategies:
            if isinstance(sub, str):
                if sub not in registry.keys():
                    missing.add(sub)
                    continue
                sub = registry[sub]

            self.substrategies.append(sub)

        if missing:
            raise TypeError(
                "substrategies aren't registered: {}".format(
                    ",  ".join(sorted(missing))
                )
            )

        self.split_args = kwargs.pop("split_args", None)
        if not self.split_args:
            self.split_args = lambda arg, substrategies: [arg] * len(substrategies)
        if kwargs:
            raise TypeError("unexpected keyword args")

    @abstractproperty
    def description(self):
        """A textual description of the combined substrategies."""

    @abstractmethod
    def reduce(self, results):
        """Given all substrategy results as a generator, return the overall
        result."""

    def _generate_results(self, fname, *args):
        *passthru, arg = args
        for sub, arg in zip(
            self.substrategies, self.split_args(arg, self.substrategies)
        ):
            yield getattr(sub, fname)(*passthru, arg)

    def should_remove_task(self, *args):
        results = self._generate_results("should_remove_task", *args)
        return self.reduce(results)

    def should_replace_task(self, *args):
        results = self._generate_results("should_replace_task", *args)
        return self.reduce(results)


class Any(CompositeStrategy):
    """Given one or more optimization strategies, remove or replace a task if any of them
    says to.

    Replacement will use the value returned by the first strategy that says to replace.
    """

    @property
    def description(self):
        return "-or-".join([s.description for s in self.substrategies])

    @classmethod
    def reduce(cls, results):
        for rv in results:
            if rv:
                return rv
        return False


class All(CompositeStrategy):
    """Given one or more optimization strategies, remove or replace a task if all of them
    says to.

    Replacement will use the value returned by the first strategy passed in.
    Note the values used for replacement need not be the same, as long as they
    all say to replace.
    """

    @property
    def description(self):
        return "-and-".join([s.description for s in self.substrategies])

    @classmethod
    def reduce(cls, results):
        for rv in results:
            if not rv:
                return rv
        return True


class Alias(CompositeStrategy):
    """Provides an alias to an existing strategy.

    This can be useful to swap strategies in and out without needing to modify
    the task transforms.
    """

    def __init__(self, strategy):
        super().__init__(strategy)

    @property
    def description(self):
        return self.substrategies[0].description

    def reduce(self, results):
        return next(results)


class Not(CompositeStrategy):
    """Given a strategy, returns the opposite."""

    def __init__(self, strategy):
        super().__init__(strategy)

    @property
    def description(self):
        return "not-" + self.substrategies[0].description

    def reduce(self, results):
        return not next(results)


# Trigger registration in sibling modules.
import_sibling_modules()