1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
|
use std::io;
use crate::automaton::Automaton;
use crate::buffer::Buffer;
use crate::dfa::{self, DFA};
use crate::error::Result;
use crate::nfa::{self, NFA};
use crate::packed;
use crate::prefilter::{Prefilter, PrefilterState};
use crate::state_id::StateID;
use crate::Match;
/// An automaton for searching multiple strings in linear time.
///
/// The `AhoCorasick` type supports a few basic ways of constructing an
/// automaton, including
/// [`AhoCorasick::new`](struct.AhoCorasick.html#method.new)
/// and
/// [`AhoCorasick::new_auto_configured`](struct.AhoCorasick.html#method.new_auto_configured).
/// However, there are a fair number of configurable options that can be set
/// by using
/// [`AhoCorasickBuilder`](struct.AhoCorasickBuilder.html)
/// instead. Such options include, but are not limited to, how matches are
/// determined, simple case insensitivity, whether to use a DFA or not and
/// various knobs for controlling the space-vs-time trade offs taken when
/// building the automaton.
///
/// If you aren't sure where to start, try beginning with
/// [`AhoCorasick::new_auto_configured`](struct.AhoCorasick.html#method.new_auto_configured).
///
/// # Resource usage
///
/// Aho-Corasick automatons are always constructed in `O(p)` time, where `p`
/// is the combined length of all patterns being searched. With that said,
/// building an automaton can be fairly costly because of high constant
/// factors, particularly when enabling the
/// [DFA](struct.AhoCorasickBuilder.html#method.dfa)
/// option (which is disabled by default). For this reason, it's generally a
/// good idea to build an automaton once and reuse it as much as possible.
///
/// Aho-Corasick automatons can also use a fair bit of memory. To get a
/// concrete idea of how much memory is being used, try using the
/// [`AhoCorasick::heap_bytes`](struct.AhoCorasick.html#method.heap_bytes)
/// method.
///
/// # Examples
///
/// This example shows how to search for occurrences of multiple patterns
/// simultaneously in a case insensitive fashion. Each match includes the
/// pattern that matched along with the byte offsets of the match.
///
/// ```
/// use aho_corasick::AhoCorasickBuilder;
///
/// let patterns = &["apple", "maple", "snapple"];
/// let haystack = "Nobody likes maple in their apple flavored Snapple.";
///
/// let ac = AhoCorasickBuilder::new()
/// .ascii_case_insensitive(true)
/// .build(patterns);
/// let mut matches = vec![];
/// for mat in ac.find_iter(haystack) {
/// matches.push((mat.pattern(), mat.start(), mat.end()));
/// }
/// assert_eq!(matches, vec![
/// (1, 13, 18),
/// (0, 28, 33),
/// (2, 43, 50),
/// ]);
/// ```
///
/// This example shows how to replace matches with some other string:
///
/// ```
/// use aho_corasick::AhoCorasick;
///
/// let patterns = &["fox", "brown", "quick"];
/// let haystack = "The quick brown fox.";
/// let replace_with = &["sloth", "grey", "slow"];
///
/// let ac = AhoCorasick::new(patterns);
/// let result = ac.replace_all(haystack, replace_with);
/// assert_eq!(result, "The slow grey sloth.");
/// ```
#[derive(Clone, Debug)]
pub struct AhoCorasick<S: StateID = usize> {
imp: Imp<S>,
match_kind: MatchKind,
}
impl AhoCorasick {
/// Create a new Aho-Corasick automaton using the default configuration.
///
/// The default configuration optimizes for less space usage, but at the
/// expense of longer search times. To change the configuration, use
/// [`AhoCorasickBuilder`](struct.AhoCorasickBuilder.html)
/// for fine-grained control, or
/// [`AhoCorasick::new_auto_configured`](struct.AhoCorasick.html#method.new_auto_configured)
/// for automatic configuration if you aren't sure which settings to pick.
///
/// This uses the default
/// [`MatchKind::Standard`](enum.MatchKind.html#variant.Standard)
/// match semantics, which reports a match as soon as it is found. This
/// corresponds to the standard match semantics supported by textbook
/// descriptions of the Aho-Corasick algorithm.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::AhoCorasick;
///
/// let ac = AhoCorasick::new(&[
/// "foo", "bar", "baz",
/// ]);
/// assert_eq!(Some(1), ac.find("xxx bar xxx").map(|m| m.pattern()));
/// ```
pub fn new<I, P>(patterns: I) -> AhoCorasick
where
I: IntoIterator<Item = P>,
P: AsRef<[u8]>,
{
AhoCorasickBuilder::new().build(patterns)
}
/// Build an Aho-Corasick automaton with an automatically determined
/// configuration.
///
/// Specifically, this requires a slice of patterns instead of an iterator
/// since the configuration is determined by looking at the patterns before
/// constructing the automaton. The idea here is to balance space and time
/// automatically. That is, when searching a small number of patterns, this
/// will attempt to use the fastest possible configuration since the total
/// space required will be small anyway. As the number of patterns grows,
/// this will fall back to slower configurations that use less space.
///
/// If you want auto configuration but with match semantics different from
/// the default `MatchKind::Standard`, then use
/// [`AhoCorasickBuilder::auto_configure`](struct.AhoCorasickBuilder.html#method.auto_configure).
///
/// # Examples
///
/// Basic usage is just like `new`, except you must provide a slice:
///
/// ```
/// use aho_corasick::AhoCorasick;
///
/// let ac = AhoCorasick::new_auto_configured(&[
/// "foo", "bar", "baz",
/// ]);
/// assert_eq!(Some(1), ac.find("xxx bar xxx").map(|m| m.pattern()));
/// ```
pub fn new_auto_configured<B>(patterns: &[B]) -> AhoCorasick
where
B: AsRef<[u8]>,
{
AhoCorasickBuilder::new().auto_configure(patterns).build(patterns)
}
}
impl<S: StateID> AhoCorasick<S> {
/// Returns true if and only if this automaton matches the haystack at any
/// position.
///
/// `haystack` may be any type that is cheaply convertible to a `&[u8]`.
/// This includes, but is not limited to, `String`, `&str`, `Vec<u8>`, and
/// `&[u8]` itself.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::AhoCorasick;
///
/// let ac = AhoCorasick::new(&[
/// "foo", "bar", "quux", "baz",
/// ]);
/// assert!(ac.is_match("xxx bar xxx"));
/// assert!(!ac.is_match("xxx qux xxx"));
/// ```
pub fn is_match<B: AsRef<[u8]>>(&self, haystack: B) -> bool {
self.earliest_find(haystack).is_some()
}
/// Returns the location of the first detected match in `haystack`.
///
/// This method has the same behavior regardless of the
/// [`MatchKind`](enum.MatchKind.html)
/// of this automaton.
///
/// `haystack` may be any type that is cheaply convertible to a `&[u8]`.
/// This includes, but is not limited to, `String`, `&str`, `Vec<u8>`, and
/// `&[u8]` itself.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::AhoCorasick;
///
/// let ac = AhoCorasick::new(&[
/// "abc", "b",
/// ]);
/// let mat = ac.earliest_find("abcd").expect("should have match");
/// assert_eq!(1, mat.pattern());
/// assert_eq!((1, 2), (mat.start(), mat.end()));
/// ```
pub fn earliest_find<B: AsRef<[u8]>>(&self, haystack: B) -> Option<Match> {
let mut prestate = PrefilterState::new(self.max_pattern_len());
let mut start = self.imp.start_state();
self.imp.earliest_find_at(
&mut prestate,
haystack.as_ref(),
0,
&mut start,
)
}
/// Returns the location of the first match according to the match
/// semantics that this automaton was constructed with.
///
/// When using `MatchKind::Standard`, this corresponds precisely to the
/// same behavior as
/// [`earliest_find`](struct.AhoCorasick.html#method.earliest_find).
/// Otherwise, match semantics correspond to either
/// [leftmost-first](enum.MatchKind.html#variant.LeftmostFirst)
/// or
/// [leftmost-longest](enum.MatchKind.html#variant.LeftmostLongest).
///
/// `haystack` may be any type that is cheaply convertible to a `&[u8]`.
/// This includes, but is not limited to, `String`, `&str`, `Vec<u8>`, and
/// `&[u8]` itself.
///
/// # Examples
///
/// Basic usage, with standard semantics:
///
/// ```
/// use aho_corasick::{AhoCorasickBuilder, MatchKind};
///
/// let patterns = &["b", "abc", "abcd"];
/// let haystack = "abcd";
///
/// let ac = AhoCorasickBuilder::new()
/// .match_kind(MatchKind::Standard) // default, not necessary
/// .build(patterns);
/// let mat = ac.find(haystack).expect("should have a match");
/// assert_eq!("b", &haystack[mat.start()..mat.end()]);
/// ```
///
/// Now with leftmost-first semantics:
///
/// ```
/// use aho_corasick::{AhoCorasickBuilder, MatchKind};
///
/// let patterns = &["b", "abc", "abcd"];
/// let haystack = "abcd";
///
/// let ac = AhoCorasickBuilder::new()
/// .match_kind(MatchKind::LeftmostFirst)
/// .build(patterns);
/// let mat = ac.find(haystack).expect("should have a match");
/// assert_eq!("abc", &haystack[mat.start()..mat.end()]);
/// ```
///
/// And finally, leftmost-longest semantics:
///
/// ```
/// use aho_corasick::{AhoCorasickBuilder, MatchKind};
///
/// let patterns = &["b", "abc", "abcd"];
/// let haystack = "abcd";
///
/// let ac = AhoCorasickBuilder::new()
/// .match_kind(MatchKind::LeftmostLongest)
/// .build(patterns);
/// let mat = ac.find(haystack).expect("should have a match");
/// assert_eq!("abcd", &haystack[mat.start()..mat.end()]);
/// ```
pub fn find<B: AsRef<[u8]>>(&self, haystack: B) -> Option<Match> {
let mut prestate = PrefilterState::new(self.max_pattern_len());
self.imp.find_at_no_state(&mut prestate, haystack.as_ref(), 0)
}
/// Returns an iterator of non-overlapping matches, using the match
/// semantics that this automaton was constructed with.
///
/// `haystack` may be any type that is cheaply convertible to a `&[u8]`.
/// This includes, but is not limited to, `String`, `&str`, `Vec<u8>`, and
/// `&[u8]` itself.
///
/// # Examples
///
/// Basic usage, with standard semantics:
///
/// ```
/// use aho_corasick::{AhoCorasickBuilder, MatchKind};
///
/// let patterns = &["append", "appendage", "app"];
/// let haystack = "append the app to the appendage";
///
/// let ac = AhoCorasickBuilder::new()
/// .match_kind(MatchKind::Standard) // default, not necessary
/// .build(patterns);
/// let matches: Vec<usize> = ac
/// .find_iter(haystack)
/// .map(|mat| mat.pattern())
/// .collect();
/// assert_eq!(vec![2, 2, 2], matches);
/// ```
///
/// Now with leftmost-first semantics:
///
/// ```
/// use aho_corasick::{AhoCorasickBuilder, MatchKind};
///
/// let patterns = &["append", "appendage", "app"];
/// let haystack = "append the app to the appendage";
///
/// let ac = AhoCorasickBuilder::new()
/// .match_kind(MatchKind::LeftmostFirst)
/// .build(patterns);
/// let matches: Vec<usize> = ac
/// .find_iter(haystack)
/// .map(|mat| mat.pattern())
/// .collect();
/// assert_eq!(vec![0, 2, 0], matches);
/// ```
///
/// And finally, leftmost-longest semantics:
///
/// ```
/// use aho_corasick::{AhoCorasickBuilder, MatchKind};
///
/// let patterns = &["append", "appendage", "app"];
/// let haystack = "append the app to the appendage";
///
/// let ac = AhoCorasickBuilder::new()
/// .match_kind(MatchKind::LeftmostLongest)
/// .build(patterns);
/// let matches: Vec<usize> = ac
/// .find_iter(haystack)
/// .map(|mat| mat.pattern())
/// .collect();
/// assert_eq!(vec![0, 2, 1], matches);
/// ```
pub fn find_iter<'a, 'b, B: ?Sized + AsRef<[u8]>>(
&'a self,
haystack: &'b B,
) -> FindIter<'a, 'b, S> {
FindIter::new(self, haystack.as_ref())
}
/// Returns an iterator of overlapping matches in the given `haystack`.
///
/// Overlapping matches can _only_ be detected using
/// `MatchKind::Standard` semantics. If this automaton was constructed with
/// leftmost semantics, then this method will panic. To determine whether
/// this will panic at runtime, use the
/// [`AhoCorasick::supports_overlapping`](struct.AhoCorasick.html#method.supports_overlapping)
/// method.
///
/// `haystack` may be any type that is cheaply convertible to a `&[u8]`.
/// This includes, but is not limited to, `String`, `&str`, `Vec<u8>`, and
/// `&[u8]` itself.
///
/// # Panics
///
/// This panics when `AhoCorasick::supports_overlapping` returns `false`.
/// That is, this panics when this automaton's match semantics are not
/// `MatchKind::Standard`.
///
/// # Examples
///
/// Basic usage, with standard semantics:
///
/// ```
/// use aho_corasick::AhoCorasick;
///
/// let patterns = &["append", "appendage", "app"];
/// let haystack = "append the app to the appendage";
///
/// let ac = AhoCorasick::new(patterns);
/// let matches: Vec<usize> = ac
/// .find_overlapping_iter(haystack)
/// .map(|mat| mat.pattern())
/// .collect();
/// assert_eq!(vec![2, 0, 2, 2, 0, 1], matches);
/// ```
pub fn find_overlapping_iter<'a, 'b, B: ?Sized + AsRef<[u8]>>(
&'a self,
haystack: &'b B,
) -> FindOverlappingIter<'a, 'b, S> {
FindOverlappingIter::new(self, haystack.as_ref())
}
/// Replace all matches with a corresponding value in the `replace_with`
/// slice given. Matches correspond to the same matches as reported by
/// [`find_iter`](struct.AhoCorasick.html#method.find_iter).
///
/// Replacements are determined by the index of the matching pattern.
/// For example, if the pattern with index `2` is found, then it is
/// replaced by `replace_with[2]`.
///
/// # Panics
///
/// This panics when `replace_with.len()` does not equal the total number
/// of patterns that are matched by this automaton.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::{AhoCorasickBuilder, MatchKind};
///
/// let patterns = &["append", "appendage", "app"];
/// let haystack = "append the app to the appendage";
///
/// let ac = AhoCorasickBuilder::new()
/// .match_kind(MatchKind::LeftmostFirst)
/// .build(patterns);
/// let result = ac.replace_all(haystack, &["x", "y", "z"]);
/// assert_eq!("x the z to the xage", result);
/// ```
pub fn replace_all<B>(&self, haystack: &str, replace_with: &[B]) -> String
where
B: AsRef<str>,
{
assert_eq!(
replace_with.len(),
self.pattern_count(),
"replace_all requires a replacement for every pattern \
in the automaton"
);
let mut dst = String::with_capacity(haystack.len());
self.replace_all_with(haystack, &mut dst, |mat, _, dst| {
dst.push_str(replace_with[mat.pattern()].as_ref());
true
});
dst
}
/// Replace all matches using raw bytes with a corresponding value in the
/// `replace_with` slice given. Matches correspond to the same matches as
/// reported by [`find_iter`](struct.AhoCorasick.html#method.find_iter).
///
/// Replacements are determined by the index of the matching pattern.
/// For example, if the pattern with index `2` is found, then it is
/// replaced by `replace_with[2]`.
///
/// # Panics
///
/// This panics when `replace_with.len()` does not equal the total number
/// of patterns that are matched by this automaton.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::{AhoCorasickBuilder, MatchKind};
///
/// let patterns = &["append", "appendage", "app"];
/// let haystack = b"append the app to the appendage";
///
/// let ac = AhoCorasickBuilder::new()
/// .match_kind(MatchKind::LeftmostFirst)
/// .build(patterns);
/// let result = ac.replace_all_bytes(haystack, &["x", "y", "z"]);
/// assert_eq!(b"x the z to the xage".to_vec(), result);
/// ```
pub fn replace_all_bytes<B>(
&self,
haystack: &[u8],
replace_with: &[B],
) -> Vec<u8>
where
B: AsRef<[u8]>,
{
assert_eq!(
replace_with.len(),
self.pattern_count(),
"replace_all_bytes requires a replacement for every pattern \
in the automaton"
);
let mut dst = Vec::with_capacity(haystack.len());
self.replace_all_with_bytes(haystack, &mut dst, |mat, _, dst| {
dst.extend(replace_with[mat.pattern()].as_ref());
true
});
dst
}
/// Replace all matches using a closure called on each match.
/// Matches correspond to the same matches as reported by
/// [`find_iter`](struct.AhoCorasick.html#method.find_iter).
///
/// The closure accepts three parameters: the match found, the text of
/// the match and a string buffer with which to write the replaced text
/// (if any). If the closure returns `true`, then it continues to the next
/// match. If the closure returns `false`, then searching is stopped.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::{AhoCorasickBuilder, MatchKind};
///
/// let patterns = &["append", "appendage", "app"];
/// let haystack = "append the app to the appendage";
///
/// let ac = AhoCorasickBuilder::new()
/// .match_kind(MatchKind::LeftmostFirst)
/// .build(patterns);
/// let mut result = String::new();
/// ac.replace_all_with(haystack, &mut result, |mat, _, dst| {
/// dst.push_str(&mat.pattern().to_string());
/// true
/// });
/// assert_eq!("0 the 2 to the 0age", result);
/// ```
///
/// Stopping the replacement by returning `false` (continued from the
/// example above):
///
/// ```
/// # use aho_corasick::{AhoCorasickBuilder, MatchKind};
/// # let patterns = &["append", "appendage", "app"];
/// # let haystack = "append the app to the appendage";
/// # let ac = AhoCorasickBuilder::new()
/// # .match_kind(MatchKind::LeftmostFirst)
/// # .build(patterns);
/// let mut result = String::new();
/// ac.replace_all_with(haystack, &mut result, |mat, _, dst| {
/// dst.push_str(&mat.pattern().to_string());
/// mat.pattern() != 2
/// });
/// assert_eq!("0 the 2 to the appendage", result);
/// ```
pub fn replace_all_with<F>(
&self,
haystack: &str,
dst: &mut String,
mut replace_with: F,
) where
F: FnMut(&Match, &str, &mut String) -> bool,
{
let mut last_match = 0;
for mat in self.find_iter(haystack) {
dst.push_str(&haystack[last_match..mat.start()]);
last_match = mat.end();
if !replace_with(&mat, &haystack[mat.start()..mat.end()], dst) {
break;
};
}
dst.push_str(&haystack[last_match..]);
}
/// Replace all matches using raw bytes with a closure called on each
/// match. Matches correspond to the same matches as reported by
/// [`find_iter`](struct.AhoCorasick.html#method.find_iter).
///
/// The closure accepts three parameters: the match found, the text of
/// the match and a byte buffer with which to write the replaced text
/// (if any). If the closure returns `true`, then it continues to the next
/// match. If the closure returns `false`, then searching is stopped.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::{AhoCorasickBuilder, MatchKind};
///
/// let patterns = &["append", "appendage", "app"];
/// let haystack = b"append the app to the appendage";
///
/// let ac = AhoCorasickBuilder::new()
/// .match_kind(MatchKind::LeftmostFirst)
/// .build(patterns);
/// let mut result = vec![];
/// ac.replace_all_with_bytes(haystack, &mut result, |mat, _, dst| {
/// dst.extend(mat.pattern().to_string().bytes());
/// true
/// });
/// assert_eq!(b"0 the 2 to the 0age".to_vec(), result);
/// ```
///
/// Stopping the replacement by returning `false` (continued from the
/// example above):
///
/// ```
/// # use aho_corasick::{AhoCorasickBuilder, MatchKind};
/// # let patterns = &["append", "appendage", "app"];
/// # let haystack = b"append the app to the appendage";
/// # let ac = AhoCorasickBuilder::new()
/// # .match_kind(MatchKind::LeftmostFirst)
/// # .build(patterns);
/// let mut result = vec![];
/// ac.replace_all_with_bytes(haystack, &mut result, |mat, _, dst| {
/// dst.extend(mat.pattern().to_string().bytes());
/// mat.pattern() != 2
/// });
/// assert_eq!(b"0 the 2 to the appendage".to_vec(), result);
/// ```
pub fn replace_all_with_bytes<F>(
&self,
haystack: &[u8],
dst: &mut Vec<u8>,
mut replace_with: F,
) where
F: FnMut(&Match, &[u8], &mut Vec<u8>) -> bool,
{
let mut last_match = 0;
for mat in self.find_iter(haystack) {
dst.extend(&haystack[last_match..mat.start()]);
last_match = mat.end();
if !replace_with(&mat, &haystack[mat.start()..mat.end()], dst) {
break;
};
}
dst.extend(&haystack[last_match..]);
}
/// Returns an iterator of non-overlapping matches in the given
/// stream. Matches correspond to the same matches as reported by
/// [`find_iter`](struct.AhoCorasick.html#method.find_iter).
///
/// The matches yielded by this iterator use absolute position offsets in
/// the stream given, where the first byte has index `0`. Matches are
/// yieled until the stream is exhausted.
///
/// Each item yielded by the iterator is an `io::Result<Match>`, where an
/// error is yielded if there was a problem reading from the reader given.
///
/// When searching a stream, an internal buffer is used. Therefore, callers
/// should avoiding providing a buffered reader, if possible.
///
/// Searching a stream requires that the automaton was built with
/// `MatchKind::Standard` semantics. If this automaton was constructed
/// with leftmost semantics, then this method will panic. To determine
/// whether this will panic at runtime, use the
/// [`AhoCorasick::supports_stream`](struct.AhoCorasick.html#method.supports_stream)
/// method.
///
/// # Memory usage
///
/// In general, searching streams will use a constant amount of memory for
/// its internal buffer. The one requirement is that the internal buffer
/// must be at least the size of the longest possible match. In most use
/// cases, the default buffer size will be much larger than any individual
/// match.
///
/// # Panics
///
/// This panics when `AhoCorasick::supports_stream` returns `false`.
/// That is, this panics when this automaton's match semantics are not
/// `MatchKind::Standard`. This restriction may be lifted in the future.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::AhoCorasick;
///
/// # fn example() -> Result<(), ::std::io::Error> {
/// let patterns = &["append", "appendage", "app"];
/// let haystack = "append the app to the appendage";
///
/// let ac = AhoCorasick::new(patterns);
/// let mut matches = vec![];
/// for result in ac.stream_find_iter(haystack.as_bytes()) {
/// let mat = result?;
/// matches.push(mat.pattern());
/// }
/// assert_eq!(vec![2, 2, 2], matches);
/// # Ok(()) }; example().unwrap()
/// ```
pub fn stream_find_iter<'a, R: io::Read>(
&'a self,
rdr: R,
) -> StreamFindIter<'a, R, S> {
StreamFindIter::new(self, rdr)
}
/// Search for and replace all matches of this automaton in
/// the given reader, and write the replacements to the given
/// writer. Matches correspond to the same matches as reported by
/// [`find_iter`](struct.AhoCorasick.html#method.find_iter).
///
/// Replacements are determined by the index of the matching pattern.
/// For example, if the pattern with index `2` is found, then it is
/// replaced by `replace_with[2]`.
///
/// After all matches are replaced, the writer is _not_ flushed.
///
/// If there was a problem reading from the given reader or writing to the
/// given writer, then the corresponding `io::Error` is returned and all
/// replacement is stopped.
///
/// When searching a stream, an internal buffer is used. Therefore, callers
/// should avoiding providing a buffered reader, if possible. However,
/// callers may want to provide a buffered writer.
///
/// Searching a stream requires that the automaton was built with
/// `MatchKind::Standard` semantics. If this automaton was constructed
/// with leftmost semantics, then this method will panic. To determine
/// whether this will panic at runtime, use the
/// [`AhoCorasick::supports_stream`](struct.AhoCorasick.html#method.supports_stream)
/// method.
///
/// # Memory usage
///
/// In general, searching streams will use a constant amount of memory for
/// its internal buffer. The one requirement is that the internal buffer
/// must be at least the size of the longest possible match. In most use
/// cases, the default buffer size will be much larger than any individual
/// match.
///
/// # Panics
///
/// This panics when `AhoCorasick::supports_stream` returns `false`.
/// That is, this panics when this automaton's match semantics are not
/// `MatchKind::Standard`. This restriction may be lifted in the future.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::AhoCorasick;
///
/// # fn example() -> Result<(), ::std::io::Error> {
/// let patterns = &["fox", "brown", "quick"];
/// let haystack = "The quick brown fox.";
/// let replace_with = &["sloth", "grey", "slow"];
///
/// let ac = AhoCorasick::new(patterns);
/// let mut result = vec![];
/// ac.stream_replace_all(haystack.as_bytes(), &mut result, replace_with)?;
/// assert_eq!(b"The slow grey sloth.".to_vec(), result);
/// # Ok(()) }; example().unwrap()
/// ```
pub fn stream_replace_all<R, W, B>(
&self,
rdr: R,
wtr: W,
replace_with: &[B],
) -> io::Result<()>
where
R: io::Read,
W: io::Write,
B: AsRef<[u8]>,
{
assert_eq!(
replace_with.len(),
self.pattern_count(),
"stream_replace_all requires a replacement for every pattern \
in the automaton"
);
self.stream_replace_all_with(rdr, wtr, |mat, _, wtr| {
wtr.write_all(replace_with[mat.pattern()].as_ref())
})
}
/// Search the given reader and replace all matches of this automaton
/// using the given closure. The result is written to the given
/// writer. Matches correspond to the same matches as reported by
/// [`find_iter`](struct.AhoCorasick.html#method.find_iter).
///
/// The closure accepts three parameters: the match found, the text of
/// the match and the writer with which to write the replaced text (if any).
///
/// After all matches are replaced, the writer is _not_ flushed.
///
/// If there was a problem reading from the given reader or writing to the
/// given writer, then the corresponding `io::Error` is returned and all
/// replacement is stopped.
///
/// When searching a stream, an internal buffer is used. Therefore, callers
/// should avoiding providing a buffered reader, if possible. However,
/// callers may want to provide a buffered writer.
///
/// Searching a stream requires that the automaton was built with
/// `MatchKind::Standard` semantics. If this automaton was constructed
/// with leftmost semantics, then this method will panic. To determine
/// whether this will panic at runtime, use the
/// [`AhoCorasick::supports_stream`](struct.AhoCorasick.html#method.supports_stream)
/// method.
///
/// # Memory usage
///
/// In general, searching streams will use a constant amount of memory for
/// its internal buffer. The one requirement is that the internal buffer
/// must be at least the size of the longest possible match. In most use
/// cases, the default buffer size will be much larger than any individual
/// match.
///
/// # Panics
///
/// This panics when `AhoCorasick::supports_stream` returns `false`.
/// That is, this panics when this automaton's match semantics are not
/// `MatchKind::Standard`. This restriction may be lifted in the future.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::io::Write;
/// use aho_corasick::AhoCorasick;
///
/// # fn example() -> Result<(), ::std::io::Error> {
/// let patterns = &["fox", "brown", "quick"];
/// let haystack = "The quick brown fox.";
///
/// let ac = AhoCorasick::new(patterns);
/// let mut result = vec![];
/// ac.stream_replace_all_with(
/// haystack.as_bytes(),
/// &mut result,
/// |mat, _, wtr| {
/// wtr.write_all(mat.pattern().to_string().as_bytes())
/// },
/// )?;
/// assert_eq!(b"The 2 1 0.".to_vec(), result);
/// # Ok(()) }; example().unwrap()
/// ```
pub fn stream_replace_all_with<R, W, F>(
&self,
rdr: R,
mut wtr: W,
mut replace_with: F,
) -> io::Result<()>
where
R: io::Read,
W: io::Write,
F: FnMut(&Match, &[u8], &mut W) -> io::Result<()>,
{
let mut it = StreamChunkIter::new(self, rdr);
while let Some(result) = it.next() {
let chunk = result?;
match chunk {
StreamChunk::NonMatch { bytes, .. } => {
wtr.write_all(bytes)?;
}
StreamChunk::Match { bytes, mat } => {
replace_with(&mat, bytes, &mut wtr)?;
}
}
}
Ok(())
}
/// Returns the match kind used by this automaton.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::{AhoCorasick, MatchKind};
///
/// let ac = AhoCorasick::new(&[
/// "foo", "bar", "quux", "baz",
/// ]);
/// assert_eq!(&MatchKind::Standard, ac.match_kind());
/// ```
pub fn match_kind(&self) -> &MatchKind {
self.imp.match_kind()
}
/// Returns the length of the longest pattern matched by this automaton.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::AhoCorasick;
///
/// let ac = AhoCorasick::new(&[
/// "foo", "bar", "quux", "baz",
/// ]);
/// assert_eq!(4, ac.max_pattern_len());
/// ```
pub fn max_pattern_len(&self) -> usize {
self.imp.max_pattern_len()
}
/// Return the total number of patterns matched by this automaton.
///
/// This includes patterns that may never participate in a match. For
/// example, if
/// [`MatchKind::LeftmostFirst`](enum.MatchKind.html#variant.LeftmostFirst)
/// match semantics are used, and the patterns `Sam` and `Samwise` were
/// used to build the automaton, then `Samwise` can never participate in a
/// match because `Sam` will always take priority.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::AhoCorasick;
///
/// let ac = AhoCorasick::new(&[
/// "foo", "bar", "baz",
/// ]);
/// assert_eq!(3, ac.pattern_count());
/// ```
pub fn pattern_count(&self) -> usize {
self.imp.pattern_count()
}
/// Returns true if and only if this automaton supports reporting
/// overlapping matches.
///
/// If this returns false and overlapping matches are requested, then it
/// will result in a panic.
///
/// Since leftmost matching is inherently incompatible with overlapping
/// matches, only
/// [`MatchKind::Standard`](enum.MatchKind.html#variant.Standard)
/// supports overlapping matches. This is unlikely to change in the future.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::{AhoCorasickBuilder, MatchKind};
///
/// let ac = AhoCorasickBuilder::new()
/// .match_kind(MatchKind::Standard)
/// .build(&["foo", "bar", "baz"]);
/// assert!(ac.supports_overlapping());
///
/// let ac = AhoCorasickBuilder::new()
/// .match_kind(MatchKind::LeftmostFirst)
/// .build(&["foo", "bar", "baz"]);
/// assert!(!ac.supports_overlapping());
/// ```
pub fn supports_overlapping(&self) -> bool {
self.match_kind.supports_overlapping()
}
/// Returns true if and only if this automaton supports stream searching.
///
/// If this returns false and stream searching (or replacing) is attempted,
/// then it will result in a panic.
///
/// Currently, only
/// [`MatchKind::Standard`](enum.MatchKind.html#variant.Standard)
/// supports streaming. This may be expanded in the future.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::{AhoCorasickBuilder, MatchKind};
///
/// let ac = AhoCorasickBuilder::new()
/// .match_kind(MatchKind::Standard)
/// .build(&["foo", "bar", "baz"]);
/// assert!(ac.supports_stream());
///
/// let ac = AhoCorasickBuilder::new()
/// .match_kind(MatchKind::LeftmostFirst)
/// .build(&["foo", "bar", "baz"]);
/// assert!(!ac.supports_stream());
/// ```
pub fn supports_stream(&self) -> bool {
self.match_kind.supports_stream()
}
/// Returns the approximate total amount of heap used by this automaton, in
/// units of bytes.
///
/// # Examples
///
/// This example shows the difference in heap usage between a few
/// configurations:
///
/// ```ignore
/// use aho_corasick::{AhoCorasickBuilder, MatchKind};
///
/// let ac = AhoCorasickBuilder::new()
/// .dfa(false) // default
/// .build(&["foo", "bar", "baz"]);
/// assert_eq!(10_336, ac.heap_bytes());
///
/// let ac = AhoCorasickBuilder::new()
/// .dfa(false) // default
/// .ascii_case_insensitive(true)
/// .build(&["foo", "bar", "baz"]);
/// assert_eq!(10_384, ac.heap_bytes());
///
/// let ac = AhoCorasickBuilder::new()
/// .dfa(true)
/// .ascii_case_insensitive(true)
/// .build(&["foo", "bar", "baz"]);
/// assert_eq!(1_248, ac.heap_bytes());
/// ```
pub fn heap_bytes(&self) -> usize {
match self.imp {
Imp::NFA(ref nfa) => nfa.heap_bytes(),
Imp::DFA(ref dfa) => dfa.heap_bytes(),
}
}
}
/// The internal implementation of Aho-Corasick, which is either an NFA or
/// a DFA. The NFA is slower but uses less memory. The DFA is faster but uses
/// more memory.
#[derive(Clone, Debug)]
enum Imp<S: StateID> {
NFA(NFA<S>),
DFA(DFA<S>),
}
impl<S: StateID> Imp<S> {
/// Returns the type of match semantics implemented by this automaton.
fn match_kind(&self) -> &MatchKind {
match *self {
Imp::NFA(ref nfa) => nfa.match_kind(),
Imp::DFA(ref dfa) => dfa.match_kind(),
}
}
/// Returns the identifier of the start state.
fn start_state(&self) -> S {
match *self {
Imp::NFA(ref nfa) => nfa.start_state(),
Imp::DFA(ref dfa) => dfa.start_state(),
}
}
/// The length, in bytes, of the longest pattern in this automaton. This
/// information is useful for maintaining correct buffer sizes when
/// searching on streams.
fn max_pattern_len(&self) -> usize {
match *self {
Imp::NFA(ref nfa) => nfa.max_pattern_len(),
Imp::DFA(ref dfa) => dfa.max_pattern_len(),
}
}
/// The total number of patterns added to this automaton. This includes
/// patterns that may never match. The maximum matching pattern that can be
/// reported is exactly one less than this number.
fn pattern_count(&self) -> usize {
match *self {
Imp::NFA(ref nfa) => nfa.pattern_count(),
Imp::DFA(ref dfa) => dfa.pattern_count(),
}
}
/// Returns the prefilter object, if one exists, for the underlying
/// automaton.
fn prefilter(&self) -> Option<&dyn Prefilter> {
match *self {
Imp::NFA(ref nfa) => nfa.prefilter(),
Imp::DFA(ref dfa) => dfa.prefilter(),
}
}
/// Returns true if and only if we should attempt to use a prefilter.
fn use_prefilter(&self) -> bool {
let p = match self.prefilter() {
None => return false,
Some(p) => p,
};
!p.looks_for_non_start_of_match()
}
#[inline(always)]
fn overlapping_find_at(
&self,
prestate: &mut PrefilterState,
haystack: &[u8],
at: usize,
state_id: &mut S,
match_index: &mut usize,
) -> Option<Match> {
match *self {
Imp::NFA(ref nfa) => nfa.overlapping_find_at(
prestate,
haystack,
at,
state_id,
match_index,
),
Imp::DFA(ref dfa) => dfa.overlapping_find_at(
prestate,
haystack,
at,
state_id,
match_index,
),
}
}
#[inline(always)]
fn earliest_find_at(
&self,
prestate: &mut PrefilterState,
haystack: &[u8],
at: usize,
state_id: &mut S,
) -> Option<Match> {
match *self {
Imp::NFA(ref nfa) => {
nfa.earliest_find_at(prestate, haystack, at, state_id)
}
Imp::DFA(ref dfa) => {
dfa.earliest_find_at(prestate, haystack, at, state_id)
}
}
}
#[inline(always)]
fn find_at_no_state(
&self,
prestate: &mut PrefilterState,
haystack: &[u8],
at: usize,
) -> Option<Match> {
match *self {
Imp::NFA(ref nfa) => nfa.find_at_no_state(prestate, haystack, at),
Imp::DFA(ref dfa) => dfa.find_at_no_state(prestate, haystack, at),
}
}
}
/// An iterator of non-overlapping matches in a particular haystack.
///
/// This iterator yields matches according to the
/// [`MatchKind`](enum.MatchKind.html)
/// used by this automaton.
///
/// This iterator is constructed via the
/// [`AhoCorasick::find_iter`](struct.AhoCorasick.html#method.find_iter)
/// method.
///
/// The type variable `S` refers to the representation used for state
/// identifiers. (By default, this is `usize`.)
///
/// The lifetime `'a` refers to the lifetime of the `AhoCorasick` automaton.
///
/// The lifetime `'b` refers to the lifetime of the haystack being searched.
#[derive(Debug)]
pub struct FindIter<'a, 'b, S: StateID> {
fsm: &'a Imp<S>,
prestate: PrefilterState,
haystack: &'b [u8],
pos: usize,
}
impl<'a, 'b, S: StateID> FindIter<'a, 'b, S> {
fn new(ac: &'a AhoCorasick<S>, haystack: &'b [u8]) -> FindIter<'a, 'b, S> {
let prestate = PrefilterState::new(ac.max_pattern_len());
FindIter { fsm: &ac.imp, prestate, haystack, pos: 0 }
}
}
impl<'a, 'b, S: StateID> Iterator for FindIter<'a, 'b, S> {
type Item = Match;
fn next(&mut self) -> Option<Match> {
if self.pos > self.haystack.len() {
return None;
}
let result = self.fsm.find_at_no_state(
&mut self.prestate,
self.haystack,
self.pos,
);
let mat = match result {
None => return None,
Some(mat) => mat,
};
if mat.end() == self.pos {
// If the automaton can match the empty string and if we found an
// empty match, then we need to forcefully move the position.
self.pos += 1;
} else {
self.pos = mat.end();
}
Some(mat)
}
}
/// An iterator of overlapping matches in a particular haystack.
///
/// This iterator will report all possible matches in a particular haystack,
/// even when the matches overlap.
///
/// This iterator is constructed via the
/// [`AhoCorasick::find_overlapping_iter`](struct.AhoCorasick.html#method.find_overlapping_iter)
/// method.
///
/// The type variable `S` refers to the representation used for state
/// identifiers. (By default, this is `usize`.)
///
/// The lifetime `'a` refers to the lifetime of the `AhoCorasick` automaton.
///
/// The lifetime `'b` refers to the lifetime of the haystack being searched.
#[derive(Debug)]
pub struct FindOverlappingIter<'a, 'b, S: StateID> {
fsm: &'a Imp<S>,
prestate: PrefilterState,
haystack: &'b [u8],
pos: usize,
state_id: S,
match_index: usize,
}
impl<'a, 'b, S: StateID> FindOverlappingIter<'a, 'b, S> {
fn new(
ac: &'a AhoCorasick<S>,
haystack: &'b [u8],
) -> FindOverlappingIter<'a, 'b, S> {
assert!(
ac.supports_overlapping(),
"automaton does not support overlapping searches"
);
let prestate = PrefilterState::new(ac.max_pattern_len());
FindOverlappingIter {
fsm: &ac.imp,
prestate,
haystack,
pos: 0,
state_id: ac.imp.start_state(),
match_index: 0,
}
}
}
impl<'a, 'b, S: StateID> Iterator for FindOverlappingIter<'a, 'b, S> {
type Item = Match;
fn next(&mut self) -> Option<Match> {
let result = self.fsm.overlapping_find_at(
&mut self.prestate,
self.haystack,
self.pos,
&mut self.state_id,
&mut self.match_index,
);
match result {
None => return None,
Some(m) => {
self.pos = m.end();
Some(m)
}
}
}
}
/// An iterator that reports Aho-Corasick matches in a stream.
///
/// This iterator yields elements of type `io::Result<Match>`, where an error
/// is reported if there was a problem reading from the underlying stream.
/// The iterator terminates only when the underlying stream reaches `EOF`.
///
/// This iterator is constructed via the
/// [`AhoCorasick::stream_find_iter`](struct.AhoCorasick.html#method.stream_find_iter)
/// method.
///
/// The type variable `R` refers to the `io::Read` stream that is being read
/// from.
///
/// The type variable `S` refers to the representation used for state
/// identifiers. (By default, this is `usize`.)
///
/// The lifetime `'a` refers to the lifetime of the `AhoCorasick` automaton.
#[derive(Debug)]
pub struct StreamFindIter<'a, R, S: StateID> {
it: StreamChunkIter<'a, R, S>,
}
impl<'a, R: io::Read, S: StateID> StreamFindIter<'a, R, S> {
fn new(ac: &'a AhoCorasick<S>, rdr: R) -> StreamFindIter<'a, R, S> {
StreamFindIter { it: StreamChunkIter::new(ac, rdr) }
}
}
impl<'a, R: io::Read, S: StateID> Iterator for StreamFindIter<'a, R, S> {
type Item = io::Result<Match>;
fn next(&mut self) -> Option<io::Result<Match>> {
loop {
match self.it.next() {
None => return None,
Some(Err(err)) => return Some(Err(err)),
Some(Ok(StreamChunk::NonMatch { .. })) => {}
Some(Ok(StreamChunk::Match { mat, .. })) => {
return Some(Ok(mat));
}
}
}
}
}
/// An iterator over chunks in an underlying reader. Each chunk either
/// corresponds to non-matching bytes or matching bytes, but all bytes from
/// the underlying reader are reported in sequence. There may be an arbitrary
/// number of non-matching chunks before seeing a matching chunk.
///
/// N.B. This does not actually implement Iterator because we need to borrow
/// from the underlying reader. But conceptually, it's still an iterator.
#[derive(Debug)]
struct StreamChunkIter<'a, R, S: StateID> {
/// The AC automaton.
fsm: &'a Imp<S>,
/// State associated with this automaton's prefilter. It is a heuristic
/// for stopping the prefilter if it's deemed ineffective.
prestate: PrefilterState,
/// The source of bytes we read from.
rdr: R,
/// A fixed size buffer. This is what we actually search. There are some
/// invariants around the buffer's size, namely, it must be big enough to
/// contain the longest possible match.
buf: Buffer,
/// The ID of the FSM state we're currently in.
state_id: S,
/// The current position at which to start the next search in `buf`.
search_pos: usize,
/// The absolute position of `search_pos`, where `0` corresponds to the
/// position of the first byte read from `rdr`.
absolute_pos: usize,
/// The ending position of the last StreamChunk that was returned to the
/// caller. This position is used to determine whether we need to emit
/// non-matching bytes before emitting a match.
report_pos: usize,
/// A match that should be reported on the next call.
pending_match: Option<Match>,
/// Enabled only when the automaton can match the empty string. When
/// enabled, we need to execute one final search after consuming the
/// reader to find the trailing empty match.
has_empty_match_at_end: bool,
}
/// A single chunk yielded by the stream chunk iterator.
///
/// The `'r` lifetime refers to the lifetime of the stream chunk iterator.
#[derive(Debug)]
enum StreamChunk<'r> {
/// A chunk that does not contain any matches.
NonMatch { bytes: &'r [u8] },
/// A chunk that precisely contains a match.
Match { bytes: &'r [u8], mat: Match },
}
impl<'a, R: io::Read, S: StateID> StreamChunkIter<'a, R, S> {
fn new(ac: &'a AhoCorasick<S>, rdr: R) -> StreamChunkIter<'a, R, S> {
assert!(
ac.supports_stream(),
"stream searching is only supported for Standard match semantics"
);
let prestate = if ac.imp.use_prefilter() {
PrefilterState::new(ac.max_pattern_len())
} else {
PrefilterState::disabled()
};
let buf = Buffer::new(ac.imp.max_pattern_len());
let state_id = ac.imp.start_state();
StreamChunkIter {
fsm: &ac.imp,
prestate,
rdr,
buf,
state_id,
absolute_pos: 0,
report_pos: 0,
search_pos: 0,
pending_match: None,
has_empty_match_at_end: ac.is_match(""),
}
}
fn next(&mut self) -> Option<io::Result<StreamChunk>> {
loop {
if let Some(mut mat) = self.pending_match.take() {
let bytes = &self.buf.buffer()[mat.start()..mat.end()];
self.report_pos = mat.end();
mat = mat.increment(self.absolute_pos);
return Some(Ok(StreamChunk::Match { bytes, mat }));
}
if self.search_pos >= self.buf.len() {
if let Some(end) = self.unreported() {
let bytes = &self.buf.buffer()[self.report_pos..end];
self.report_pos = end;
return Some(Ok(StreamChunk::NonMatch { bytes }));
}
if self.buf.len() >= self.buf.min_buffer_len() {
// This is the point at which we roll our buffer, which we
// only do if our buffer has at least the minimum amount of
// bytes in it. Before rolling, we update our various
// positions to be consistent with the buffer after it has
// been rolled.
self.report_pos -=
self.buf.len() - self.buf.min_buffer_len();
self.absolute_pos +=
self.search_pos - self.buf.min_buffer_len();
self.search_pos = self.buf.min_buffer_len();
self.buf.roll();
}
match self.buf.fill(&mut self.rdr) {
Err(err) => return Some(Err(err)),
Ok(false) => {
// We've hit EOF, but if there are still some
// unreported bytes remaining, return them now.
if self.report_pos < self.buf.len() {
let bytes = &self.buf.buffer()[self.report_pos..];
self.report_pos = self.buf.len();
let chunk = StreamChunk::NonMatch { bytes };
return Some(Ok(chunk));
} else {
// We've reported everything, but there might still
// be a match at the very last position.
if !self.has_empty_match_at_end {
return None;
}
// fallthrough for another search to get trailing
// empty matches
self.has_empty_match_at_end = false;
}
}
Ok(true) => {}
}
}
let result = self.fsm.earliest_find_at(
&mut self.prestate,
self.buf.buffer(),
self.search_pos,
&mut self.state_id,
);
match result {
None => {
self.search_pos = self.buf.len();
}
Some(mat) => {
self.state_id = self.fsm.start_state();
if mat.end() == self.search_pos {
// If the automaton can match the empty string and if
// we found an empty match, then we need to forcefully
// move the position.
self.search_pos += 1;
} else {
self.search_pos = mat.end();
}
self.pending_match = Some(mat.clone());
if self.report_pos < mat.start() {
let bytes =
&self.buf.buffer()[self.report_pos..mat.start()];
self.report_pos = mat.start();
let chunk = StreamChunk::NonMatch { bytes };
return Some(Ok(chunk));
}
}
}
}
}
fn unreported(&self) -> Option<usize> {
let end = self.search_pos.saturating_sub(self.buf.min_buffer_len());
if self.report_pos < end {
Some(end)
} else {
None
}
}
}
/// A builder for configuring an Aho-Corasick automaton.
#[derive(Clone, Debug)]
pub struct AhoCorasickBuilder {
nfa_builder: nfa::Builder,
dfa_builder: dfa::Builder,
dfa: bool,
}
impl Default for AhoCorasickBuilder {
fn default() -> AhoCorasickBuilder {
AhoCorasickBuilder::new()
}
}
impl AhoCorasickBuilder {
/// Create a new builder for configuring an Aho-Corasick automaton.
///
/// If you don't need fine grained configuration or aren't sure which knobs
/// to set, try using
/// [`AhoCorasick::new_auto_configured`](struct.AhoCorasick.html#method.new_auto_configured)
/// instead.
pub fn new() -> AhoCorasickBuilder {
AhoCorasickBuilder {
nfa_builder: nfa::Builder::new(),
dfa_builder: dfa::Builder::new(),
dfa: false,
}
}
/// Build an Aho-Corasick automaton using the configuration set on this
/// builder.
///
/// A builder may be reused to create more automatons.
///
/// This method will use the default for representing internal state
/// identifiers, which is `usize`. This guarantees that building the
/// automaton will succeed and is generally a good default, but can make
/// the size of the automaton 2-8 times bigger than it needs to be,
/// depending on your target platform.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::AhoCorasickBuilder;
///
/// let patterns = &["foo", "bar", "baz"];
/// let ac = AhoCorasickBuilder::new()
/// .build(patterns);
/// assert_eq!(Some(1), ac.find("xxx bar xxx").map(|m| m.pattern()));
/// ```
pub fn build<I, P>(&self, patterns: I) -> AhoCorasick
where
I: IntoIterator<Item = P>,
P: AsRef<[u8]>,
{
// The builder only returns an error if the chosen state ID
// representation is too small to fit all of the given patterns. In
// this case, since we fix the representation to usize, it will always
// work because it's impossible to overflow usize since the underlying
// storage would OOM long before that happens.
self.build_with_size::<usize, I, P>(patterns)
.expect("usize state ID type should always work")
}
/// Build an Aho-Corasick automaton using the configuration set on this
/// builder with a specific state identifier representation. This only has
/// an effect when the `dfa` option is enabled.
///
/// Generally, the choices for a state identifier representation are
/// `u8`, `u16`, `u32`, `u64` or `usize`, with `usize` being the default.
/// The advantage of choosing a smaller state identifier representation
/// is that the automaton produced will be smaller. This might be
/// beneficial for just generally using less space, or might even allow it
/// to fit more of the automaton in your CPU's cache, leading to overall
/// better search performance.
///
/// Unlike the standard `build` method, this can report an error if the
/// state identifier representation cannot support the size of the
/// automaton.
///
/// Note that the state identifier representation is determined by the
/// `S` type variable. This requires a type hint of some sort, either
/// by specifying the return type or using the turbofish, e.g.,
/// `build_with_size::<u16, _, _>(...)`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::{AhoCorasick, AhoCorasickBuilder};
///
/// # fn example() -> Result<(), ::aho_corasick::Error> {
/// let patterns = &["foo", "bar", "baz"];
/// let ac: AhoCorasick<u8> = AhoCorasickBuilder::new()
/// .build_with_size(patterns)?;
/// assert_eq!(Some(1), ac.find("xxx bar xxx").map(|m| m.pattern()));
/// # Ok(()) }; example().unwrap()
/// ```
///
/// Or alternatively, with turbofish:
///
/// ```
/// use aho_corasick::AhoCorasickBuilder;
///
/// # fn example() -> Result<(), ::aho_corasick::Error> {
/// let patterns = &["foo", "bar", "baz"];
/// let ac = AhoCorasickBuilder::new()
/// .build_with_size::<u8, _, _>(patterns)?;
/// assert_eq!(Some(1), ac.find("xxx bar xxx").map(|m| m.pattern()));
/// # Ok(()) }; example().unwrap()
/// ```
pub fn build_with_size<S, I, P>(
&self,
patterns: I,
) -> Result<AhoCorasick<S>>
where
S: StateID,
I: IntoIterator<Item = P>,
P: AsRef<[u8]>,
{
let nfa = self.nfa_builder.build(patterns)?;
let match_kind = nfa.match_kind().clone();
let imp = if self.dfa {
let dfa = self.dfa_builder.build(&nfa)?;
Imp::DFA(dfa)
} else {
Imp::NFA(nfa)
};
Ok(AhoCorasick { imp, match_kind })
}
/// Automatically configure the settings on this builder according to the
/// patterns that will be used to construct the automaton.
///
/// The idea here is to balance space and time automatically. That is, when
/// searching a small number of patterns, this will attempt to use the
/// fastest possible configuration since the total space required will be
/// small anyway. As the number of patterns grows, this will fall back to
/// slower configurations that use less space.
///
/// This is guaranteed to never set `match_kind`, but any other option may
/// be overridden.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::AhoCorasickBuilder;
///
/// let patterns = &["foo", "bar", "baz"];
/// let ac = AhoCorasickBuilder::new()
/// .auto_configure(patterns)
/// .build(patterns);
/// assert_eq!(Some(1), ac.find("xxx bar xxx").map(|m| m.pattern()));
/// ```
pub fn auto_configure<B: AsRef<[u8]>>(
&mut self,
patterns: &[B],
) -> &mut AhoCorasickBuilder {
// N.B. Currently we only use the length of `patterns` to make a
// decision here, and could therefore ask for an `ExactSizeIterator`
// instead. But it's conceivable that we might adapt this to look at
// the total number of bytes, which would requires a second pass.
//
// The logic here is fairly rudimentary at the moment, but probably
// OK. The idea here is to use the fastest thing possible for a small
// number of patterns. That is, a DFA with no byte classes, since byte
// classes require an extra indirection for every byte searched. With a
// moderate number of patterns, we still want a DFA, but save on both
// space and compilation time by enabling byte classes. Finally, fall
// back to the slower but smaller NFA.
if patterns.len() <= 100 {
// N.B. Using byte classes can actually be faster by improving
// locality, but this only really applies for multi-megabyte
// automata (i.e., automata that don't fit in your CPU's cache).
self.dfa(true);
} else if patterns.len() <= 5000 {
self.dfa(true);
}
self
}
/// Set the desired match semantics.
///
/// The default is `MatchKind::Standard`, which corresponds to the match
/// semantics supported by the standard textbook description of the
/// Aho-Corasick algorithm. Namely, matches are reported as soon as they
/// are found. Moreover, this is the only way to get overlapping matches
/// or do stream searching.
///
/// The other kinds of match semantics that are supported are
/// `MatchKind::LeftmostFirst` and `MatchKind::LeftmostLongest`. The former
/// corresponds to the match you would get if you were to try to match
/// each pattern at each position in the haystack in the same order that
/// you give to the automaton. That is, it returns the leftmost match
/// corresponding the earliest pattern given to the automaton. The latter
/// corresponds to finding the longest possible match among all leftmost
/// matches.
///
/// For more details on match semantics, see the
/// [documentation for `MatchKind`](enum.MatchKind.html).
///
/// # Examples
///
/// In these examples, we demonstrate the differences between match
/// semantics for a particular set of patterns in a specific order:
/// `b`, `abc`, `abcd`.
///
/// Standard semantics:
///
/// ```
/// use aho_corasick::{AhoCorasickBuilder, MatchKind};
///
/// let patterns = &["b", "abc", "abcd"];
/// let haystack = "abcd";
///
/// let ac = AhoCorasickBuilder::new()
/// .match_kind(MatchKind::Standard) // default, not necessary
/// .build(patterns);
/// let mat = ac.find(haystack).expect("should have a match");
/// assert_eq!("b", &haystack[mat.start()..mat.end()]);
/// ```
///
/// Leftmost-first semantics:
///
/// ```
/// use aho_corasick::{AhoCorasickBuilder, MatchKind};
///
/// let patterns = &["b", "abc", "abcd"];
/// let haystack = "abcd";
///
/// let ac = AhoCorasickBuilder::new()
/// .match_kind(MatchKind::LeftmostFirst)
/// .build(patterns);
/// let mat = ac.find(haystack).expect("should have a match");
/// assert_eq!("abc", &haystack[mat.start()..mat.end()]);
/// ```
///
/// Leftmost-longest semantics:
///
/// ```
/// use aho_corasick::{AhoCorasickBuilder, MatchKind};
///
/// let patterns = &["b", "abc", "abcd"];
/// let haystack = "abcd";
///
/// let ac = AhoCorasickBuilder::new()
/// .match_kind(MatchKind::LeftmostLongest)
/// .build(patterns);
/// let mat = ac.find(haystack).expect("should have a match");
/// assert_eq!("abcd", &haystack[mat.start()..mat.end()]);
/// ```
pub fn match_kind(&mut self, kind: MatchKind) -> &mut AhoCorasickBuilder {
self.nfa_builder.match_kind(kind);
self
}
/// Enable anchored mode, which requires all matches to start at the
/// first position in a haystack.
///
/// This option is disabled by default.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::AhoCorasickBuilder;
///
/// let patterns = &["foo", "bar"];
/// let haystack = "foobar";
///
/// let ac = AhoCorasickBuilder::new()
/// .anchored(true)
/// .build(patterns);
/// assert_eq!(1, ac.find_iter(haystack).count());
/// ```
///
/// When searching for overlapping matches, all matches that start at
/// the beginning of a haystack will be reported:
///
/// ```
/// use aho_corasick::AhoCorasickBuilder;
///
/// let patterns = &["foo", "foofoo"];
/// let haystack = "foofoo";
///
/// let ac = AhoCorasickBuilder::new()
/// .anchored(true)
/// .build(patterns);
/// assert_eq!(2, ac.find_overlapping_iter(haystack).count());
/// // A non-anchored search would return 3 matches.
/// ```
pub fn anchored(&mut self, yes: bool) -> &mut AhoCorasickBuilder {
self.nfa_builder.anchored(yes);
self
}
/// Enable ASCII-aware case insensitive matching.
///
/// When this option is enabled, searching will be performed without
/// respect to case for ASCII letters (`a-z` and `A-Z`) only.
///
/// Enabling this option does not change the search algorithm, but it may
/// increase the size of the automaton.
///
/// **NOTE:** It is unlikely that support for Unicode case folding will
/// be added in the future. The ASCII case works via a simple hack to the
/// underlying automaton, but full Unicode handling requires a fair bit of
/// sophistication. If you do need Unicode handling, you might consider
/// using the [`regex` crate](https://docs.rs/regex) or the lower level
/// [`regex-automata` crate](https://docs.rs/regex-automata).
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::AhoCorasickBuilder;
///
/// let patterns = &["FOO", "bAr", "BaZ"];
/// let haystack = "foo bar baz";
///
/// let ac = AhoCorasickBuilder::new()
/// .ascii_case_insensitive(true)
/// .build(patterns);
/// assert_eq!(3, ac.find_iter(haystack).count());
/// ```
pub fn ascii_case_insensitive(
&mut self,
yes: bool,
) -> &mut AhoCorasickBuilder {
self.nfa_builder.ascii_case_insensitive(yes);
self
}
/// Set the limit on how many NFA states use a dense representation for
/// their transitions.
///
/// A dense representation uses more space, but supports faster access to
/// transitions at search time. Thus, this setting permits the control of a
/// space vs time trade off when using the NFA variant of Aho-Corasick.
///
/// This limit is expressed in terms of the depth of a state, i.e., the
/// number of transitions from the starting state of the NFA. The idea is
/// that most of the time searching will be spent near the starting state
/// of the automaton, so states near the start state should use a dense
/// representation. States further away from the start state would then use
/// a sparse representation, which uses less space but is slower to access
/// transitions at search time.
///
/// By default, this is set to a low but non-zero number.
///
/// This setting has no effect if the `dfa` option is enabled.
pub fn dense_depth(&mut self, depth: usize) -> &mut AhoCorasickBuilder {
self.nfa_builder.dense_depth(depth);
self
}
/// Compile the standard Aho-Corasick automaton into a deterministic finite
/// automaton (DFA).
///
/// When this is disabled (which is the default), then a non-deterministic
/// finite automaton (NFA) is used instead.
///
/// The main benefit to a DFA is that it can execute searches more quickly
/// than a NFA (perhaps 2-4 times as fast). The main drawback is that the
/// DFA uses more space and can take much longer to build.
///
/// Enabling this option does not change the time complexity for
/// constructing the Aho-Corasick automaton (which is `O(p)` where
/// `p` is the total number of patterns being compiled). Enabling this
/// option does however reduce the time complexity of non-overlapping
/// searches from `O(n + p)` to `O(n)`, where `n` is the length of the
/// haystack.
///
/// In general, it's a good idea to enable this if you're searching a
/// small number of fairly short patterns (~1000), or if you want the
/// fastest possible search without regard to compilation time or space
/// usage.
pub fn dfa(&mut self, yes: bool) -> &mut AhoCorasickBuilder {
self.dfa = yes;
self
}
/// Enable heuristic prefilter optimizations.
///
/// When enabled, searching will attempt to quickly skip to match
/// candidates using specialized literal search routines. A prefilter
/// cannot always be used, and is generally treated as a heuristic. It
/// can be useful to disable this if the prefilter is observed to be
/// sub-optimal for a particular workload.
///
/// This is enabled by default.
pub fn prefilter(&mut self, yes: bool) -> &mut AhoCorasickBuilder {
self.nfa_builder.prefilter(yes);
self
}
/// Shrink the size of the transition alphabet by mapping bytes to their
/// equivalence classes. This only has an effect when the `dfa` option is
/// enabled.
///
/// When enabled, each a DFA will use a map from all possible bytes
/// to their corresponding equivalence class. Each equivalence class
/// represents a set of bytes that does not discriminate between a match
/// and a non-match in the DFA. For example, the patterns `bar` and `baz`
/// have at least five equivalence classes: singleton sets of `b`, `a`, `r`
/// and `z`, and a final set that contains every other byte.
///
/// The advantage of this map is that the size of the transition table can
/// be reduced drastically from `#states * 256 * sizeof(id)` to
/// `#states * k * sizeof(id)` where `k` is the number of equivalence
/// classes. As a result, total space usage can decrease substantially.
/// Moreover, since a smaller alphabet is used, compilation becomes faster
/// as well.
///
/// The disadvantage of this map is that every byte searched must be
/// passed through this map before it can be used to determine the next
/// transition. This has a small match time performance cost. However, if
/// the DFA is otherwise very large without byte classes, then using byte
/// classes can greatly improve memory locality and thus lead to better
/// overall performance.
///
/// This option is enabled by default.
#[deprecated(
since = "0.7.16",
note = "not carrying its weight, will be always enabled, see: https://github.com/BurntSushi/aho-corasick/issues/57"
)]
pub fn byte_classes(&mut self, yes: bool) -> &mut AhoCorasickBuilder {
self.dfa_builder.byte_classes(yes);
self
}
/// Premultiply state identifiers in the transition table. This only has
/// an effect when the `dfa` option is enabled.
///
/// When enabled, state identifiers are premultiplied to point to their
/// corresponding row in the transition table. That is, given the `i`th
/// state, its corresponding premultiplied identifier is `i * k` where `k`
/// is the alphabet size of the automaton. (The alphabet size is at most
/// 256, but is in practice smaller if byte classes is enabled.)
///
/// When state identifiers are not premultiplied, then the identifier of
/// the `i`th state is `i`.
///
/// The advantage of premultiplying state identifiers is that is saves a
/// multiplication instruction per byte when searching with a DFA. This has
/// been observed to lead to a 20% performance benefit in micro-benchmarks.
///
/// The primary disadvantage of premultiplying state identifiers is
/// that they require a larger integer size to represent. For example,
/// if the DFA has 200 states, then its premultiplied form requires 16
/// bits to represent every possible state identifier, where as its
/// non-premultiplied form only requires 8 bits.
///
/// This option is enabled by default.
#[deprecated(
since = "0.7.16",
note = "not carrying its weight, will be always enabled, see: https://github.com/BurntSushi/aho-corasick/issues/57"
)]
pub fn premultiply(&mut self, yes: bool) -> &mut AhoCorasickBuilder {
self.dfa_builder.premultiply(yes);
self
}
}
/// A knob for controlling the match semantics of an Aho-Corasick automaton.
///
/// There are two generally different ways that Aho-Corasick automatons can
/// report matches. The first way is the "standard" approach that results from
/// implementing most textbook explanations of Aho-Corasick. The second way is
/// to report only the leftmost non-overlapping matches. The leftmost approach
/// is in turn split into two different ways of resolving ambiguous matches:
/// leftmost-first and leftmost-longest.
///
/// The `Standard` match kind is the default and is the only one that supports
/// overlapping matches and stream searching. (Trying to find overlapping
/// or streaming matches using leftmost match semantics will result in a
/// panic.) The `Standard` match kind will report matches as they are seen.
/// When searching for overlapping matches, then all possible matches are
/// reported. When searching for non-overlapping matches, the first match seen
/// is reported. For example, for non-overlapping matches, given the patterns
/// `abcd` and `b` and the subject string `abcdef`, only a match for `b` is
/// reported since it is detected first. The `abcd` match is never reported
/// since it overlaps with the `b` match.
///
/// In contrast, the leftmost match kind always prefers the leftmost match
/// among all possible matches. Given the same example as above with `abcd` and
/// `b` as patterns and `abcdef` as the subject string, the leftmost match is
/// `abcd` since it begins before the `b` match, even though the `b` match is
/// detected before the `abcd` match. In this case, the `b` match is not
/// reported at all since it overlaps with the `abcd` match.
///
/// The difference between leftmost-first and leftmost-longest is in how they
/// resolve ambiguous matches when there are multiple leftmost matches to
/// choose from. Leftmost-first always chooses the pattern that was provided
/// earliest, where as leftmost-longest always chooses the longest matching
/// pattern. For example, given the patterns `a` and `ab` and the subject
/// string `ab`, the leftmost-first match is `a` but the leftmost-longest match
/// is `ab`. Conversely, if the patterns were given in reverse order, i.e.,
/// `ab` and `a`, then both the leftmost-first and leftmost-longest matches
/// would be `ab`. Stated differently, the leftmost-first match depends on the
/// order in which the patterns were given to the Aho-Corasick automaton.
/// Because of that, when leftmost-first matching is used, if a pattern `A`
/// that appears before a pattern `B` is a prefix of `B`, then it is impossible
/// to ever observe a match of `B`.
///
/// If you're not sure which match kind to pick, then stick with the standard
/// kind, which is the default. In particular, if you need overlapping or
/// streaming matches, then you _must_ use the standard kind. The leftmost
/// kinds are useful in specific circumstances. For example, leftmost-first can
/// be very useful as a way to implement match priority based on the order of
/// patterns given and leftmost-longest can be useful for dictionary searching
/// such that only the longest matching words are reported.
///
/// # Relationship with regular expression alternations
///
/// Understanding match semantics can be a little tricky, and one easy way
/// to conceptualize non-overlapping matches from an Aho-Corasick automaton
/// is to think about them as a simple alternation of literals in a regular
/// expression. For example, let's say we wanted to match the strings
/// `Sam` and `Samwise`, which would turn into the regex `Sam|Samwise`. It
/// turns out that regular expression engines have two different ways of
/// matching this alternation. The first way, leftmost-longest, is commonly
/// found in POSIX compatible implementations of regular expressions (such as
/// `grep`). The second way, leftmost-first, is commonly found in backtracking
/// implementations such as Perl. (Some regex engines, such as RE2 and Rust's
/// regex engine do not use backtracking, but still implement leftmost-first
/// semantics in an effort to match the behavior of dominant backtracking
/// regex engines such as those found in Perl, Ruby, Python, Javascript and
/// PHP.)
///
/// That is, when matching `Sam|Samwise` against `Samwise`, a POSIX regex
/// will match `Samwise` because it is the longest possible match, but a
/// Perl-like regex will match `Sam` since it appears earlier in the
/// alternation. Indeed, the regex `Sam|Samwise` in a Perl-like regex engine
/// will never match `Samwise` since `Sam` will always have higher priority.
/// Conversely, matching the regex `Samwise|Sam` against `Samwise` will lead to
/// a match of `Samwise` in both POSIX and Perl-like regexes since `Samwise` is
/// still longest match, but it also appears earlier than `Sam`.
///
/// The "standard" match semantics of Aho-Corasick generally don't correspond
/// to the match semantics of any large group of regex implementations, so
/// there's no direct analogy that can be made here. Standard match semantics
/// are generally useful for overlapping matches, or if you just want to see
/// matches as they are detected.
///
/// The main conclusion to draw from this section is that the match semantics
/// can be tweaked to precisely match either Perl-like regex alternations or
/// POSIX regex alternations.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum MatchKind {
/// Use standard match semantics, which support overlapping matches. When
/// used with non-overlapping matches, matches are reported as they are
/// seen.
Standard,
/// Use leftmost-first match semantics, which reports leftmost matches.
/// When there are multiple possible leftmost matches, the match
/// corresponding to the pattern that appeared earlier when constructing
/// the automaton is reported.
///
/// This does **not** support overlapping matches or stream searching. If
/// this match kind is used, attempting to find overlapping matches or
/// stream matches will panic.
LeftmostFirst,
/// Use leftmost-longest match semantics, which reports leftmost matches.
/// When there are multiple possible leftmost matches, the longest match
/// is chosen.
///
/// This does **not** support overlapping matches or stream searching. If
/// this match kind is used, attempting to find overlapping matches or
/// stream matches will panic.
LeftmostLongest,
/// Hints that destructuring should not be exhaustive.
///
/// This enum may grow additional variants, so this makes sure clients
/// don't count on exhaustive matching. (Otherwise, adding a new variant
/// could break existing code.)
#[doc(hidden)]
__Nonexhaustive,
}
/// The default match kind is `MatchKind::Standard`.
impl Default for MatchKind {
fn default() -> MatchKind {
MatchKind::Standard
}
}
impl MatchKind {
fn supports_overlapping(&self) -> bool {
self.is_standard()
}
fn supports_stream(&self) -> bool {
// TODO: It may be possible to support this. It's hard.
//
// See: https://github.com/rust-lang/regex/issues/425#issuecomment-471367838
self.is_standard()
}
pub(crate) fn is_standard(&self) -> bool {
*self == MatchKind::Standard
}
pub(crate) fn is_leftmost(&self) -> bool {
*self == MatchKind::LeftmostFirst
|| *self == MatchKind::LeftmostLongest
}
pub(crate) fn is_leftmost_first(&self) -> bool {
*self == MatchKind::LeftmostFirst
}
/// Convert this match kind into a packed match kind. If this match kind
/// corresponds to standard semantics, then this returns None, since
/// packed searching does not support standard semantics.
pub(crate) fn as_packed(&self) -> Option<packed::MatchKind> {
match *self {
MatchKind::Standard => None,
MatchKind::LeftmostFirst => Some(packed::MatchKind::LeftmostFirst),
MatchKind::LeftmostLongest => {
Some(packed::MatchKind::LeftmostLongest)
}
MatchKind::__Nonexhaustive => unreachable!(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn oibits() {
use std::panic::{RefUnwindSafe, UnwindSafe};
fn assert_send<T: Send>() {}
fn assert_sync<T: Sync>() {}
fn assert_unwind_safe<T: RefUnwindSafe + UnwindSafe>() {}
assert_send::<AhoCorasick>();
assert_sync::<AhoCorasick>();
assert_unwind_safe::<AhoCorasick>();
assert_send::<AhoCorasickBuilder>();
assert_sync::<AhoCorasickBuilder>();
assert_unwind_safe::<AhoCorasickBuilder>();
}
}
|