summaryrefslogtreecommitdiffstats
path: root/third_party/rust/bindgen/ir/analysis/template_params.rs
blob: e88b774deec533ca9c8559cd6f80d5b586394035 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
//! Discover which template type parameters are actually used.
//!
//! ### Why do we care?
//!
//! C++ allows ignoring template parameters, while Rust does not. Usually we can
//! blindly stick a `PhantomData<T>` inside a generic Rust struct to make up for
//! this. That doesn't work for templated type aliases, however:
//!
//! ```C++
//! template <typename T>
//! using Fml = int;
//! ```
//!
//! If we generate the naive Rust code for this alias, we get:
//!
//! ```ignore
//! pub type Fml<T> = ::std::os::raw::int;
//! ```
//!
//! And this is rejected by `rustc` due to the unused type parameter.
//!
//! (Aside: in these simple cases, `libclang` will often just give us the
//! aliased type directly, and we will never even know we were dealing with
//! aliases, let alone templated aliases. It's the more convoluted scenarios
//! where we get to have some fun...)
//!
//! For such problematic template aliases, we could generate a tuple whose
//! second member is a `PhantomData<T>`. Or, if we wanted to go the extra mile,
//! we could even generate some smarter wrapper that implements `Deref`,
//! `DerefMut`, `From`, `Into`, `AsRef`, and `AsMut` to the actually aliased
//! type. However, this is still lackluster:
//!
//! 1. Even with a billion conversion-trait implementations, using the generated
//!    bindings is rather un-ergonomic.
//! 2. With either of these solutions, we need to keep track of which aliases
//!    we've transformed like this in order to generate correct uses of the
//!    wrapped type.
//!
//! Given that we have to properly track which template parameters ended up used
//! for (2), we might as well leverage that information to make ergonomic
//! bindings that don't contain any unused type parameters at all, and
//! completely avoid the pain of (1).
//!
//! ### How do we determine which template parameters are used?
//!
//! Determining which template parameters are actually used is a trickier
//! problem than it might seem at a glance. On the one hand, trivial uses are
//! easy to detect:
//!
//! ```C++
//! template <typename T>
//! class Foo {
//!     T trivial_use_of_t;
//! };
//! ```
//!
//! It gets harder when determining if one template parameter is used depends on
//! determining if another template parameter is used. In this example, whether
//! `U` is used depends on whether `T` is used.
//!
//! ```C++
//! template <typename T>
//! class DoesntUseT {
//!     int x;
//! };
//!
//! template <typename U>
//! class Fml {
//!     DoesntUseT<U> lololol;
//! };
//! ```
//!
//! We can express the set of used template parameters as a constraint solving
//! problem (where the set of template parameters used by a given IR item is the
//! union of its sub-item's used template parameters) and iterate to a
//! fixed-point.
//!
//! We use the `ir::analysis::MonotoneFramework` infrastructure for this
//! fix-point analysis, where our lattice is the mapping from each IR item to
//! the powerset of the template parameters that appear in the input C++ header,
//! our join function is set union. The set of template parameters appearing in
//! the program is finite, as is the number of IR items. We start at our
//! lattice's bottom element: every item mapping to an empty set of template
//! parameters. Our analysis only adds members to each item's set of used
//! template parameters, never removes them, so it is monotone. Because our
//! lattice is finite and our constraint function is monotone, iteration to a
//! fix-point will terminate.
//!
//! See `src/ir/analysis.rs` for more.

use super::{ConstrainResult, MonotoneFramework};
use crate::ir::context::{BindgenContext, ItemId};
use crate::ir::item::{Item, ItemSet};
use crate::ir::template::{TemplateInstantiation, TemplateParameters};
use crate::ir::traversal::{EdgeKind, Trace};
use crate::ir::ty::TypeKind;
use crate::{HashMap, HashSet};

/// An analysis that finds for each IR item its set of template parameters that
/// it uses.
///
/// We use the monotone constraint function `template_param_usage`, defined as
/// follows:
///
/// * If `T` is a named template type parameter, it trivially uses itself:
///
/// ```ignore
/// template_param_usage(T) = { T }
/// ```
///
/// * If `inst` is a template instantiation, `inst.args` are the template
///   instantiation's template arguments, `inst.def` is the template definition
///   being instantiated, and `inst.def.params` is the template definition's
///   template parameters, then the instantiation's usage is the union of each
///   of its arguments' usages *if* the corresponding template parameter is in
///   turn used by the template definition:
///
/// ```ignore
/// template_param_usage(inst) = union(
///     template_param_usage(inst.args[i])
///         for i in 0..length(inst.args.length)
///             if inst.def.params[i] in template_param_usage(inst.def)
/// )
/// ```
///
/// * Finally, for all other IR item kinds, we use our lattice's `join`
/// operation: set union with each successor of the given item's template
/// parameter usage:
///
/// ```ignore
/// template_param_usage(v) =
///     union(template_param_usage(w) for w in successors(v))
/// ```
///
/// Note that we ignore certain edges in the graph, such as edges from a
/// template declaration to its template parameters' definitions for this
/// analysis. If we didn't, then we would mistakenly determine that ever
/// template parameter is always used.
///
/// The final wrinkle is handling of blocklisted types. Normally, we say that
/// the set of allowlisted items is the transitive closure of items explicitly
/// called out for allowlisting, *without* any items explicitly called out as
/// blocklisted. However, for the purposes of this analysis's correctness, we
/// simplify and consider run the analysis on the full transitive closure of
/// allowlisted items. We do, however, treat instantiations of blocklisted items
/// specially; see `constrain_instantiation_of_blocklisted_template` and its
/// documentation for details.
#[derive(Debug, Clone)]
pub struct UsedTemplateParameters<'ctx> {
    ctx: &'ctx BindgenContext,

    // The Option is only there for temporary moves out of the hash map. See the
    // comments in `UsedTemplateParameters::constrain` below.
    used: HashMap<ItemId, Option<ItemSet>>,

    dependencies: HashMap<ItemId, Vec<ItemId>>,

    // The set of allowlisted items, without any blocklisted items reachable
    // from the allowlisted items which would otherwise be considered
    // allowlisted as well.
    allowlisted_items: HashSet<ItemId>,
}

impl<'ctx> UsedTemplateParameters<'ctx> {
    fn consider_edge(kind: EdgeKind) -> bool {
        match kind {
            // For each of these kinds of edges, if the referent uses a template
            // parameter, then it should be considered that the origin of the
            // edge also uses the template parameter.
            EdgeKind::TemplateArgument |
            EdgeKind::BaseMember |
            EdgeKind::Field |
            EdgeKind::Constructor |
            EdgeKind::Destructor |
            EdgeKind::VarType |
            EdgeKind::FunctionReturn |
            EdgeKind::FunctionParameter |
            EdgeKind::TypeReference => true,

            // An inner var or type using a template parameter is orthogonal
            // from whether we use it. See template-param-usage-{6,11}.hpp.
            EdgeKind::InnerVar | EdgeKind::InnerType => false,

            // We can't emit machine code for new monomorphizations of class
            // templates' methods (and don't detect explicit instantiations) so
            // we must ignore template parameters that are only used by
            // methods. This doesn't apply to a function type's return or
            // parameter types, however, because of type aliases of function
            // pointers that use template parameters, eg
            // tests/headers/struct_with_typedef_template_arg.hpp
            EdgeKind::Method => false,

            // If we considered these edges, we would end up mistakenly claiming
            // that every template parameter always used.
            EdgeKind::TemplateDeclaration |
            EdgeKind::TemplateParameterDefinition => false,

            // Since we have to be careful about which edges we consider for
            // this analysis to be correct, we ignore generic edges. We also
            // avoid a `_` wild card to force authors of new edge kinds to
            // determine whether they need to be considered by this analysis.
            EdgeKind::Generic => false,
        }
    }

    fn take_this_id_usage_set<Id: Into<ItemId>>(
        &mut self,
        this_id: Id,
    ) -> ItemSet {
        let this_id = this_id.into();
        self.used
            .get_mut(&this_id)
            .expect(
                "Should have a set of used template params for every item \
                 id",
            )
            .take()
            .expect(
                "Should maintain the invariant that all used template param \
                 sets are `Some` upon entry of `constrain`",
            )
    }

    /// We say that blocklisted items use all of their template parameters. The
    /// blocklisted type is most likely implemented explicitly by the user,
    /// since it won't be in the generated bindings, and we don't know exactly
    /// what they'll to with template parameters, but we can push the issue down
    /// the line to them.
    fn constrain_instantiation_of_blocklisted_template(
        &self,
        this_id: ItemId,
        used_by_this_id: &mut ItemSet,
        instantiation: &TemplateInstantiation,
    ) {
        trace!(
            "    instantiation of blocklisted template, uses all template \
             arguments"
        );

        let args = instantiation
            .template_arguments()
            .iter()
            .map(|a| {
                a.into_resolver()
                    .through_type_refs()
                    .through_type_aliases()
                    .resolve(self.ctx)
                    .id()
            })
            .filter(|a| *a != this_id)
            .flat_map(|a| {
                self.used
                    .get(&a)
                    .expect("Should have a used entry for the template arg")
                    .as_ref()
                    .expect(
                        "Because a != this_id, and all used template \
                         param sets other than this_id's are `Some`, \
                         a's used template param set should be `Some`",
                    )
                    .iter()
                    .cloned()
            });

        used_by_this_id.extend(args);
    }

    /// A template instantiation's concrete template argument is only used if
    /// the template definition uses the corresponding template parameter.
    fn constrain_instantiation(
        &self,
        this_id: ItemId,
        used_by_this_id: &mut ItemSet,
        instantiation: &TemplateInstantiation,
    ) {
        trace!("    template instantiation");

        let decl = self.ctx.resolve_type(instantiation.template_definition());
        let args = instantiation.template_arguments();

        let params = decl.self_template_params(self.ctx);

        debug_assert!(this_id != instantiation.template_definition());
        let used_by_def = self.used
            .get(&instantiation.template_definition().into())
            .expect("Should have a used entry for instantiation's template definition")
            .as_ref()
            .expect("And it should be Some because only this_id's set is None, and an \
                     instantiation's template definition should never be the \
                     instantiation itself");

        for (arg, param) in args.iter().zip(params.iter()) {
            trace!(
                "      instantiation's argument {:?} is used if definition's \
                 parameter {:?} is used",
                arg,
                param
            );

            if used_by_def.contains(&param.into()) {
                trace!("        param is used by template definition");

                let arg = arg
                    .into_resolver()
                    .through_type_refs()
                    .through_type_aliases()
                    .resolve(self.ctx)
                    .id();

                if arg == this_id {
                    continue;
                }

                let used_by_arg = self
                    .used
                    .get(&arg)
                    .expect("Should have a used entry for the template arg")
                    .as_ref()
                    .expect(
                        "Because arg != this_id, and all used template \
                         param sets other than this_id's are `Some`, \
                         arg's used template param set should be \
                         `Some`",
                    )
                    .iter()
                    .cloned();
                used_by_this_id.extend(used_by_arg);
            }
        }
    }

    /// The join operation on our lattice: the set union of all of this id's
    /// successors.
    fn constrain_join(&self, used_by_this_id: &mut ItemSet, item: &Item) {
        trace!("    other item: join with successors' usage");

        item.trace(
            self.ctx,
            &mut |sub_id, edge_kind| {
                // Ignore ourselves, since union with ourself is a
                // no-op. Ignore edges that aren't relevant to the
                // analysis.
                if sub_id == item.id() || !Self::consider_edge(edge_kind) {
                    return;
                }

                let used_by_sub_id = self
                    .used
                    .get(&sub_id)
                    .expect("Should have a used set for the sub_id successor")
                    .as_ref()
                    .expect(
                        "Because sub_id != id, and all used template \
                         param sets other than id's are `Some`, \
                         sub_id's used template param set should be \
                         `Some`",
                    )
                    .iter()
                    .cloned();

                trace!(
                    "      union with {:?}'s usage: {:?}",
                    sub_id,
                    used_by_sub_id.clone().collect::<Vec<_>>()
                );

                used_by_this_id.extend(used_by_sub_id);
            },
            &(),
        );
    }
}

impl<'ctx> MonotoneFramework for UsedTemplateParameters<'ctx> {
    type Node = ItemId;
    type Extra = &'ctx BindgenContext;
    type Output = HashMap<ItemId, ItemSet>;

    fn new(ctx: &'ctx BindgenContext) -> UsedTemplateParameters<'ctx> {
        let mut used = HashMap::default();
        let mut dependencies = HashMap::default();
        let allowlisted_items: HashSet<_> =
            ctx.allowlisted_items().iter().cloned().collect();

        let allowlisted_and_blocklisted_items: ItemSet = allowlisted_items
            .iter()
            .cloned()
            .flat_map(|i| {
                let mut reachable = vec![i];
                i.trace(
                    ctx,
                    &mut |s, _| {
                        reachable.push(s);
                    },
                    &(),
                );
                reachable
            })
            .collect();

        for item in allowlisted_and_blocklisted_items {
            dependencies.entry(item).or_insert_with(Vec::new);
            used.entry(item).or_insert_with(|| Some(ItemSet::new()));

            {
                // We reverse our natural IR graph edges to find dependencies
                // between nodes.
                item.trace(
                    ctx,
                    &mut |sub_item: ItemId, _| {
                        used.entry(sub_item)
                            .or_insert_with(|| Some(ItemSet::new()));
                        dependencies
                            .entry(sub_item)
                            .or_insert_with(Vec::new)
                            .push(item);
                    },
                    &(),
                );
            }

            // Additionally, whether a template instantiation's template
            // arguments are used depends on whether the template declaration's
            // generic template parameters are used.
            let item_kind =
                ctx.resolve_item(item).as_type().map(|ty| ty.kind());
            if let Some(&TypeKind::TemplateInstantiation(ref inst)) = item_kind
            {
                let decl = ctx.resolve_type(inst.template_definition());
                let args = inst.template_arguments();

                // Although template definitions should always have
                // template parameters, there is a single exception:
                // opaque templates. Hence the unwrap_or.
                let params = decl.self_template_params(ctx);

                for (arg, param) in args.iter().zip(params.iter()) {
                    let arg = arg
                        .into_resolver()
                        .through_type_aliases()
                        .through_type_refs()
                        .resolve(ctx)
                        .id();

                    let param = param
                        .into_resolver()
                        .through_type_aliases()
                        .through_type_refs()
                        .resolve(ctx)
                        .id();

                    used.entry(arg).or_insert_with(|| Some(ItemSet::new()));
                    used.entry(param).or_insert_with(|| Some(ItemSet::new()));

                    dependencies
                        .entry(arg)
                        .or_insert_with(Vec::new)
                        .push(param);
                }
            }
        }

        if cfg!(feature = "testing_only_extra_assertions") {
            // Invariant: The `used` map has an entry for every allowlisted
            // item, as well as all explicitly blocklisted items that are
            // reachable from allowlisted items.
            //
            // Invariant: the `dependencies` map has an entry for every
            // allowlisted item.
            //
            // (This is so that every item we call `constrain` on is guaranteed
            // to have a set of template parameters, and we can allow
            // blocklisted templates to use all of their parameters).
            for item in allowlisted_items.iter() {
                extra_assert!(used.contains_key(item));
                extra_assert!(dependencies.contains_key(item));
                item.trace(
                    ctx,
                    &mut |sub_item, _| {
                        extra_assert!(used.contains_key(&sub_item));
                        extra_assert!(dependencies.contains_key(&sub_item));
                    },
                    &(),
                )
            }
        }

        UsedTemplateParameters {
            ctx,
            used,
            dependencies,
            allowlisted_items,
        }
    }

    fn initial_worklist(&self) -> Vec<ItemId> {
        // The transitive closure of all allowlisted items, including explicitly
        // blocklisted items.
        self.ctx
            .allowlisted_items()
            .iter()
            .cloned()
            .flat_map(|i| {
                let mut reachable = vec![i];
                i.trace(
                    self.ctx,
                    &mut |s, _| {
                        reachable.push(s);
                    },
                    &(),
                );
                reachable
            })
            .collect()
    }

    fn constrain(&mut self, id: ItemId) -> ConstrainResult {
        // Invariant: all hash map entries' values are `Some` upon entering and
        // exiting this method.
        extra_assert!(self.used.values().all(|v| v.is_some()));

        // Take the set for this id out of the hash map while we mutate it based
        // on other hash map entries. We *must* put it back into the hash map at
        // the end of this method. This allows us to side-step HashMap's lack of
        // an analog to slice::split_at_mut.
        let mut used_by_this_id = self.take_this_id_usage_set(id);

        trace!("constrain {:?}", id);
        trace!("  initially, used set is {:?}", used_by_this_id);

        let original_len = used_by_this_id.len();

        let item = self.ctx.resolve_item(id);
        let ty_kind = item.as_type().map(|ty| ty.kind());
        match ty_kind {
            // Named template type parameters trivially use themselves.
            Some(&TypeKind::TypeParam) => {
                trace!("    named type, trivially uses itself");
                used_by_this_id.insert(id);
            }
            // Template instantiations only use their template arguments if the
            // template definition uses the corresponding template parameter.
            Some(&TypeKind::TemplateInstantiation(ref inst)) => {
                if self
                    .allowlisted_items
                    .contains(&inst.template_definition().into())
                {
                    self.constrain_instantiation(
                        id,
                        &mut used_by_this_id,
                        inst,
                    );
                } else {
                    self.constrain_instantiation_of_blocklisted_template(
                        id,
                        &mut used_by_this_id,
                        inst,
                    );
                }
            }
            // Otherwise, add the union of each of its referent item's template
            // parameter usage.
            _ => self.constrain_join(&mut used_by_this_id, item),
        }

        trace!("  finally, used set is {:?}", used_by_this_id);

        let new_len = used_by_this_id.len();
        assert!(
            new_len >= original_len,
            "This is the property that ensures this function is monotone -- \
             if it doesn't hold, the analysis might never terminate!"
        );

        // Put the set back in the hash map and restore our invariant.
        debug_assert!(self.used[&id].is_none());
        self.used.insert(id, Some(used_by_this_id));
        extra_assert!(self.used.values().all(|v| v.is_some()));

        if new_len != original_len {
            ConstrainResult::Changed
        } else {
            ConstrainResult::Same
        }
    }

    fn each_depending_on<F>(&self, item: ItemId, mut f: F)
    where
        F: FnMut(ItemId),
    {
        if let Some(edges) = self.dependencies.get(&item) {
            for item in edges {
                trace!("enqueue {:?} into worklist", item);
                f(*item);
            }
        }
    }
}

impl<'ctx> From<UsedTemplateParameters<'ctx>> for HashMap<ItemId, ItemSet> {
    fn from(used_templ_params: UsedTemplateParameters<'ctx>) -> Self {
        used_templ_params
            .used
            .into_iter()
            .map(|(k, v)| (k, v.unwrap()))
            .collect()
    }
}