1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
|
//! Everything related to types in our intermediate representation.
use super::comp::CompInfo;
use super::context::{BindgenContext, ItemId, TypeId};
use super::dot::DotAttributes;
use super::enum_ty::Enum;
use super::function::FunctionSig;
use super::int::IntKind;
use super::item::{IsOpaque, Item};
use super::layout::{Layout, Opaque};
use super::objc::ObjCInterface;
use super::template::{
AsTemplateParam, TemplateInstantiation, TemplateParameters,
};
use super::traversal::{EdgeKind, Trace, Tracer};
use crate::clang::{self, Cursor};
use crate::parse::{ClangItemParser, ParseError, ParseResult};
use std::borrow::Cow;
use std::io;
/// The base representation of a type in bindgen.
///
/// A type has an optional name, which if present cannot be empty, a `layout`
/// (size, alignment and packedness) if known, a `Kind`, which determines which
/// kind of type it is, and whether the type is const.
#[derive(Debug)]
pub struct Type {
/// The name of the type, or None if it was an unnamed struct or union.
name: Option<String>,
/// The layout of the type, if known.
layout: Option<Layout>,
/// The inner kind of the type
kind: TypeKind,
/// Whether this type is const-qualified.
is_const: bool,
}
/// The maximum number of items in an array for which Rust implements common
/// traits, and so if we have a type containing an array with more than this
/// many items, we won't be able to derive common traits on that type.
///
pub const RUST_DERIVE_IN_ARRAY_LIMIT: usize = 32;
impl Type {
/// Get the underlying `CompInfo` for this type, or `None` if this is some
/// other kind of type.
pub fn as_comp(&self) -> Option<&CompInfo> {
match self.kind {
TypeKind::Comp(ref ci) => Some(ci),
_ => None,
}
}
/// Get the underlying `CompInfo` for this type as a mutable reference, or
/// `None` if this is some other kind of type.
pub fn as_comp_mut(&mut self) -> Option<&mut CompInfo> {
match self.kind {
TypeKind::Comp(ref mut ci) => Some(ci),
_ => None,
}
}
/// Construct a new `Type`.
pub fn new(
name: Option<String>,
layout: Option<Layout>,
kind: TypeKind,
is_const: bool,
) -> Self {
Type {
name,
layout,
kind,
is_const,
}
}
/// Which kind of type is this?
pub fn kind(&self) -> &TypeKind {
&self.kind
}
/// Get a mutable reference to this type's kind.
pub fn kind_mut(&mut self) -> &mut TypeKind {
&mut self.kind
}
/// Get this type's name.
pub fn name(&self) -> Option<&str> {
self.name.as_deref()
}
/// Whether this is a block pointer type.
pub fn is_block_pointer(&self) -> bool {
matches!(self.kind, TypeKind::BlockPointer(..))
}
/// Is this a compound type?
pub fn is_comp(&self) -> bool {
matches!(self.kind, TypeKind::Comp(..))
}
/// Is this a union?
pub fn is_union(&self) -> bool {
match self.kind {
TypeKind::Comp(ref comp) => comp.is_union(),
_ => false,
}
}
/// Is this type of kind `TypeKind::TypeParam`?
pub fn is_type_param(&self) -> bool {
matches!(self.kind, TypeKind::TypeParam)
}
/// Is this a template instantiation type?
pub fn is_template_instantiation(&self) -> bool {
matches!(self.kind, TypeKind::TemplateInstantiation(..))
}
/// Is this a template alias type?
pub fn is_template_alias(&self) -> bool {
matches!(self.kind, TypeKind::TemplateAlias(..))
}
/// Is this a function type?
pub fn is_function(&self) -> bool {
matches!(self.kind, TypeKind::Function(..))
}
/// Is this an enum type?
pub fn is_enum(&self) -> bool {
matches!(self.kind, TypeKind::Enum(..))
}
/// Is this either a builtin or named type?
pub fn is_builtin_or_type_param(&self) -> bool {
matches!(
self.kind,
TypeKind::Void |
TypeKind::NullPtr |
TypeKind::Function(..) |
TypeKind::Array(..) |
TypeKind::Reference(..) |
TypeKind::Pointer(..) |
TypeKind::Int(..) |
TypeKind::Float(..) |
TypeKind::TypeParam
)
}
/// Creates a new named type, with name `name`.
pub fn named(name: String) -> Self {
let name = if name.is_empty() { None } else { Some(name) };
Self::new(name, None, TypeKind::TypeParam, false)
}
/// Is this a floating point type?
pub fn is_float(&self) -> bool {
matches!(self.kind, TypeKind::Float(..))
}
/// Is this a boolean type?
pub fn is_bool(&self) -> bool {
matches!(self.kind, TypeKind::Int(IntKind::Bool))
}
/// Is this an integer type?
pub fn is_integer(&self) -> bool {
matches!(self.kind, TypeKind::Int(..))
}
/// Cast this type to an integer kind, or `None` if it is not an integer
/// type.
pub fn as_integer(&self) -> Option<IntKind> {
match self.kind {
TypeKind::Int(int_kind) => Some(int_kind),
_ => None,
}
}
/// Is this a `const` qualified type?
pub fn is_const(&self) -> bool {
self.is_const
}
/// Is this a reference to another type?
pub fn is_type_ref(&self) -> bool {
matches!(
self.kind,
TypeKind::ResolvedTypeRef(_) | TypeKind::UnresolvedTypeRef(_, _, _)
)
}
/// Is this an unresolved reference?
pub fn is_unresolved_ref(&self) -> bool {
matches!(self.kind, TypeKind::UnresolvedTypeRef(_, _, _))
}
/// Is this a incomplete array type?
pub fn is_incomplete_array(&self, ctx: &BindgenContext) -> Option<ItemId> {
match self.kind {
TypeKind::Array(item, len) => {
if len == 0 {
Some(item.into())
} else {
None
}
}
TypeKind::ResolvedTypeRef(inner) => {
ctx.resolve_type(inner).is_incomplete_array(ctx)
}
_ => None,
}
}
/// What is the layout of this type?
pub fn layout(&self, ctx: &BindgenContext) -> Option<Layout> {
self.layout.or_else(|| {
match self.kind {
TypeKind::Comp(ref ci) => ci.layout(ctx),
TypeKind::Array(inner, length) if length == 0 => Some(
Layout::new(0, ctx.resolve_type(inner).layout(ctx)?.align),
),
// FIXME(emilio): This is a hack for anonymous union templates.
// Use the actual pointer size!
TypeKind::Pointer(..) => Some(Layout::new(
ctx.target_pointer_size(),
ctx.target_pointer_size(),
)),
TypeKind::ResolvedTypeRef(inner) => {
ctx.resolve_type(inner).layout(ctx)
}
_ => None,
}
})
}
/// Whether this named type is an invalid C++ identifier. This is done to
/// avoid generating invalid code with some cases we can't handle, see:
///
/// tests/headers/381-decltype-alias.hpp
pub fn is_invalid_type_param(&self) -> bool {
match self.kind {
TypeKind::TypeParam => {
let name = self.name().expect("Unnamed named type?");
!clang::is_valid_identifier(name)
}
_ => false,
}
}
/// Takes `name`, and returns a suitable identifier representation for it.
fn sanitize_name(name: &str) -> Cow<str> {
if clang::is_valid_identifier(name) {
return Cow::Borrowed(name);
}
let name = name.replace(|c| c == ' ' || c == ':' || c == '.', "_");
Cow::Owned(name)
}
/// Get this type's santizied name.
pub fn sanitized_name<'a>(
&'a self,
ctx: &BindgenContext,
) -> Option<Cow<'a, str>> {
let name_info = match *self.kind() {
TypeKind::Pointer(inner) => Some((inner, Cow::Borrowed("ptr"))),
TypeKind::Reference(inner) => Some((inner, Cow::Borrowed("ref"))),
TypeKind::Array(inner, length) => {
Some((inner, format!("array{}", length).into()))
}
_ => None,
};
if let Some((inner, prefix)) = name_info {
ctx.resolve_item(inner)
.expect_type()
.sanitized_name(ctx)
.map(|name| format!("{}_{}", prefix, name).into())
} else {
self.name().map(Self::sanitize_name)
}
}
/// See safe_canonical_type.
pub fn canonical_type<'tr>(
&'tr self,
ctx: &'tr BindgenContext,
) -> &'tr Type {
self.safe_canonical_type(ctx)
.expect("Should have been resolved after parsing!")
}
/// Returns the canonical type of this type, that is, the "inner type".
///
/// For example, for a `typedef`, the canonical type would be the
/// `typedef`ed type, for a template instantiation, would be the template
/// its specializing, and so on. Return None if the type is unresolved.
pub fn safe_canonical_type<'tr>(
&'tr self,
ctx: &'tr BindgenContext,
) -> Option<&'tr Type> {
match self.kind {
TypeKind::TypeParam |
TypeKind::Array(..) |
TypeKind::Vector(..) |
TypeKind::Comp(..) |
TypeKind::Opaque |
TypeKind::Int(..) |
TypeKind::Float(..) |
TypeKind::Complex(..) |
TypeKind::Function(..) |
TypeKind::Enum(..) |
TypeKind::Reference(..) |
TypeKind::Void |
TypeKind::NullPtr |
TypeKind::Pointer(..) |
TypeKind::BlockPointer(..) |
TypeKind::ObjCId |
TypeKind::ObjCSel |
TypeKind::ObjCInterface(..) => Some(self),
TypeKind::ResolvedTypeRef(inner) |
TypeKind::Alias(inner) |
TypeKind::TemplateAlias(inner, _) => {
ctx.resolve_type(inner).safe_canonical_type(ctx)
}
TypeKind::TemplateInstantiation(ref inst) => ctx
.resolve_type(inst.template_definition())
.safe_canonical_type(ctx),
TypeKind::UnresolvedTypeRef(..) => None,
}
}
/// There are some types we don't want to stop at when finding an opaque
/// item, so we can arrive to the proper item that needs to be generated.
pub fn should_be_traced_unconditionally(&self) -> bool {
matches!(
self.kind,
TypeKind::Comp(..) |
TypeKind::Function(..) |
TypeKind::Pointer(..) |
TypeKind::Array(..) |
TypeKind::Reference(..) |
TypeKind::TemplateInstantiation(..) |
TypeKind::ResolvedTypeRef(..)
)
}
}
impl IsOpaque for Type {
type Extra = Item;
fn is_opaque(&self, ctx: &BindgenContext, item: &Item) -> bool {
match self.kind {
TypeKind::Opaque => true,
TypeKind::TemplateInstantiation(ref inst) => {
inst.is_opaque(ctx, item)
}
TypeKind::Comp(ref comp) => comp.is_opaque(ctx, &self.layout),
TypeKind::ResolvedTypeRef(to) => to.is_opaque(ctx, &()),
_ => false,
}
}
}
impl AsTemplateParam for Type {
type Extra = Item;
fn as_template_param(
&self,
ctx: &BindgenContext,
item: &Item,
) -> Option<TypeId> {
self.kind.as_template_param(ctx, item)
}
}
impl AsTemplateParam for TypeKind {
type Extra = Item;
fn as_template_param(
&self,
ctx: &BindgenContext,
item: &Item,
) -> Option<TypeId> {
match *self {
TypeKind::TypeParam => Some(item.id().expect_type_id(ctx)),
TypeKind::ResolvedTypeRef(id) => id.as_template_param(ctx, &()),
_ => None,
}
}
}
impl DotAttributes for Type {
fn dot_attributes<W>(
&self,
ctx: &BindgenContext,
out: &mut W,
) -> io::Result<()>
where
W: io::Write,
{
if let Some(ref layout) = self.layout {
writeln!(
out,
"<tr><td>size</td><td>{}</td></tr>
<tr><td>align</td><td>{}</td></tr>",
layout.size, layout.align
)?;
if layout.packed {
writeln!(out, "<tr><td>packed</td><td>true</td></tr>")?;
}
}
if self.is_const {
writeln!(out, "<tr><td>const</td><td>true</td></tr>")?;
}
self.kind.dot_attributes(ctx, out)
}
}
impl DotAttributes for TypeKind {
fn dot_attributes<W>(
&self,
ctx: &BindgenContext,
out: &mut W,
) -> io::Result<()>
where
W: io::Write,
{
writeln!(
out,
"<tr><td>type kind</td><td>{}</td></tr>",
self.kind_name()
)?;
if let TypeKind::Comp(ref comp) = *self {
comp.dot_attributes(ctx, out)?;
}
Ok(())
}
}
impl TypeKind {
fn kind_name(&self) -> &'static str {
match *self {
TypeKind::Void => "Void",
TypeKind::NullPtr => "NullPtr",
TypeKind::Comp(..) => "Comp",
TypeKind::Opaque => "Opaque",
TypeKind::Int(..) => "Int",
TypeKind::Float(..) => "Float",
TypeKind::Complex(..) => "Complex",
TypeKind::Alias(..) => "Alias",
TypeKind::TemplateAlias(..) => "TemplateAlias",
TypeKind::Array(..) => "Array",
TypeKind::Vector(..) => "Vector",
TypeKind::Function(..) => "Function",
TypeKind::Enum(..) => "Enum",
TypeKind::Pointer(..) => "Pointer",
TypeKind::BlockPointer(..) => "BlockPointer",
TypeKind::Reference(..) => "Reference",
TypeKind::TemplateInstantiation(..) => "TemplateInstantiation",
TypeKind::UnresolvedTypeRef(..) => "UnresolvedTypeRef",
TypeKind::ResolvedTypeRef(..) => "ResolvedTypeRef",
TypeKind::TypeParam => "TypeParam",
TypeKind::ObjCInterface(..) => "ObjCInterface",
TypeKind::ObjCId => "ObjCId",
TypeKind::ObjCSel => "ObjCSel",
}
}
}
#[test]
fn is_invalid_type_param_valid() {
let ty = Type::new(Some("foo".into()), None, TypeKind::TypeParam, false);
assert!(!ty.is_invalid_type_param())
}
#[test]
fn is_invalid_type_param_valid_underscore_and_numbers() {
let ty = Type::new(
Some("_foo123456789_".into()),
None,
TypeKind::TypeParam,
false,
);
assert!(!ty.is_invalid_type_param())
}
#[test]
fn is_invalid_type_param_valid_unnamed_kind() {
let ty = Type::new(Some("foo".into()), None, TypeKind::Void, false);
assert!(!ty.is_invalid_type_param())
}
#[test]
fn is_invalid_type_param_invalid_start() {
let ty = Type::new(Some("1foo".into()), None, TypeKind::TypeParam, false);
assert!(ty.is_invalid_type_param())
}
#[test]
fn is_invalid_type_param_invalid_remaing() {
let ty = Type::new(Some("foo-".into()), None, TypeKind::TypeParam, false);
assert!(ty.is_invalid_type_param())
}
#[test]
#[should_panic]
fn is_invalid_type_param_unnamed() {
let ty = Type::new(None, None, TypeKind::TypeParam, false);
assert!(ty.is_invalid_type_param())
}
#[test]
fn is_invalid_type_param_empty_name() {
let ty = Type::new(Some("".into()), None, TypeKind::TypeParam, false);
assert!(ty.is_invalid_type_param())
}
impl TemplateParameters for Type {
fn self_template_params(&self, ctx: &BindgenContext) -> Vec<TypeId> {
self.kind.self_template_params(ctx)
}
}
impl TemplateParameters for TypeKind {
fn self_template_params(&self, ctx: &BindgenContext) -> Vec<TypeId> {
match *self {
TypeKind::ResolvedTypeRef(id) => {
ctx.resolve_type(id).self_template_params(ctx)
}
TypeKind::Comp(ref comp) => comp.self_template_params(ctx),
TypeKind::TemplateAlias(_, ref args) => args.clone(),
TypeKind::Opaque |
TypeKind::TemplateInstantiation(..) |
TypeKind::Void |
TypeKind::NullPtr |
TypeKind::Int(_) |
TypeKind::Float(_) |
TypeKind::Complex(_) |
TypeKind::Array(..) |
TypeKind::Vector(..) |
TypeKind::Function(_) |
TypeKind::Enum(_) |
TypeKind::Pointer(_) |
TypeKind::BlockPointer(_) |
TypeKind::Reference(_) |
TypeKind::UnresolvedTypeRef(..) |
TypeKind::TypeParam |
TypeKind::Alias(_) |
TypeKind::ObjCId |
TypeKind::ObjCSel |
TypeKind::ObjCInterface(_) => vec![],
}
}
}
/// The kind of float this type represents.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum FloatKind {
/// A `float`.
Float,
/// A `double`.
Double,
/// A `long double`.
LongDouble,
/// A `__float128`.
Float128,
}
/// The different kinds of types that we can parse.
#[derive(Debug)]
pub enum TypeKind {
/// The void type.
Void,
/// The `nullptr_t` type.
NullPtr,
/// A compound type, that is, a class, struct, or union.
Comp(CompInfo),
/// An opaque type that we just don't understand. All usage of this shoulf
/// result in an opaque blob of bytes generated from the containing type's
/// layout.
Opaque,
/// An integer type, of a given kind. `bool` and `char` are also considered
/// integers.
Int(IntKind),
/// A floating point type.
Float(FloatKind),
/// A complex floating point type.
Complex(FloatKind),
/// A type alias, with a name, that points to another type.
Alias(TypeId),
/// A templated alias, pointing to an inner type, just as `Alias`, but with
/// template parameters.
TemplateAlias(TypeId, Vec<TypeId>),
/// A packed vector type: element type, number of elements
Vector(TypeId, usize),
/// An array of a type and a length.
Array(TypeId, usize),
/// A function type, with a given signature.
Function(FunctionSig),
/// An `enum` type.
Enum(Enum),
/// A pointer to a type. The bool field represents whether it's const or
/// not.
Pointer(TypeId),
/// A pointer to an Apple block.
BlockPointer(TypeId),
/// A reference to a type, as in: int& foo().
Reference(TypeId),
/// An instantiation of an abstract template definition with a set of
/// concrete template arguments.
TemplateInstantiation(TemplateInstantiation),
/// A reference to a yet-to-resolve type. This stores the clang cursor
/// itself, and postpones its resolution.
///
/// These are gone in a phase after parsing where these are mapped to
/// already known types, and are converted to ResolvedTypeRef.
///
/// see tests/headers/typeref.hpp to see somewhere where this is a problem.
UnresolvedTypeRef(
clang::Type,
clang::Cursor,
/* parent_id */
Option<ItemId>,
),
/// An indirection to another type.
///
/// These are generated after we resolve a forward declaration, or when we
/// replace one type with another.
ResolvedTypeRef(TypeId),
/// A named type, that is, a template parameter.
TypeParam,
/// Objective C interface. Always referenced through a pointer
ObjCInterface(ObjCInterface),
/// Objective C 'id' type, points to any object
ObjCId,
/// Objective C selector type
ObjCSel,
}
impl Type {
/// This is another of the nasty methods. This one is the one that takes
/// care of the core logic of converting a clang type to a `Type`.
///
/// It's sort of nasty and full of special-casing, but hopefully the
/// comments in every special case justify why they're there.
pub fn from_clang_ty(
potential_id: ItemId,
ty: &clang::Type,
location: Cursor,
parent_id: Option<ItemId>,
ctx: &mut BindgenContext,
) -> Result<ParseResult<Self>, ParseError> {
use clang_sys::*;
{
let already_resolved = ctx.builtin_or_resolved_ty(
potential_id,
parent_id,
ty,
Some(location),
);
if let Some(ty) = already_resolved {
debug!("{:?} already resolved: {:?}", ty, location);
return Ok(ParseResult::AlreadyResolved(ty.into()));
}
}
let layout = ty.fallible_layout(ctx).ok();
let cursor = ty.declaration();
let is_anonymous = cursor.is_anonymous();
let mut name = if is_anonymous {
None
} else {
Some(cursor.spelling()).filter(|n| !n.is_empty())
};
debug!(
"from_clang_ty: {:?}, ty: {:?}, loc: {:?}",
potential_id, ty, location
);
debug!("currently_parsed_types: {:?}", ctx.currently_parsed_types());
let canonical_ty = ty.canonical_type();
// Parse objc protocols as if they were interfaces
let mut ty_kind = ty.kind();
match location.kind() {
CXCursor_ObjCProtocolDecl | CXCursor_ObjCCategoryDecl => {
ty_kind = CXType_ObjCInterface
}
_ => {}
}
// Objective C template type parameter
// FIXME: This is probably wrong, we are attempting to find the
// objc template params, which seem to manifest as a typedef.
// We are rewriting them as id to suppress multiple conflicting
// typedefs at root level
if ty_kind == CXType_Typedef {
let is_template_type_param =
ty.declaration().kind() == CXCursor_TemplateTypeParameter;
let is_canonical_objcpointer =
canonical_ty.kind() == CXType_ObjCObjectPointer;
// We have found a template type for objc interface
if is_canonical_objcpointer && is_template_type_param {
// Objective-C generics are just ids with fancy name.
// To keep it simple, just name them ids
name = Some("id".to_owned());
}
}
if location.kind() == CXCursor_ClassTemplatePartialSpecialization {
// Sorry! (Not sorry)
warn!(
"Found a partial template specialization; bindgen does not \
support partial template specialization! Constructing \
opaque type instead."
);
return Ok(ParseResult::New(
Opaque::from_clang_ty(&canonical_ty, ctx),
None,
));
}
let kind = if location.kind() == CXCursor_TemplateRef ||
(ty.template_args().is_some() && ty_kind != CXType_Typedef)
{
// This is a template instantiation.
match TemplateInstantiation::from_ty(ty, ctx) {
Some(inst) => TypeKind::TemplateInstantiation(inst),
None => TypeKind::Opaque,
}
} else {
match ty_kind {
CXType_Unexposed
if *ty != canonical_ty &&
canonical_ty.kind() != CXType_Invalid &&
ty.ret_type().is_none() &&
// Sometime clang desugars some types more than
// what we need, specially with function
// pointers.
//
// We should also try the solution of inverting
// those checks instead of doing this, that is,
// something like:
//
// CXType_Unexposed if ty.ret_type().is_some()
// => { ... }
//
// etc.
!canonical_ty.spelling().contains("type-parameter") =>
{
debug!("Looking for canonical type: {:?}", canonical_ty);
return Self::from_clang_ty(
potential_id,
&canonical_ty,
location,
parent_id,
ctx,
);
}
CXType_Unexposed | CXType_Invalid => {
// For some reason Clang doesn't give us any hint in some
// situations where we should generate a function pointer (see
// tests/headers/func_ptr_in_struct.h), so we do a guess here
// trying to see if it has a valid return type.
if ty.ret_type().is_some() {
let signature =
FunctionSig::from_ty(ty, &location, ctx)?;
TypeKind::Function(signature)
// Same here, with template specialisations we can safely
// assume this is a Comp(..)
} else if ty.is_fully_instantiated_template() {
debug!(
"Template specialization: {:?}, {:?} {:?}",
ty, location, canonical_ty
);
let complex = CompInfo::from_ty(
potential_id,
ty,
Some(location),
ctx,
)
.expect("C'mon");
TypeKind::Comp(complex)
} else {
match location.kind() {
CXCursor_CXXBaseSpecifier |
CXCursor_ClassTemplate => {
if location.kind() == CXCursor_CXXBaseSpecifier
{
// In the case we're parsing a base specifier
// inside an unexposed or invalid type, it means
// that we're parsing one of two things:
//
// * A template parameter.
// * A complex class that isn't exposed.
//
// This means, unfortunately, that there's no
// good way to differentiate between them.
//
// Probably we could try to look at the
// declaration and complicate more this logic,
// but we'll keep it simple... if it's a valid
// C++ identifier, we'll consider it as a
// template parameter.
//
// This is because:
//
// * We expect every other base that is a
// proper identifier (that is, a simple
// struct/union declaration), to be exposed,
// so this path can't be reached in that
// case.
//
// * Quite conveniently, complex base
// specifiers preserve their full names (that
// is: Foo<T> instead of Foo). We can take
// advantage of this.
//
// If we find some edge case where this doesn't
// work (which I guess is unlikely, see the
// different test cases[1][2][3][4]), we'd need
// to find more creative ways of differentiating
// these two cases.
//
// [1]: inherit_named.hpp
// [2]: forward-inherit-struct-with-fields.hpp
// [3]: forward-inherit-struct.hpp
// [4]: inherit-namespaced.hpp
if location.spelling().chars().all(|c| {
c.is_alphanumeric() || c == '_'
}) {
return Err(ParseError::Recurse);
}
} else {
name = Some(location.spelling());
}
let complex = CompInfo::from_ty(
potential_id,
ty,
Some(location),
ctx,
);
match complex {
Ok(complex) => TypeKind::Comp(complex),
Err(_) => {
warn!(
"Could not create complex type \
from class template or base \
specifier, using opaque blob"
);
let opaque =
Opaque::from_clang_ty(ty, ctx);
return Ok(ParseResult::New(
opaque, None,
));
}
}
}
CXCursor_TypeAliasTemplateDecl => {
debug!("TypeAliasTemplateDecl");
// We need to manually unwind this one.
let mut inner = Err(ParseError::Continue);
let mut args = vec![];
location.visit(|cur| {
match cur.kind() {
CXCursor_TypeAliasDecl => {
let current = cur.cur_type();
debug_assert_eq!(
current.kind(),
CXType_Typedef
);
name = Some(location.spelling());
let inner_ty = cur
.typedef_type()
.expect("Not valid Type?");
inner = Ok(Item::from_ty_or_ref(
inner_ty,
cur,
Some(potential_id),
ctx,
));
}
CXCursor_TemplateTypeParameter => {
let param = Item::type_param(
None, cur, ctx,
)
.expect(
"Item::type_param shouldn't \
ever fail if we are looking \
at a TemplateTypeParameter",
);
args.push(param);
}
_ => {}
}
CXChildVisit_Continue
});
let inner_type = match inner {
Ok(inner) => inner,
Err(..) => {
warn!(
"Failed to parse template alias \
{:?}",
location
);
return Err(ParseError::Continue);
}
};
TypeKind::TemplateAlias(inner_type, args)
}
CXCursor_TemplateRef => {
let referenced = location.referenced().unwrap();
let referenced_ty = referenced.cur_type();
debug!(
"TemplateRef: location = {:?}; referenced = \
{:?}; referenced_ty = {:?}",
location,
referenced,
referenced_ty
);
return Self::from_clang_ty(
potential_id,
&referenced_ty,
referenced,
parent_id,
ctx,
);
}
CXCursor_TypeRef => {
let referenced = location.referenced().unwrap();
let referenced_ty = referenced.cur_type();
let declaration = referenced_ty.declaration();
debug!(
"TypeRef: location = {:?}; referenced = \
{:?}; referenced_ty = {:?}",
location, referenced, referenced_ty
);
let id = Item::from_ty_or_ref_with_id(
potential_id,
referenced_ty,
declaration,
parent_id,
ctx,
);
return Ok(ParseResult::AlreadyResolved(
id.into(),
));
}
CXCursor_NamespaceRef => {
return Err(ParseError::Continue);
}
_ => {
if ty.kind() == CXType_Unexposed {
warn!(
"Unexposed type {:?}, recursing inside, \
loc: {:?}",
ty,
location
);
return Err(ParseError::Recurse);
}
warn!("invalid type {:?}", ty);
return Err(ParseError::Continue);
}
}
}
}
CXType_Auto => {
if canonical_ty == *ty {
debug!("Couldn't find deduced type: {:?}", ty);
return Err(ParseError::Continue);
}
return Self::from_clang_ty(
potential_id,
&canonical_ty,
location,
parent_id,
ctx,
);
}
// NOTE: We don't resolve pointers eagerly because the pointee type
// might not have been parsed, and if it contains templates or
// something else we might get confused, see the comment inside
// TypeRef.
//
// We might need to, though, if the context is already in the
// process of resolving them.
CXType_ObjCObjectPointer |
CXType_MemberPointer |
CXType_Pointer => {
let mut pointee = ty.pointee_type().unwrap();
if *ty != canonical_ty {
let canonical_pointee =
canonical_ty.pointee_type().unwrap();
// clang sometimes loses pointee constness here, see
// #2244.
if canonical_pointee.is_const() != pointee.is_const() {
pointee = canonical_pointee;
}
}
let inner =
Item::from_ty_or_ref(pointee, location, None, ctx);
TypeKind::Pointer(inner)
}
CXType_BlockPointer => {
let pointee = ty.pointee_type().expect("Not valid Type?");
let inner =
Item::from_ty_or_ref(pointee, location, None, ctx);
TypeKind::BlockPointer(inner)
}
// XXX: RValueReference is most likely wrong, but I don't think we
// can even add bindings for that, so huh.
CXType_RValueReference | CXType_LValueReference => {
let inner = Item::from_ty_or_ref(
ty.pointee_type().unwrap(),
location,
None,
ctx,
);
TypeKind::Reference(inner)
}
// XXX DependentSizedArray is wrong
CXType_VariableArray | CXType_DependentSizedArray => {
let inner = Item::from_ty(
ty.elem_type().as_ref().unwrap(),
location,
None,
ctx,
)
.expect("Not able to resolve array element?");
TypeKind::Pointer(inner)
}
CXType_IncompleteArray => {
let inner = Item::from_ty(
ty.elem_type().as_ref().unwrap(),
location,
None,
ctx,
)
.expect("Not able to resolve array element?");
TypeKind::Array(inner, 0)
}
CXType_FunctionNoProto | CXType_FunctionProto => {
let signature = FunctionSig::from_ty(ty, &location, ctx)?;
TypeKind::Function(signature)
}
CXType_Typedef => {
let inner = cursor.typedef_type().expect("Not valid Type?");
let inner_id =
Item::from_ty_or_ref(inner, location, None, ctx);
if inner_id == potential_id {
warn!(
"Generating oqaque type instead of self-referential \
typedef");
// This can happen if we bail out of recursive situations
// within the clang parsing.
TypeKind::Opaque
} else {
// Check if this type definition is an alias to a pointer of a `struct` /
// `union` / `enum` with the same name and add the `_ptr` suffix to it to
// avoid name collisions.
if let Some(ref mut name) = name {
if inner.kind() == CXType_Pointer &&
!ctx.options().c_naming
{
let pointee = inner.pointee_type().unwrap();
if pointee.kind() == CXType_Elaborated &&
pointee.declaration().spelling() == *name
{
*name += "_ptr";
}
}
}
TypeKind::Alias(inner_id)
}
}
CXType_Enum => {
let enum_ = Enum::from_ty(ty, ctx).expect("Not an enum?");
if !is_anonymous {
let pretty_name = ty.spelling();
if clang::is_valid_identifier(&pretty_name) {
name = Some(pretty_name);
}
}
TypeKind::Enum(enum_)
}
CXType_Record => {
let complex = CompInfo::from_ty(
potential_id,
ty,
Some(location),
ctx,
)
.expect("Not a complex type?");
if !is_anonymous {
// The pretty-printed name may contain typedefed name,
// but may also be "struct (anonymous at .h:1)"
let pretty_name = ty.spelling();
if clang::is_valid_identifier(&pretty_name) {
name = Some(pretty_name);
}
}
TypeKind::Comp(complex)
}
CXType_Vector => {
let inner = Item::from_ty(
ty.elem_type().as_ref().unwrap(),
location,
None,
ctx,
)?;
TypeKind::Vector(inner, ty.num_elements().unwrap())
}
CXType_ConstantArray => {
let inner = Item::from_ty(
ty.elem_type().as_ref().unwrap(),
location,
None,
ctx,
)
.expect("Not able to resolve array element?");
TypeKind::Array(inner, ty.num_elements().unwrap())
}
CXType_Elaborated => {
return Self::from_clang_ty(
potential_id,
&ty.named(),
location,
parent_id,
ctx,
);
}
CXType_ObjCId => TypeKind::ObjCId,
CXType_ObjCSel => TypeKind::ObjCSel,
CXType_ObjCClass | CXType_ObjCInterface => {
let interface = ObjCInterface::from_ty(&location, ctx)
.expect("Not a valid objc interface?");
if !is_anonymous {
name = Some(interface.rust_name());
}
TypeKind::ObjCInterface(interface)
}
CXType_Dependent => {
return Err(ParseError::Continue);
}
_ => {
warn!(
"unsupported type: kind = {:?}; ty = {:?}; at {:?}",
ty.kind(),
ty,
location
);
return Err(ParseError::Continue);
}
}
};
name = name.filter(|n| !n.is_empty());
let is_const = ty.is_const() ||
(ty.kind() == CXType_ConstantArray &&
ty.elem_type()
.map_or(false, |element| element.is_const()));
let ty = Type::new(name, layout, kind, is_const);
// TODO: maybe declaration.canonical()?
Ok(ParseResult::New(ty, Some(cursor.canonical())))
}
}
impl Trace for Type {
type Extra = Item;
fn trace<T>(&self, context: &BindgenContext, tracer: &mut T, item: &Item)
where
T: Tracer,
{
if self
.name()
.map_or(false, |name| context.is_stdint_type(name))
{
// These types are special-cased in codegen and don't need to be traversed.
return;
}
match *self.kind() {
TypeKind::Pointer(inner) |
TypeKind::Reference(inner) |
TypeKind::Array(inner, _) |
TypeKind::Vector(inner, _) |
TypeKind::BlockPointer(inner) |
TypeKind::Alias(inner) |
TypeKind::ResolvedTypeRef(inner) => {
tracer.visit_kind(inner.into(), EdgeKind::TypeReference);
}
TypeKind::TemplateAlias(inner, ref template_params) => {
tracer.visit_kind(inner.into(), EdgeKind::TypeReference);
for param in template_params {
tracer.visit_kind(
param.into(),
EdgeKind::TemplateParameterDefinition,
);
}
}
TypeKind::TemplateInstantiation(ref inst) => {
inst.trace(context, tracer, &());
}
TypeKind::Comp(ref ci) => ci.trace(context, tracer, item),
TypeKind::Function(ref sig) => sig.trace(context, tracer, &()),
TypeKind::Enum(ref en) => {
if let Some(repr) = en.repr() {
tracer.visit(repr.into());
}
}
TypeKind::UnresolvedTypeRef(_, _, Some(id)) => {
tracer.visit(id);
}
TypeKind::ObjCInterface(ref interface) => {
interface.trace(context, tracer, &());
}
// None of these variants have edges to other items and types.
TypeKind::Opaque |
TypeKind::UnresolvedTypeRef(_, _, None) |
TypeKind::TypeParam |
TypeKind::Void |
TypeKind::NullPtr |
TypeKind::Int(_) |
TypeKind::Float(_) |
TypeKind::Complex(_) |
TypeKind::ObjCId |
TypeKind::ObjCSel => {}
}
}
}
|