1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
//! The global epoch
//!
//! The last bit in this number is unused and is always zero. Every so often the global epoch is
//! incremented, i.e. we say it "advances". A pinned participant may advance the global epoch only
//! if all currently pinned participants have been pinned in the current epoch.
//!
//! If an object became garbage in some epoch, then we can be sure that after two advancements no
//! participant will hold a reference to it. That is the crux of safe memory reclamation.
use core::sync::atomic::{AtomicUsize, Ordering};
/// An epoch that can be marked as pinned or unpinned.
///
/// Internally, the epoch is represented as an integer that wraps around at some unspecified point
/// and a flag that represents whether it is pinned or unpinned.
#[derive(Copy, Clone, Default, Debug, Eq, PartialEq)]
pub struct Epoch {
/// The least significant bit is set if pinned. The rest of the bits hold the epoch.
data: usize,
}
impl Epoch {
/// Returns the starting epoch in unpinned state.
#[inline]
pub fn starting() -> Self {
Self::default()
}
/// Returns the number of epochs `self` is ahead of `rhs`.
///
/// Internally, epochs are represented as numbers in the range `(isize::MIN / 2) .. (isize::MAX
/// / 2)`, so the returned distance will be in the same interval.
pub fn wrapping_sub(self, rhs: Self) -> isize {
// The result is the same with `(self.data & !1).wrapping_sub(rhs.data & !1) as isize >> 1`,
// because the possible difference of LSB in `(self.data & !1).wrapping_sub(rhs.data & !1)`
// will be ignored in the shift operation.
self.data.wrapping_sub(rhs.data & !1) as isize >> 1
}
/// Returns `true` if the epoch is marked as pinned.
#[inline]
pub fn is_pinned(self) -> bool {
(self.data & 1) == 1
}
/// Returns the same epoch, but marked as pinned.
#[inline]
pub fn pinned(self) -> Epoch {
Epoch {
data: self.data | 1,
}
}
/// Returns the same epoch, but marked as unpinned.
#[inline]
pub fn unpinned(self) -> Epoch {
Epoch {
data: self.data & !1,
}
}
/// Returns the successor epoch.
///
/// The returned epoch will be marked as pinned only if the previous one was as well.
#[inline]
pub fn successor(self) -> Epoch {
Epoch {
data: self.data.wrapping_add(2),
}
}
}
/// An atomic value that holds an `Epoch`.
#[derive(Default, Debug)]
pub struct AtomicEpoch {
/// Since `Epoch` is just a wrapper around `usize`, an `AtomicEpoch` is similarly represented
/// using an `AtomicUsize`.
data: AtomicUsize,
}
impl AtomicEpoch {
/// Creates a new atomic epoch.
#[inline]
pub fn new(epoch: Epoch) -> Self {
let data = AtomicUsize::new(epoch.data);
AtomicEpoch { data }
}
/// Loads a value from the atomic epoch.
#[inline]
pub fn load(&self, ord: Ordering) -> Epoch {
Epoch {
data: self.data.load(ord),
}
}
/// Stores a value into the atomic epoch.
#[inline]
pub fn store(&self, epoch: Epoch, ord: Ordering) {
self.data.store(epoch.data, ord);
}
/// Stores a value into the atomic epoch if the current value is the same as `current`.
///
/// The return value is always the previous value. If it is equal to `current`, then the value
/// is updated.
///
/// The `Ordering` argument describes the memory ordering of this operation.
#[inline]
pub fn compare_and_swap(&self, current: Epoch, new: Epoch, ord: Ordering) -> Epoch {
let data = self.data.compare_and_swap(current.data, new.data, ord);
Epoch { data }
}
}
|