1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
|
//! A multi-producer, single-consumer, futures-aware, FIFO queue with back pressure.
//!
//! A channel can be used as a communication primitive between tasks running on
//! `futures-rs` executors. Channel creation provides `Receiver` and `Sender`
//! handles. `Receiver` implements `Stream` and allows a task to read values
//! out of the channel. If there is no message to read from the channel, the
//! current task will be notified when a new value is sent. `Sender` implements
//! the `Sink` trait and allows a task to send messages into the channel. If
//! the channel is at capacity, then send will be rejected and the task will be
//! notified when additional capacity is available.
//!
//! # Disconnection
//!
//! When all `Sender` handles have been dropped, it is no longer possible to
//! send values into the channel. This is considered the termination event of
//! the stream. As such, `Sender::poll` will return `Ok(Ready(None))`.
//!
//! If the receiver handle is dropped, then messages can no longer be read out
//! of the channel. In this case, a `send` will result in an error.
//!
//! # Clean Shutdown
//!
//! If the `Receiver` is simply dropped, then it is possible for there to be
//! messages still in the channel that will not be processed. As such, it is
//! usually desirable to perform a "clean" shutdown. To do this, the receiver
//! will first call `close`, which will prevent any further messages to be sent
//! into the channel. Then, the receiver consumes the channel to completion, at
//! which point the receiver can be dropped.
// At the core, the channel uses an atomic FIFO queue for message passing. This
// queue is used as the primary coordination primitive. In order to enforce
// capacity limits and handle back pressure, a secondary FIFO queue is used to
// send parked task handles.
//
// The general idea is that the channel is created with a `buffer` size of `n`.
// The channel capacity is `n + num-senders`. Each sender gets one "guaranteed"
// slot to hold a message. This allows `Sender` to know for a fact that a send
// will succeed *before* starting to do the actual work of sending the value.
// Since most of this work is lock-free, once the work starts, it is impossible
// to safely revert.
//
// If the sender is unable to process a send operation, then the current
// task is parked and the handle is sent on the parked task queue.
//
// Note that the implementation guarantees that the channel capacity will never
// exceed the configured limit, however there is no *strict* guarantee that the
// receiver will wake up a parked task *immediately* when a slot becomes
// available. However, it will almost always unpark a task when a slot becomes
// available and it is *guaranteed* that a sender will be unparked when the
// message that caused the sender to become parked is read out of the channel.
//
// The steps for sending a message are roughly:
//
// 1) Increment the channel message count
// 2) If the channel is at capacity, push the task handle onto the wait queue
// 3) Push the message onto the message queue.
//
// The steps for receiving a message are roughly:
//
// 1) Pop a message from the message queue
// 2) Pop a task handle from the wait queue
// 3) Decrement the channel message count.
//
// It's important for the order of operations on lock-free structures to happen
// in reverse order between the sender and receiver. This makes the message
// queue the primary coordination structure and establishes the necessary
// happens-before semantics required for the acquire / release semantics used
// by the queue structure.
use std::fmt;
use std::error::Error;
use std::any::Any;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::SeqCst;
use std::sync::{Arc, Mutex};
use std::thread;
use std::usize;
use sync::mpsc::queue::{Queue, PopResult};
use sync::oneshot;
use task::{self, Task};
use future::Executor;
use sink::SendAll;
use resultstream::{self, Results};
use {Async, AsyncSink, Future, Poll, StartSend, Sink, Stream};
mod queue;
/// The transmission end of a channel which is used to send values.
///
/// This is created by the `channel` method.
#[derive(Debug)]
pub struct Sender<T> {
// Channel state shared between the sender and receiver.
inner: Arc<Inner<T>>,
// Handle to the task that is blocked on this sender. This handle is sent
// to the receiver half in order to be notified when the sender becomes
// unblocked.
sender_task: Arc<Mutex<SenderTask>>,
// True if the sender might be blocked. This is an optimization to avoid
// having to lock the mutex most of the time.
maybe_parked: bool,
}
/// The transmission end of a channel which is used to send values.
///
/// This is created by the `unbounded` method.
#[derive(Debug)]
pub struct UnboundedSender<T>(Sender<T>);
trait AssertKinds: Send + Sync + Clone {}
impl AssertKinds for UnboundedSender<u32> {}
/// The receiving end of a channel which implements the `Stream` trait.
///
/// This is a concrete implementation of a stream which can be used to represent
/// a stream of values being computed elsewhere. This is created by the
/// `channel` method.
#[derive(Debug)]
pub struct Receiver<T> {
inner: Arc<Inner<T>>,
}
/// The receiving end of a channel which implements the `Stream` trait.
///
/// This is a concrete implementation of a stream which can be used to represent
/// a stream of values being computed elsewhere. This is created by the
/// `unbounded` method.
#[derive(Debug)]
pub struct UnboundedReceiver<T>(Receiver<T>);
/// Error type for sending, used when the receiving end of a channel is
/// dropped
#[derive(Clone, PartialEq, Eq)]
pub struct SendError<T>(T);
/// Error type returned from `try_send`
#[derive(Clone, PartialEq, Eq)]
pub struct TrySendError<T> {
kind: TrySendErrorKind<T>,
}
#[derive(Clone, PartialEq, Eq)]
enum TrySendErrorKind<T> {
Full(T),
Disconnected(T),
}
impl<T> fmt::Debug for SendError<T> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_tuple("SendError")
.field(&"...")
.finish()
}
}
impl<T> fmt::Display for SendError<T> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "send failed because receiver is gone")
}
}
impl<T: Any> Error for SendError<T>
{
fn description(&self) -> &str {
"send failed because receiver is gone"
}
}
impl<T> SendError<T> {
/// Returns the message that was attempted to be sent but failed.
pub fn into_inner(self) -> T {
self.0
}
}
impl<T> fmt::Debug for TrySendError<T> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_tuple("TrySendError")
.field(&"...")
.finish()
}
}
impl<T> fmt::Display for TrySendError<T> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
if self.is_full() {
write!(fmt, "send failed because channel is full")
} else {
write!(fmt, "send failed because receiver is gone")
}
}
}
impl<T: Any> Error for TrySendError<T> {
fn description(&self) -> &str {
if self.is_full() {
"send failed because channel is full"
} else {
"send failed because receiver is gone"
}
}
}
impl<T> TrySendError<T> {
/// Returns true if this error is a result of the channel being full
pub fn is_full(&self) -> bool {
use self::TrySendErrorKind::*;
match self.kind {
Full(_) => true,
_ => false,
}
}
/// Returns true if this error is a result of the receiver being dropped
pub fn is_disconnected(&self) -> bool {
use self::TrySendErrorKind::*;
match self.kind {
Disconnected(_) => true,
_ => false,
}
}
/// Returns the message that was attempted to be sent but failed.
pub fn into_inner(self) -> T {
use self::TrySendErrorKind::*;
match self.kind {
Full(v) | Disconnected(v) => v,
}
}
}
#[derive(Debug)]
struct Inner<T> {
// Max buffer size of the channel. If `None` then the channel is unbounded.
buffer: Option<usize>,
// Internal channel state. Consists of the number of messages stored in the
// channel as well as a flag signalling that the channel is closed.
state: AtomicUsize,
// Atomic, FIFO queue used to send messages to the receiver
message_queue: Queue<Option<T>>,
// Atomic, FIFO queue used to send parked task handles to the receiver.
parked_queue: Queue<Arc<Mutex<SenderTask>>>,
// Number of senders in existence
num_senders: AtomicUsize,
// Handle to the receiver's task.
recv_task: Mutex<ReceiverTask>,
}
// Struct representation of `Inner::state`.
#[derive(Debug, Clone, Copy)]
struct State {
// `true` when the channel is open
is_open: bool,
// Number of messages in the channel
num_messages: usize,
}
#[derive(Debug)]
struct ReceiverTask {
unparked: bool,
task: Option<Task>,
}
// Returned from Receiver::try_park()
enum TryPark {
Parked,
Closed,
NotEmpty,
}
// The `is_open` flag is stored in the left-most bit of `Inner::state`
const OPEN_MASK: usize = usize::MAX - (usize::MAX >> 1);
// When a new channel is created, it is created in the open state with no
// pending messages.
const INIT_STATE: usize = OPEN_MASK;
// The maximum number of messages that a channel can track is `usize::MAX >> 1`
const MAX_CAPACITY: usize = !(OPEN_MASK);
// The maximum requested buffer size must be less than the maximum capacity of
// a channel. This is because each sender gets a guaranteed slot.
const MAX_BUFFER: usize = MAX_CAPACITY >> 1;
// Sent to the consumer to wake up blocked producers
#[derive(Debug)]
struct SenderTask {
task: Option<Task>,
is_parked: bool,
}
impl SenderTask {
fn new() -> Self {
SenderTask {
task: None,
is_parked: false,
}
}
fn notify(&mut self) {
self.is_parked = false;
if let Some(task) = self.task.take() {
task.notify();
}
}
}
/// Creates an in-memory channel implementation of the `Stream` trait with
/// bounded capacity.
///
/// This method creates a concrete implementation of the `Stream` trait which
/// can be used to send values across threads in a streaming fashion. This
/// channel is unique in that it implements back pressure to ensure that the
/// sender never outpaces the receiver. The channel capacity is equal to
/// `buffer + num-senders`. In other words, each sender gets a guaranteed slot
/// in the channel capacity, and on top of that there are `buffer` "first come,
/// first serve" slots available to all senders.
///
/// The `Receiver` returned implements the `Stream` trait and has access to any
/// number of the associated combinators for transforming the result.
pub fn channel<T>(buffer: usize) -> (Sender<T>, Receiver<T>) {
// Check that the requested buffer size does not exceed the maximum buffer
// size permitted by the system.
assert!(buffer < MAX_BUFFER, "requested buffer size too large");
channel2(Some(buffer))
}
/// Creates an in-memory channel implementation of the `Stream` trait with
/// unbounded capacity.
///
/// This method creates a concrete implementation of the `Stream` trait which
/// can be used to send values across threads in a streaming fashion. A `send`
/// on this channel will always succeed as long as the receive half has not
/// been closed. If the receiver falls behind, messages will be buffered
/// internally.
///
/// **Note** that the amount of available system memory is an implicit bound to
/// the channel. Using an `unbounded` channel has the ability of causing the
/// process to run out of memory. In this case, the process will be aborted.
pub fn unbounded<T>() -> (UnboundedSender<T>, UnboundedReceiver<T>) {
let (tx, rx) = channel2(None);
(UnboundedSender(tx), UnboundedReceiver(rx))
}
fn channel2<T>(buffer: Option<usize>) -> (Sender<T>, Receiver<T>) {
let inner = Arc::new(Inner {
buffer: buffer,
state: AtomicUsize::new(INIT_STATE),
message_queue: Queue::new(),
parked_queue: Queue::new(),
num_senders: AtomicUsize::new(1),
recv_task: Mutex::new(ReceiverTask {
unparked: false,
task: None,
}),
});
let tx = Sender {
inner: inner.clone(),
sender_task: Arc::new(Mutex::new(SenderTask::new())),
maybe_parked: false,
};
let rx = Receiver {
inner: inner,
};
(tx, rx)
}
/*
*
* ===== impl Sender =====
*
*/
impl<T> Sender<T> {
/// Attempts to send a message on this `Sender<T>` without blocking.
///
/// This function, unlike `start_send`, is safe to call whether it's being
/// called on a task or not. Note that this function, however, will *not*
/// attempt to block the current task if the message cannot be sent.
///
/// It is not recommended to call this function from inside of a future,
/// only from an external thread where you've otherwise arranged to be
/// notified when the channel is no longer full.
pub fn try_send(&mut self, msg: T) -> Result<(), TrySendError<T>> {
// If the sender is currently blocked, reject the message
if !self.poll_unparked(false).is_ready() {
return Err(TrySendError {
kind: TrySendErrorKind::Full(msg),
});
}
// The channel has capacity to accept the message, so send it
self.do_send(Some(msg), false)
.map_err(|SendError(v)| {
TrySendError {
kind: TrySendErrorKind::Disconnected(v),
}
})
}
// Do the send without failing
// None means close
fn do_send(&mut self, msg: Option<T>, do_park: bool) -> Result<(), SendError<T>> {
// First, increment the number of messages contained by the channel.
// This operation will also atomically determine if the sender task
// should be parked.
//
// None is returned in the case that the channel has been closed by the
// receiver. This happens when `Receiver::close` is called or the
// receiver is dropped.
let park_self = match self.inc_num_messages(msg.is_none()) {
Some(park_self) => park_self,
None => {
// The receiver has closed the channel. Only abort if actually
// sending a message. It is important that the stream
// termination (None) is always sent. This technically means
// that it is possible for the queue to contain the following
// number of messages:
//
// num-senders + buffer + 1
//
if let Some(msg) = msg {
return Err(SendError(msg));
} else {
return Ok(());
}
}
};
// If the channel has reached capacity, then the sender task needs to
// be parked. This will send the task handle on the parked task queue.
//
// However, when `do_send` is called while dropping the `Sender`,
// `task::current()` can't be called safely. In this case, in order to
// maintain internal consistency, a blank message is pushed onto the
// parked task queue.
if park_self {
self.park(do_park);
}
self.queue_push_and_signal(msg);
Ok(())
}
// Do the send without parking current task.
//
// To be called from unbounded sender.
fn do_send_nb(&self, msg: T) -> Result<(), SendError<T>> {
match self.inc_num_messages(false) {
Some(park_self) => assert!(!park_self),
None => return Err(SendError(msg)),
};
self.queue_push_and_signal(Some(msg));
Ok(())
}
// Push message to the queue and signal to the receiver
fn queue_push_and_signal(&self, msg: Option<T>) {
// Push the message onto the message queue
self.inner.message_queue.push(msg);
// Signal to the receiver that a message has been enqueued. If the
// receiver is parked, this will unpark the task.
self.signal();
}
// Increment the number of queued messages. Returns if the sender should
// block.
fn inc_num_messages(&self, close: bool) -> Option<bool> {
let mut curr = self.inner.state.load(SeqCst);
loop {
let mut state = decode_state(curr);
// The receiver end closed the channel.
if !state.is_open {
return None;
}
// This probably is never hit? Odds are the process will run out of
// memory first. It may be worth to return something else in this
// case?
assert!(state.num_messages < MAX_CAPACITY, "buffer space exhausted; \
sending this messages would overflow the state");
state.num_messages += 1;
// The channel is closed by all sender handles being dropped.
if close {
state.is_open = false;
}
let next = encode_state(&state);
match self.inner.state.compare_exchange(curr, next, SeqCst, SeqCst) {
Ok(_) => {
// Block if the current number of pending messages has exceeded
// the configured buffer size
let park_self = match self.inner.buffer {
Some(buffer) => state.num_messages > buffer,
None => false,
};
return Some(park_self)
}
Err(actual) => curr = actual,
}
}
}
// Signal to the receiver task that a message has been enqueued
fn signal(&self) {
// TODO
// This logic can probably be improved by guarding the lock with an
// atomic.
//
// Do this step first so that the lock is dropped when
// `unpark` is called
let task = {
let mut recv_task = self.inner.recv_task.lock().unwrap();
// If the receiver has already been unparked, then there is nothing
// more to do
if recv_task.unparked {
return;
}
// Setting this flag enables the receiving end to detect that
// an unpark event happened in order to avoid unnecessarily
// parking.
recv_task.unparked = true;
recv_task.task.take()
};
if let Some(task) = task {
task.notify();
}
}
fn park(&mut self, can_park: bool) {
// TODO: clean up internal state if the task::current will fail
let task = if can_park {
Some(task::current())
} else {
None
};
{
let mut sender = self.sender_task.lock().unwrap();
sender.task = task;
sender.is_parked = true;
}
// Send handle over queue
let t = self.sender_task.clone();
self.inner.parked_queue.push(t);
// Check to make sure we weren't closed after we sent our task on the
// queue
let state = decode_state(self.inner.state.load(SeqCst));
self.maybe_parked = state.is_open;
}
/// Polls the channel to determine if there is guaranteed to be capacity to send at least one
/// item without waiting.
///
/// Returns `Ok(Async::Ready(_))` if there is sufficient capacity, or returns
/// `Ok(Async::NotReady)` if the channel is not guaranteed to have capacity. Returns
/// `Err(SendError(_))` if the receiver has been dropped.
///
/// # Panics
///
/// This method will panic if called from outside the context of a task or future.
pub fn poll_ready(&mut self) -> Poll<(), SendError<()>> {
let state = decode_state(self.inner.state.load(SeqCst));
if !state.is_open {
return Err(SendError(()));
}
Ok(self.poll_unparked(true))
}
/// Returns whether this channel is closed without needing a context.
pub fn is_closed(&self) -> bool {
!decode_state(self.inner.state.load(SeqCst)).is_open
}
fn poll_unparked(&mut self, do_park: bool) -> Async<()> {
// First check the `maybe_parked` variable. This avoids acquiring the
// lock in most cases
if self.maybe_parked {
// Get a lock on the task handle
let mut task = self.sender_task.lock().unwrap();
if !task.is_parked {
self.maybe_parked = false;
return Async::Ready(())
}
// At this point, an unpark request is pending, so there will be an
// unpark sometime in the future. We just need to make sure that
// the correct task will be notified.
//
// Update the task in case the `Sender` has been moved to another
// task
task.task = if do_park {
Some(task::current())
} else {
None
};
Async::NotReady
} else {
Async::Ready(())
}
}
}
impl<T> Sink for Sender<T> {
type SinkItem = T;
type SinkError = SendError<T>;
fn start_send(&mut self, msg: T) -> StartSend<T, SendError<T>> {
// If the sender is currently blocked, reject the message before doing
// any work.
if !self.poll_unparked(true).is_ready() {
return Ok(AsyncSink::NotReady(msg));
}
// The channel has capacity to accept the message, so send it.
self.do_send(Some(msg), true)?;
Ok(AsyncSink::Ready)
}
fn poll_complete(&mut self) -> Poll<(), SendError<T>> {
self.poll_ready()
// At this point, the value cannot be returned and `SendError`
// cannot be created with a `T` without breaking backwards
// comptibility. This means we cannot return an error.
//
// That said, there is also no guarantee that a `poll_complete`
// returning `Ok` implies the receiver sees the message.
.or_else(|_| Ok(().into()))
}
fn close(&mut self) -> Poll<(), SendError<T>> {
Ok(Async::Ready(()))
}
}
impl<T> UnboundedSender<T> {
/// Returns whether this channel is closed without needing a context.
pub fn is_closed(&self) -> bool {
self.0.is_closed()
}
/// Sends the provided message along this channel.
///
/// This is an unbounded sender, so this function differs from `Sink::send`
/// by ensuring the return type reflects that the channel is always ready to
/// receive messages.
#[deprecated(note = "renamed to `unbounded_send`")]
#[doc(hidden)]
pub fn send(&self, msg: T) -> Result<(), SendError<T>> {
self.unbounded_send(msg)
}
/// Sends the provided message along this channel.
///
/// This is an unbounded sender, so this function differs from `Sink::send`
/// by ensuring the return type reflects that the channel is always ready to
/// receive messages.
pub fn unbounded_send(&self, msg: T) -> Result<(), SendError<T>> {
self.0.do_send_nb(msg)
}
}
impl<T> Sink for UnboundedSender<T> {
type SinkItem = T;
type SinkError = SendError<T>;
fn start_send(&mut self, msg: T) -> StartSend<T, SendError<T>> {
self.0.start_send(msg)
}
fn poll_complete(&mut self) -> Poll<(), SendError<T>> {
self.0.poll_complete()
}
fn close(&mut self) -> Poll<(), SendError<T>> {
Ok(Async::Ready(()))
}
}
impl<'a, T> Sink for &'a UnboundedSender<T> {
type SinkItem = T;
type SinkError = SendError<T>;
fn start_send(&mut self, msg: T) -> StartSend<T, SendError<T>> {
self.0.do_send_nb(msg)?;
Ok(AsyncSink::Ready)
}
fn poll_complete(&mut self) -> Poll<(), SendError<T>> {
Ok(Async::Ready(()))
}
fn close(&mut self) -> Poll<(), SendError<T>> {
Ok(Async::Ready(()))
}
}
impl<T> Clone for UnboundedSender<T> {
fn clone(&self) -> UnboundedSender<T> {
UnboundedSender(self.0.clone())
}
}
impl<T> Clone for Sender<T> {
fn clone(&self) -> Sender<T> {
// Since this atomic op isn't actually guarding any memory and we don't
// care about any orderings besides the ordering on the single atomic
// variable, a relaxed ordering is acceptable.
let mut curr = self.inner.num_senders.load(SeqCst);
loop {
// If the maximum number of senders has been reached, then fail
if curr == self.inner.max_senders() {
panic!("cannot clone `Sender` -- too many outstanding senders");
}
debug_assert!(curr < self.inner.max_senders());
let next = curr + 1;
let actual = self.inner.num_senders.compare_and_swap(curr, next, SeqCst);
// The ABA problem doesn't matter here. We only care that the
// number of senders never exceeds the maximum.
if actual == curr {
return Sender {
inner: self.inner.clone(),
sender_task: Arc::new(Mutex::new(SenderTask::new())),
maybe_parked: false,
};
}
curr = actual;
}
}
}
impl<T> Drop for Sender<T> {
fn drop(&mut self) {
// Ordering between variables don't matter here
let prev = self.inner.num_senders.fetch_sub(1, SeqCst);
if prev == 1 {
let _ = self.do_send(None, false);
}
}
}
/*
*
* ===== impl Receiver =====
*
*/
impl<T> Receiver<T> {
/// Closes the receiving half
///
/// This prevents any further messages from being sent on the channel while
/// still enabling the receiver to drain messages that are buffered.
pub fn close(&mut self) {
let mut curr = self.inner.state.load(SeqCst);
loop {
let mut state = decode_state(curr);
if !state.is_open {
break
}
state.is_open = false;
let next = encode_state(&state);
match self.inner.state.compare_exchange(curr, next, SeqCst, SeqCst) {
Ok(_) => break,
Err(actual) => curr = actual,
}
}
// Wake up any threads waiting as they'll see that we've closed the
// channel and will continue on their merry way.
loop {
match unsafe { self.inner.parked_queue.pop() } {
PopResult::Data(task) => {
task.lock().unwrap().notify();
}
PopResult::Empty => break,
PopResult::Inconsistent => thread::yield_now(),
}
}
}
fn next_message(&mut self) -> Async<Option<T>> {
// Pop off a message
loop {
match unsafe { self.inner.message_queue.pop() } {
PopResult::Data(msg) => {
// If there are any parked task handles in the parked queue,
// pop one and unpark it.
self.unpark_one();
// Decrement number of messages
self.dec_num_messages();
return Async::Ready(msg);
}
PopResult::Empty => {
// The queue is empty, return NotReady
return Async::NotReady;
}
PopResult::Inconsistent => {
// Inconsistent means that there will be a message to pop
// in a short time. This branch can only be reached if
// values are being produced from another thread, so there
// are a few ways that we can deal with this:
//
// 1) Spin
// 2) thread::yield_now()
// 3) task::current().unwrap() & return NotReady
//
// For now, thread::yield_now() is used, but it would
// probably be better to spin a few times then yield.
thread::yield_now();
}
}
}
}
// Unpark a single task handle if there is one pending in the parked queue
fn unpark_one(&mut self) {
loop {
match unsafe { self.inner.parked_queue.pop() } {
PopResult::Data(task) => {
task.lock().unwrap().notify();
return;
}
PopResult::Empty => {
// Queue empty, no task to wake up.
return;
}
PopResult::Inconsistent => {
// Same as above
thread::yield_now();
}
}
}
}
// Try to park the receiver task
fn try_park(&self) -> TryPark {
let curr = self.inner.state.load(SeqCst);
let state = decode_state(curr);
// If the channel is closed, then there is no need to park.
if state.is_closed() {
return TryPark::Closed;
}
// First, track the task in the `recv_task` slot
let mut recv_task = self.inner.recv_task.lock().unwrap();
if recv_task.unparked {
// Consume the `unpark` signal without actually parking
recv_task.unparked = false;
return TryPark::NotEmpty;
}
recv_task.task = Some(task::current());
TryPark::Parked
}
fn dec_num_messages(&self) {
let mut curr = self.inner.state.load(SeqCst);
loop {
let mut state = decode_state(curr);
state.num_messages -= 1;
let next = encode_state(&state);
match self.inner.state.compare_exchange(curr, next, SeqCst, SeqCst) {
Ok(_) => break,
Err(actual) => curr = actual,
}
}
}
}
impl<T> Stream for Receiver<T> {
type Item = T;
type Error = ();
fn poll(&mut self) -> Poll<Option<T>, ()> {
loop {
// Try to read a message off of the message queue.
match self.next_message() {
Async::Ready(msg) => return Ok(Async::Ready(msg)),
Async::NotReady => {
// There are no messages to read, in this case, attempt to
// park. The act of parking will verify that the channel is
// still empty after the park operation has completed.
match self.try_park() {
TryPark::Parked => {
// The task was parked, and the channel is still
// empty, return NotReady.
return Ok(Async::NotReady);
}
TryPark::Closed => {
// The channel is closed, there will be no further
// messages.
return Ok(Async::Ready(None));
}
TryPark::NotEmpty => {
// A message has been sent while attempting to
// park. Loop again, the next iteration is
// guaranteed to get the message.
continue;
}
}
}
}
}
}
}
impl<T> Drop for Receiver<T> {
fn drop(&mut self) {
// Drain the channel of all pending messages
self.close();
loop {
match self.next_message() {
Async::Ready(_) => {}
Async::NotReady => {
let curr = self.inner.state.load(SeqCst);
let state = decode_state(curr);
// If the channel is closed, then there is no need to park.
if state.is_closed() {
return;
}
// TODO: Spinning isn't ideal, it might be worth
// investigating using a condvar or some other strategy
// here. That said, if this case is hit, then another thread
// is about to push the value into the queue and this isn't
// the only spinlock in the impl right now.
thread::yield_now();
}
}
}
}
}
impl<T> UnboundedReceiver<T> {
/// Closes the receiving half
///
/// This prevents any further messages from being sent on the channel while
/// still enabling the receiver to drain messages that are buffered.
pub fn close(&mut self) {
self.0.close();
}
}
impl<T> Stream for UnboundedReceiver<T> {
type Item = T;
type Error = ();
fn poll(&mut self) -> Poll<Option<T>, ()> {
self.0.poll()
}
}
/// Handle returned from the `spawn` function.
///
/// This handle is a stream that proxies a stream on a separate `Executor`.
/// Created through the `mpsc::spawn` function, this handle will produce
/// the same values as the proxied stream, as they are produced in the executor,
/// and uses a limited buffer to exert back-pressure on the remote stream.
///
/// If this handle is dropped, then the stream will no longer be polled and is
/// scheduled to be dropped.
pub struct SpawnHandle<Item, Error> {
rx: Receiver<Result<Item, Error>>,
_cancel_tx: oneshot::Sender<()>,
}
/// Type of future which `Executor` instances must be able to execute for `spawn`.
pub struct Execute<S: Stream> {
inner: SendAll<Sender<Result<S::Item, S::Error>>, Results<S, SendError<Result<S::Item, S::Error>>>>,
cancel_rx: oneshot::Receiver<()>,
}
/// Spawns a `stream` onto the instance of `Executor` provided, `executor`,
/// returning a handle representing the remote stream.
///
/// The `stream` will be canceled if the `SpawnHandle` is dropped.
///
/// The `SpawnHandle` returned is a stream that is a proxy for `stream` itself.
/// When `stream` has additional items available, then the `SpawnHandle`
/// will have those same items available.
///
/// At most `buffer + 1` elements will be buffered at a time. If the buffer
/// is full, then `stream` will stop progressing until more space is available.
/// This allows the `SpawnHandle` to exert backpressure on the `stream`.
///
/// # Panics
///
/// This function will panic if `executor` is unable spawn a `Future` containing
/// the entirety of the `stream`.
pub fn spawn<S, E>(stream: S, executor: &E, buffer: usize) -> SpawnHandle<S::Item, S::Error>
where S: Stream,
E: Executor<Execute<S>>
{
let (cancel_tx, cancel_rx) = oneshot::channel();
let (tx, rx) = channel(buffer);
executor.execute(Execute {
inner: tx.send_all(resultstream::new(stream)),
cancel_rx: cancel_rx,
}).expect("failed to spawn stream");
SpawnHandle {
rx: rx,
_cancel_tx: cancel_tx,
}
}
/// Spawns a `stream` onto the instance of `Executor` provided, `executor`,
/// returning a handle representing the remote stream, with unbounded buffering.
///
/// The `stream` will be canceled if the `SpawnHandle` is dropped.
///
/// The `SpawnHandle` returned is a stream that is a proxy for `stream` itself.
/// When `stream` has additional items available, then the `SpawnHandle`
/// will have those same items available.
///
/// An unbounded buffer is used, which means that values will be buffered as
/// fast as `stream` can produce them, without any backpressure. Therefore, if
/// `stream` is an infinite stream, it can use an unbounded amount of memory, and
/// potentially hog CPU resources.
///
/// # Panics
///
/// This function will panic if `executor` is unable spawn a `Future` containing
/// the entirety of the `stream`.
pub fn spawn_unbounded<S, E>(stream: S, executor: &E) -> SpawnHandle<S::Item, S::Error>
where S: Stream,
E: Executor<Execute<S>>
{
let (cancel_tx, cancel_rx) = oneshot::channel();
let (tx, rx) = channel2(None);
executor.execute(Execute {
inner: tx.send_all(resultstream::new(stream)),
cancel_rx: cancel_rx,
}).expect("failed to spawn stream");
SpawnHandle {
rx: rx,
_cancel_tx: cancel_tx,
}
}
impl<I, E> Stream for SpawnHandle<I, E> {
type Item = I;
type Error = E;
fn poll(&mut self) -> Poll<Option<I>, E> {
match self.rx.poll() {
Ok(Async::Ready(Some(Ok(t)))) => Ok(Async::Ready(Some(t.into()))),
Ok(Async::Ready(Some(Err(e)))) => Err(e),
Ok(Async::Ready(None)) => Ok(Async::Ready(None)),
Ok(Async::NotReady) => Ok(Async::NotReady),
Err(_) => unreachable!("mpsc::Receiver should never return Err"),
}
}
}
impl<I, E> fmt::Debug for SpawnHandle<I, E> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("SpawnHandle")
.finish()
}
}
impl<S: Stream> Future for Execute<S> {
type Item = ();
type Error = ();
fn poll(&mut self) -> Poll<(), ()> {
match self.cancel_rx.poll() {
Ok(Async::NotReady) => (),
_ => return Ok(Async::Ready(())),
}
match self.inner.poll() {
Ok(Async::NotReady) => Ok(Async::NotReady),
_ => Ok(Async::Ready(()))
}
}
}
impl<S: Stream> fmt::Debug for Execute<S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Execute")
.finish()
}
}
/*
*
* ===== impl Inner =====
*
*/
impl<T> Inner<T> {
// The return value is such that the total number of messages that can be
// enqueued into the channel will never exceed MAX_CAPACITY
fn max_senders(&self) -> usize {
match self.buffer {
Some(buffer) => MAX_CAPACITY - buffer,
None => MAX_BUFFER,
}
}
}
unsafe impl<T: Send> Send for Inner<T> {}
unsafe impl<T: Send> Sync for Inner<T> {}
impl State {
fn is_closed(&self) -> bool {
!self.is_open && self.num_messages == 0
}
}
/*
*
* ===== Helpers =====
*
*/
fn decode_state(num: usize) -> State {
State {
is_open: num & OPEN_MASK == OPEN_MASK,
num_messages: num & MAX_CAPACITY,
}
}
fn encode_state(state: &State) -> usize {
let mut num = state.num_messages;
if state.is_open {
num |= OPEN_MASK;
}
num
}
|