summaryrefslogtreecommitdiffstats
path: root/third_party/rust/futures-0.1.31/src/unsync/mpsc.rs
blob: ba0d52dc98b26ac032d054a862222dae287d12ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
//! A multi-producer, single-consumer, futures-aware, FIFO queue with back
//! pressure, for use communicating between tasks on the same thread.
//!
//! These queues are the same as those in `futures::sync`, except they're not
//! intended to be sent across threads.

use std::any::Any;
use std::cell::RefCell;
use std::collections::VecDeque;
use std::error::Error;
use std::fmt;
use std::mem;
use std::rc::{Rc, Weak};

use task::{self, Task};
use future::Executor;
use sink::SendAll;
use resultstream::{self, Results};
use unsync::oneshot;
use {Async, AsyncSink, Future, Poll, StartSend, Sink, Stream};

/// Creates a bounded in-memory channel with buffered storage.
///
/// This method creates concrete implementations of the `Stream` and `Sink`
/// traits which can be used to communicate a stream of values between tasks
/// with backpressure. The channel capacity is exactly `buffer`. On average,
/// sending a message through this channel performs no dynamic allocation.
pub fn channel<T>(buffer: usize) -> (Sender<T>, Receiver<T>) {
    channel_(Some(buffer))
}

fn channel_<T>(buffer: Option<usize>) -> (Sender<T>, Receiver<T>) {
    let shared = Rc::new(RefCell::new(Shared {
        buffer: VecDeque::new(),
        capacity: buffer,
        blocked_senders: VecDeque::new(),
        blocked_recv: None,
    }));
    let sender = Sender { shared: Rc::downgrade(&shared) };
    let receiver = Receiver { state: State::Open(shared) };
    (sender, receiver)
}

#[derive(Debug)]
struct Shared<T> {
    buffer: VecDeque<T>,
    capacity: Option<usize>,
    blocked_senders: VecDeque<Task>,
    blocked_recv: Option<Task>,
}

/// The transmission end of a channel.
///
/// This is created by the `channel` function.
#[derive(Debug)]
pub struct Sender<T> {
    shared: Weak<RefCell<Shared<T>>>,
}

impl<T> Sender<T> {
    fn do_send(&self, msg: T) -> StartSend<T, SendError<T>> {
        let shared = match self.shared.upgrade() {
            Some(shared) => shared,
            None => return Err(SendError(msg)), // receiver was dropped
        };
        let mut shared = shared.borrow_mut();

        match shared.capacity {
            Some(capacity) if shared.buffer.len() == capacity => {
                shared.blocked_senders.push_back(task::current());
                Ok(AsyncSink::NotReady(msg))
            }
            _ => {
                shared.buffer.push_back(msg);
                if let Some(task) = shared.blocked_recv.take() {
                    task.notify();
                }
                Ok(AsyncSink::Ready)
            }
        }
    }
}

impl<T> Clone for Sender<T> {
    fn clone(&self) -> Self {
        Sender { shared: self.shared.clone() }
    }
}

impl<T> Sink for Sender<T> {
    type SinkItem = T;
    type SinkError = SendError<T>;

    fn start_send(&mut self, msg: T) -> StartSend<T, SendError<T>> {
        self.do_send(msg)
    }

    fn poll_complete(&mut self) -> Poll<(), SendError<T>> {
        Ok(Async::Ready(()))
    }

    fn close(&mut self) -> Poll<(), SendError<T>> {
        Ok(Async::Ready(()))
    }
}

impl<T> Drop for Sender<T> {
    fn drop(&mut self) {
        let shared = match self.shared.upgrade() {
            Some(shared) => shared,
            None => return,
        };
        // The number of existing `Weak` indicates if we are possibly the last
        // `Sender`. If we are the last, we possibly must notify a blocked
        // `Receiver`. `self.shared` is always one of the `Weak` to this shared
        // data. Therefore the smallest possible Rc::weak_count(&shared) is 1.
        if Rc::weak_count(&shared) == 1 {
            if let Some(task) = shared.borrow_mut().blocked_recv.take() {
                // Wake up receiver as its stream has ended
                task.notify();
            }
        }
    }
}

/// The receiving end of a channel which implements the `Stream` trait.
///
/// This is created by the `channel` function.
#[derive(Debug)]
pub struct Receiver<T> {
    state: State<T>,
}

/// Possible states of a receiver. We're either Open (can receive more messages)
/// or we're closed with a list of messages we have left to receive.
#[derive(Debug)]
enum State<T> {
    Open(Rc<RefCell<Shared<T>>>),
    Closed(VecDeque<T>),
}

impl<T> Receiver<T> {
    /// Closes the receiving half
    ///
    /// This prevents any further messages from being sent on the channel while
    /// still enabling the receiver to drain messages that are buffered.
    pub fn close(&mut self) {
        let (blockers, items) = match self.state {
            State::Open(ref state) => {
                let mut state = state.borrow_mut();
                let items = mem::replace(&mut state.buffer, VecDeque::new());
                let blockers = mem::replace(&mut state.blocked_senders, VecDeque::new());
                (blockers, items)
            }
            State::Closed(_) => return,
        };
        self.state = State::Closed(items);
        for task in blockers {
            task.notify();
        }
    }
}

impl<T> Stream for Receiver<T> {
    type Item = T;
    type Error = ();

    fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
        let me = match self.state {
            State::Open(ref mut me) => me,
            State::Closed(ref mut items) => {
                return Ok(Async::Ready(items.pop_front()))
            }
        };

        if let Some(shared) = Rc::get_mut(me) {
            // All senders have been dropped, so drain the buffer and end the
            // stream.
            return Ok(Async::Ready(shared.borrow_mut().buffer.pop_front()));
        }

        let mut shared = me.borrow_mut();
        if let Some(msg) = shared.buffer.pop_front() {
            if let Some(task) = shared.blocked_senders.pop_front() {
                drop(shared);
                task.notify();
            }
            Ok(Async::Ready(Some(msg)))
        } else {
            shared.blocked_recv = Some(task::current());
            Ok(Async::NotReady)
        }
    }
}

impl<T> Drop for Receiver<T> {
    fn drop(&mut self) {
        self.close();
    }
}

/// The transmission end of an unbounded channel.
///
/// This is created by the `unbounded` function.
#[derive(Debug)]
pub struct UnboundedSender<T>(Sender<T>);

impl<T> Clone for UnboundedSender<T> {
    fn clone(&self) -> Self {
        UnboundedSender(self.0.clone())
    }
}

impl<T> Sink for UnboundedSender<T> {
    type SinkItem = T;
    type SinkError = SendError<T>;

    fn start_send(&mut self, msg: T) -> StartSend<T, SendError<T>> {
        self.0.start_send(msg)
    }
    fn poll_complete(&mut self) -> Poll<(), SendError<T>> {
        Ok(Async::Ready(()))
    }
    fn close(&mut self) -> Poll<(), SendError<T>> {
        Ok(Async::Ready(()))
    }
}

impl<'a, T> Sink for &'a UnboundedSender<T> {
    type SinkItem = T;
    type SinkError = SendError<T>;

    fn start_send(&mut self, msg: T) -> StartSend<T, SendError<T>> {
        self.0.do_send(msg)
    }

    fn poll_complete(&mut self) -> Poll<(), SendError<T>> {
        Ok(Async::Ready(()))
    }

    fn close(&mut self) -> Poll<(), SendError<T>> {
        Ok(Async::Ready(()))
    }
}

impl<T> UnboundedSender<T> {
    /// Sends the provided message along this channel.
    ///
    /// This is an unbounded sender, so this function differs from `Sink::send`
    /// by ensuring the return type reflects that the channel is always ready to
    /// receive messages.
    #[deprecated(note = "renamed to `unbounded_send`")]
    #[doc(hidden)]
    pub fn send(&self, msg: T) -> Result<(), SendError<T>> {
        self.unbounded_send(msg)
    }

    /// Sends the provided message along this channel.
    ///
    /// This is an unbounded sender, so this function differs from `Sink::send`
    /// by ensuring the return type reflects that the channel is always ready to
    /// receive messages.
    pub fn unbounded_send(&self, msg: T) -> Result<(), SendError<T>> {
        let shared = match self.0.shared.upgrade() {
            Some(shared) => shared,
            None => return Err(SendError(msg)),
        };
        let mut shared = shared.borrow_mut();
        shared.buffer.push_back(msg);
        if let Some(task) = shared.blocked_recv.take() {
            drop(shared);
            task.notify();
        }
        Ok(())
    }
}

/// The receiving end of an unbounded channel.
///
/// This is created by the `unbounded` function.
#[derive(Debug)]
pub struct UnboundedReceiver<T>(Receiver<T>);

impl<T> UnboundedReceiver<T> {
    /// Closes the receiving half
    ///
    /// This prevents any further messages from being sent on the channel while
    /// still enabling the receiver to drain messages that are buffered.
    pub fn close(&mut self) {
        self.0.close();
    }
}

impl<T> Stream for UnboundedReceiver<T> {
    type Item = T;
    type Error = ();

    fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
        self.0.poll()
    }
}

/// Creates an unbounded in-memory channel with buffered storage.
///
/// Identical semantics to `channel`, except with no limit to buffer size.
pub fn unbounded<T>() -> (UnboundedSender<T>, UnboundedReceiver<T>) {
    let (send, recv) = channel_(None);
    (UnboundedSender(send), UnboundedReceiver(recv))
}

/// Error type for sending, used when the receiving end of a channel is
/// dropped
pub struct SendError<T>(T);

impl<T> fmt::Debug for SendError<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_tuple("SendError")
            .field(&"...")
            .finish()
    }
}

impl<T> fmt::Display for SendError<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "send failed because receiver is gone")
    }
}

impl<T: Any> Error for SendError<T> {
    fn description(&self) -> &str {
        "send failed because receiver is gone"
    }
}

impl<T> SendError<T> {
    /// Returns the message that was attempted to be sent but failed.
    pub fn into_inner(self) -> T {
        self.0
    }
}

/// Handle returned from the `spawn` function.
///
/// This handle is a stream that proxies a stream on a separate `Executor`.
/// Created through the `mpsc::spawn` function, this handle will produce
/// the same values as the proxied stream, as they are produced in the executor,
/// and uses a limited buffer to exert back-pressure on the remote stream.
///
/// If this handle is dropped, then the stream will no longer be polled and is
/// scheduled to be dropped.
pub struct SpawnHandle<Item, Error> {
    inner: Receiver<Result<Item, Error>>,
    _cancel_tx: oneshot::Sender<()>,
}

/// Type of future which `Executor` instances must be able to execute for `spawn`.
pub struct Execute<S: Stream> {
    inner: SendAll<Sender<Result<S::Item, S::Error>>, Results<S, SendError<Result<S::Item, S::Error>>>>,
    cancel_rx: oneshot::Receiver<()>,
}

/// Spawns a `stream` onto the instance of `Executor` provided, `executor`,
/// returning a handle representing the remote stream.
///
/// The `stream` will be canceled if the `SpawnHandle` is dropped.
///
/// The `SpawnHandle` returned is a stream that is a proxy for `stream` itself.
/// When `stream` has additional items available, then the `SpawnHandle`
/// will have those same items available.
///
/// At most `buffer + 1` elements will be buffered at a time. If the buffer
/// is full, then `stream` will stop progressing until more space is available.
/// This allows the `SpawnHandle` to exert backpressure on the `stream`.
///
/// # Panics
///
/// This function will panic if `executor` is unable spawn a `Future` containing
/// the entirety of the `stream`.
pub fn spawn<S, E>(stream: S, executor: &E, buffer: usize) -> SpawnHandle<S::Item, S::Error>
    where S: Stream,
          E: Executor<Execute<S>>
{
    let (cancel_tx, cancel_rx) = oneshot::channel();
    let (tx, rx) = channel(buffer);
    executor.execute(Execute {
        inner: tx.send_all(resultstream::new(stream)),
        cancel_rx: cancel_rx,
    }).expect("failed to spawn stream");
    SpawnHandle {
        inner: rx,
        _cancel_tx: cancel_tx,
    }
}

/// Spawns a `stream` onto the instance of `Executor` provided, `executor`,
/// returning a handle representing the remote stream, with unbounded buffering.
///
/// The `stream` will be canceled if the `SpawnHandle` is dropped.
///
/// The `SpawnHandle` returned is a stream that is a proxy for `stream` itself.
/// When `stream` has additional items available, then the `SpawnHandle`
/// will have those same items available.
///
/// An unbounded buffer is used, which means that values will be buffered as
/// fast as `stream` can produce them, without any backpressure. Therefore, if
/// `stream` is an infinite stream, it can use an unbounded amount of memory, and
/// potentially hog CPU resources. In particular, if `stream` is infinite
/// and doesn't ever yield (by returning `Async::NotReady` from `poll`), it
/// will result in an infinite loop.
///
/// # Panics
///
/// This function will panic if `executor` is unable spawn a `Future` containing
/// the entirety of the `stream`.
pub fn spawn_unbounded<S,E>(stream: S, executor: &E) -> SpawnHandle<S::Item, S::Error>
    where S: Stream,
          E: Executor<Execute<S>>
{
    let (cancel_tx, cancel_rx) = oneshot::channel();
    let (tx, rx) = channel_(None);
    executor.execute(Execute {
        inner: tx.send_all(resultstream::new(stream)),
        cancel_rx: cancel_rx,
    }).expect("failed to spawn stream");
    SpawnHandle {
        inner: rx,
        _cancel_tx: cancel_tx,
    }
}

impl<I, E> Stream for SpawnHandle<I, E> {
    type Item = I;
    type Error = E;

    fn poll(&mut self) -> Poll<Option<I>, E> {
        match self.inner.poll() {
            Ok(Async::Ready(Some(Ok(t)))) => Ok(Async::Ready(Some(t.into()))),
            Ok(Async::Ready(Some(Err(e)))) => Err(e),
            Ok(Async::Ready(None)) => Ok(Async::Ready(None)),
            Ok(Async::NotReady) => Ok(Async::NotReady),
            Err(_) => unreachable!("mpsc::Receiver should never return Err"),
        }
    }
}

impl<I, E> fmt::Debug for SpawnHandle<I, E> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("SpawnHandle")
            .finish()
    }
}

impl<S: Stream> Future for Execute<S> {
    type Item = ();
    type Error = ();

    fn poll(&mut self) -> Poll<(), ()> {
        match self.cancel_rx.poll() {
            Ok(Async::NotReady) => (),
            _ => return Ok(Async::Ready(())),
        }
        match self.inner.poll() {
            Ok(Async::NotReady) => Ok(Async::NotReady),
            _ => Ok(Async::Ready(()))
        }
    }
}

impl<S: Stream> fmt::Debug for Execute<S> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Execute")
         .finish()
    }
}