1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::convert::TryFrom;
use std::mem;
use std::time::{Duration, Instant};
/// Internal structure for a timer item.
struct TimerItem<T> {
time: Instant,
item: T,
}
impl<T> TimerItem<T> {
fn time(ti: &Self) -> Instant {
ti.time
}
}
/// A timer queue.
/// This uses a classic timer wheel arrangement, with some characteristics that might be considered peculiar.
/// Each slot in the wheel is sorted (complexity O(N) insertions, but O(logN) to find cut points).
/// Time is relative, the wheel has an origin time and it is unable to represent times that are more than
/// `granularity * capacity` past that time.
pub struct Timer<T> {
items: Vec<Vec<TimerItem<T>>>,
now: Instant,
granularity: Duration,
cursor: usize,
}
impl<T> Timer<T> {
/// Construct a new wheel at the given granularity, starting at the given time.
/// # Panics
/// When `capacity` is too large to fit in `u32` or `granularity` is zero.
pub fn new(now: Instant, granularity: Duration, capacity: usize) -> Self {
assert!(u32::try_from(capacity).is_ok());
assert!(granularity.as_nanos() > 0);
let mut items = Vec::with_capacity(capacity);
items.resize_with(capacity, Default::default);
Self {
items,
now,
granularity,
cursor: 0,
}
}
/// Return a reference to the time of the next entry.
#[must_use]
pub fn next_time(&self) -> Option<Instant> {
for i in 0..self.items.len() {
let idx = self.bucket(i);
if let Some(t) = self.items[idx].first() {
return Some(t.time);
}
}
None
}
/// Get the full span of time that this can cover.
/// Two timers cannot be more than this far apart.
/// In practice, this value is less by one amount of the timer granularity.
#[inline]
#[allow(clippy::cast_possible_truncation)] // guarded by assertion
#[must_use]
pub fn span(&self) -> Duration {
self.granularity * (self.items.len() as u32)
}
/// For the given `time`, get the number of whole buckets in the future that is.
#[inline]
#[allow(clippy::cast_possible_truncation)] // guarded by assertion
fn delta(&self, time: Instant) -> usize {
// This really should use Instant::div_duration(), but it can't yet.
((time - self.now).as_nanos() / self.granularity.as_nanos()) as usize
}
#[inline]
fn time_bucket(&self, time: Instant) -> usize {
self.bucket(self.delta(time))
}
#[inline]
fn bucket(&self, delta: usize) -> usize {
debug_assert!(delta < self.items.len());
(self.cursor + delta) % self.items.len()
}
/// Slide forward in time by `n * self.granularity`.
#[allow(clippy::cast_possible_truncation, clippy::reversed_empty_ranges)]
// cast_possible_truncation is ok because we have an assertion guard.
// reversed_empty_ranges is to avoid different types on the if/else.
fn tick(&mut self, n: usize) {
let new = self.bucket(n);
let iter = if new < self.cursor {
(self.cursor..self.items.len()).chain(0..new)
} else {
(self.cursor..new).chain(0..0)
};
for i in iter {
assert!(self.items[i].is_empty());
}
self.now += self.granularity * (n as u32);
self.cursor = new;
}
/// Asserts if the time given is in the past or too far in the future.
/// # Panics
/// When `time` is in the past relative to previous calls.
pub fn add(&mut self, time: Instant, item: T) {
assert!(time >= self.now);
// Skip forward quickly if there is too large a gap.
let short_span = self.span() - self.granularity;
if time >= (self.now + self.span() + short_span) {
// Assert that there aren't any items.
for i in &self.items {
debug_assert!(i.is_empty());
}
self.now = time - short_span;
self.cursor = 0;
}
// Adjust time forward the minimum amount necessary.
let mut d = self.delta(time);
if d >= self.items.len() {
self.tick(1 + d - self.items.len());
d = self.items.len() - 1;
}
let bucket = self.bucket(d);
let ins = match self.items[bucket].binary_search_by_key(&time, TimerItem::time) {
Ok(j) | Err(j) => j,
};
self.items[bucket].insert(ins, TimerItem { time, item });
}
/// Given knowledge of the time an item was added, remove it.
/// This requires use of a predicate that identifies matching items.
pub fn remove<F>(&mut self, time: Instant, mut selector: F) -> Option<T>
where
F: FnMut(&T) -> bool,
{
if time < self.now {
return None;
}
if time > self.now + self.span() {
return None;
}
let bucket = self.time_bucket(time);
let start_index = match self.items[bucket].binary_search_by_key(&time, TimerItem::time) {
Ok(idx) => idx,
Err(_) => return None,
};
// start_index is just one of potentially many items with the same time.
// Search backwards for a match, ...
for i in (0..=start_index).rev() {
if self.items[bucket][i].time != time {
break;
}
if selector(&self.items[bucket][i].item) {
return Some(self.items[bucket].remove(i).item);
}
}
// ... then forwards.
for i in (start_index + 1)..self.items[bucket].len() {
if self.items[bucket][i].time != time {
break;
}
if selector(&self.items[bucket][i].item) {
return Some(self.items[bucket].remove(i).item);
}
}
None
}
/// Take the next item, unless there are no items with
/// a timeout in the past relative to `until`.
pub fn take_next(&mut self, until: Instant) -> Option<T> {
for i in 0..self.items.len() {
let idx = self.bucket(i);
if !self.items[idx].is_empty() && self.items[idx][0].time <= until {
return Some(self.items[idx].remove(0).item);
}
}
None
}
/// Create an iterator that takes all items until the given time.
/// Note: Items might be removed even if the iterator is not fully exhausted.
pub fn take_until(&mut self, until: Instant) -> impl Iterator<Item = T> {
let get_item = move |x: TimerItem<T>| x.item;
if until >= self.now + self.span() {
// Drain everything, so a clean sweep.
let mut empty_items = Vec::with_capacity(self.items.len());
empty_items.resize_with(self.items.len(), Vec::default);
let mut items = mem::replace(&mut self.items, empty_items);
self.now = until;
self.cursor = 0;
let tail = items.split_off(self.cursor);
return tail.into_iter().chain(items).flatten().map(get_item);
}
// Only returning a partial span, so do it bucket at a time.
let delta = self.delta(until);
let mut buckets = Vec::with_capacity(delta + 1);
// First, the whole buckets.
for i in 0..delta {
let idx = self.bucket(i);
buckets.push(mem::take(&mut self.items[idx]));
}
self.tick(delta);
// Now we need to split the last bucket, because there might be
// some items with `item.time > until`.
let bucket = &mut self.items[self.cursor];
let last_idx = match bucket.binary_search_by_key(&until, TimerItem::time) {
Ok(mut m) => {
// If there are multiple values, the search will hit any of them.
// Make sure to get them all.
while m < bucket.len() && bucket[m].time == until {
m += 1;
}
m
}
Err(ins) => ins,
};
let tail = bucket.split_off(last_idx);
buckets.push(mem::replace(bucket, tail));
// This tomfoolery with the empty vector ensures that
// the returned type here matches the one above precisely
// without having to invoke the `either` crate.
buckets.into_iter().chain(vec![]).flatten().map(get_item)
}
}
#[cfg(test)]
mod test {
use super::{Duration, Instant, Timer};
use lazy_static::lazy_static;
lazy_static! {
static ref NOW: Instant = Instant::now();
}
const GRANULARITY: Duration = Duration::from_millis(10);
const CAPACITY: usize = 10;
#[test]
fn create() {
let t: Timer<()> = Timer::new(*NOW, GRANULARITY, CAPACITY);
assert_eq!(t.span(), Duration::from_millis(100));
assert_eq!(None, t.next_time());
}
#[test]
fn immediate_entry() {
let mut t = Timer::new(*NOW, GRANULARITY, CAPACITY);
t.add(*NOW, 12);
assert_eq!(*NOW, t.next_time().expect("should have an entry"));
let values: Vec<_> = t.take_until(*NOW).collect();
assert_eq!(vec![12], values);
}
#[test]
fn same_time() {
let mut t = Timer::new(*NOW, GRANULARITY, CAPACITY);
let v1 = 12;
let v2 = 13;
t.add(*NOW, v1);
t.add(*NOW, v2);
assert_eq!(*NOW, t.next_time().expect("should have an entry"));
let values: Vec<_> = t.take_until(*NOW).collect();
assert!(values.contains(&v1));
assert!(values.contains(&v2));
}
#[test]
fn add() {
let mut t = Timer::new(*NOW, GRANULARITY, CAPACITY);
let near_future = *NOW + Duration::from_millis(17);
let v = 9;
t.add(near_future, v);
assert_eq!(near_future, t.next_time().expect("should return a value"));
assert_eq!(
t.take_until(near_future - Duration::from_millis(1)).count(),
0
);
assert!(t
.take_until(near_future + Duration::from_millis(1))
.any(|x| x == v));
}
#[test]
fn add_future() {
let mut t = Timer::new(*NOW, GRANULARITY, CAPACITY);
let future = *NOW + Duration::from_millis(117);
let v = 9;
t.add(future, v);
assert_eq!(future, t.next_time().expect("should return a value"));
assert!(t.take_until(future).any(|x| x == v));
}
#[test]
fn add_far_future() {
let mut t = Timer::new(*NOW, GRANULARITY, CAPACITY);
let far_future = *NOW + Duration::from_millis(892);
let v = 9;
t.add(far_future, v);
assert_eq!(far_future, t.next_time().expect("should return a value"));
assert!(t.take_until(far_future).any(|x| x == v));
}
const TIMES: &[Duration] = &[
Duration::from_millis(40),
Duration::from_millis(91),
Duration::from_millis(6),
Duration::from_millis(3),
Duration::from_millis(22),
Duration::from_millis(40),
];
fn with_times() -> Timer<usize> {
let mut t = Timer::new(*NOW, GRANULARITY, CAPACITY);
for (i, time) in TIMES.iter().enumerate() {
t.add(*NOW + *time, i);
}
assert_eq!(
*NOW + *TIMES.iter().min().unwrap(),
t.next_time().expect("should have a time")
);
t
}
#[test]
#[allow(clippy::needless_collect)] // false positive
fn multiple_values() {
let mut t = with_times();
let values: Vec<_> = t.take_until(*NOW + *TIMES.iter().max().unwrap()).collect();
for i in 0..TIMES.len() {
assert!(values.contains(&i));
}
}
#[test]
#[allow(clippy::needless_collect)] // false positive
fn take_far_future() {
let mut t = with_times();
let values: Vec<_> = t.take_until(*NOW + Duration::from_secs(100)).collect();
for i in 0..TIMES.len() {
assert!(values.contains(&i));
}
}
#[test]
fn remove_each() {
let mut t = with_times();
for (i, time) in TIMES.iter().enumerate() {
assert_eq!(Some(i), t.remove(*NOW + *time, |&x| x == i));
}
assert_eq!(None, t.next_time());
}
#[test]
fn remove_future() {
let mut t = Timer::new(*NOW, GRANULARITY, CAPACITY);
let future = *NOW + Duration::from_millis(117);
let v = 9;
t.add(future, v);
assert_eq!(Some(v), t.remove(future, |candidate| *candidate == v));
}
#[test]
fn remove_too_far_future() {
let mut t = Timer::new(*NOW, GRANULARITY, CAPACITY);
let future = *NOW + Duration::from_millis(117);
let too_far_future = *NOW + t.span() + Duration::from_millis(117);
let v = 9;
t.add(future, v);
assert_eq!(None, t.remove(too_far_future, |candidate| *candidate == v));
}
}
|