1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
|
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Sequence-related functionality
//!
//! This module provides:
//!
//! * [`SliceRandom`] slice sampling and mutation
//! * [`IteratorRandom`] iterator sampling
//! * [`index::sample`] low-level API to choose multiple indices from
//! `0..length`
//!
//! Also see:
//!
//! * [`crate::distributions::WeightedIndex`] distribution which provides
//! weighted index sampling.
//!
//! In order to make results reproducible across 32-64 bit architectures, all
//! `usize` indices are sampled as a `u32` where possible (also providing a
//! small performance boost in some cases).
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub mod index;
#[cfg(feature = "alloc")] use core::ops::Index;
#[cfg(feature = "alloc")] use alloc::vec::Vec;
#[cfg(feature = "alloc")]
use crate::distributions::uniform::{SampleBorrow, SampleUniform};
#[cfg(feature = "alloc")] use crate::distributions::WeightedError;
use crate::Rng;
/// Extension trait on slices, providing random mutation and sampling methods.
///
/// This trait is implemented on all `[T]` slice types, providing several
/// methods for choosing and shuffling elements. You must `use` this trait:
///
/// ```
/// use rand::seq::SliceRandom;
///
/// let mut rng = rand::thread_rng();
/// let mut bytes = "Hello, random!".to_string().into_bytes();
/// bytes.shuffle(&mut rng);
/// let str = String::from_utf8(bytes).unwrap();
/// println!("{}", str);
/// ```
/// Example output (non-deterministic):
/// ```none
/// l,nmroHado !le
/// ```
pub trait SliceRandom {
/// The element type.
type Item;
/// Returns a reference to one random element of the slice, or `None` if the
/// slice is empty.
///
/// For slices, complexity is `O(1)`.
///
/// # Example
///
/// ```
/// use rand::thread_rng;
/// use rand::seq::SliceRandom;
///
/// let choices = [1, 2, 4, 8, 16, 32];
/// let mut rng = thread_rng();
/// println!("{:?}", choices.choose(&mut rng));
/// assert_eq!(choices[..0].choose(&mut rng), None);
/// ```
fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
where R: Rng + ?Sized;
/// Returns a mutable reference to one random element of the slice, or
/// `None` if the slice is empty.
///
/// For slices, complexity is `O(1)`.
fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
where R: Rng + ?Sized;
/// Chooses `amount` elements from the slice at random, without repetition,
/// and in random order. The returned iterator is appropriate both for
/// collection into a `Vec` and filling an existing buffer (see example).
///
/// In case this API is not sufficiently flexible, use [`index::sample`].
///
/// For slices, complexity is the same as [`index::sample`].
///
/// # Example
/// ```
/// use rand::seq::SliceRandom;
///
/// let mut rng = &mut rand::thread_rng();
/// let sample = "Hello, audience!".as_bytes();
///
/// // collect the results into a vector:
/// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect();
///
/// // store in a buffer:
/// let mut buf = [0u8; 5];
/// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) {
/// *slot = *b;
/// }
/// ```
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item>
where R: Rng + ?Sized;
/// Similar to [`choose`], but where the likelihood of each outcome may be
/// specified.
///
/// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
/// For slices of length `n`, complexity is `O(n)`.
/// See also [`choose_weighted_mut`], [`distributions::weighted`].
///
/// # Example
///
/// ```
/// use rand::prelude::*;
///
/// let choices = [('a', 2), ('b', 1), ('c', 1)];
/// let mut rng = thread_rng();
/// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
/// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0);
/// ```
/// [`choose`]: SliceRandom::choose
/// [`choose_weighted_mut`]: SliceRandom::choose_weighted_mut
/// [`distributions::weighted`]: crate::distributions::weighted
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
fn choose_weighted<R, F, B, X>(
&self, rng: &mut R, weight: F,
) -> Result<&Self::Item, WeightedError>
where
R: Rng + ?Sized,
F: Fn(&Self::Item) -> B,
B: SampleBorrow<X>,
X: SampleUniform
+ for<'a> ::core::ops::AddAssign<&'a X>
+ ::core::cmp::PartialOrd<X>
+ Clone
+ Default;
/// Similar to [`choose_mut`], but where the likelihood of each outcome may
/// be specified.
///
/// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
/// For slices of length `n`, complexity is `O(n)`.
/// See also [`choose_weighted`], [`distributions::weighted`].
///
/// [`choose_mut`]: SliceRandom::choose_mut
/// [`choose_weighted`]: SliceRandom::choose_weighted
/// [`distributions::weighted`]: crate::distributions::weighted
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
fn choose_weighted_mut<R, F, B, X>(
&mut self, rng: &mut R, weight: F,
) -> Result<&mut Self::Item, WeightedError>
where
R: Rng + ?Sized,
F: Fn(&Self::Item) -> B,
B: SampleBorrow<X>,
X: SampleUniform
+ for<'a> ::core::ops::AddAssign<&'a X>
+ ::core::cmp::PartialOrd<X>
+ Clone
+ Default;
/// Similar to [`choose_multiple`], but where the likelihood of each element's
/// inclusion in the output may be specified. The elements are returned in an
/// arbitrary, unspecified order.
///
/// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
/// If all of the weights are equal, even if they are all zero, each element has
/// an equal likelihood of being selected.
///
/// The complexity of this method depends on the feature `partition_at_index`.
/// If the feature is enabled, then for slices of length `n`, the complexity
/// is `O(n)` space and `O(n)` time. Otherwise, the complexity is `O(n)` space and
/// `O(n * log amount)` time.
///
/// # Example
///
/// ```
/// use rand::prelude::*;
///
/// let choices = [('a', 2), ('b', 1), ('c', 1)];
/// let mut rng = thread_rng();
/// // First Draw * Second Draw = total odds
/// // -----------------------
/// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'b']` in some order.
/// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'c']` in some order.
/// // (25% * 33%) + (25% * 33%) = 16.6% chance that the output is `['b', 'c']` in some order.
/// println!("{:?}", choices.choose_multiple_weighted(&mut rng, 2, |item| item.1).unwrap().collect::<Vec<_>>());
/// ```
/// [`choose_multiple`]: SliceRandom::choose_multiple
//
// Note: this is feature-gated on std due to usage of f64::powf.
// If necessary, we may use alloc+libm as an alternative (see PR #1089).
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
fn choose_multiple_weighted<R, F, X>(
&self, rng: &mut R, amount: usize, weight: F,
) -> Result<SliceChooseIter<Self, Self::Item>, WeightedError>
where
R: Rng + ?Sized,
F: Fn(&Self::Item) -> X,
X: Into<f64>;
/// Shuffle a mutable slice in place.
///
/// For slices of length `n`, complexity is `O(n)`.
///
/// # Example
///
/// ```
/// use rand::seq::SliceRandom;
/// use rand::thread_rng;
///
/// let mut rng = thread_rng();
/// let mut y = [1, 2, 3, 4, 5];
/// println!("Unshuffled: {:?}", y);
/// y.shuffle(&mut rng);
/// println!("Shuffled: {:?}", y);
/// ```
fn shuffle<R>(&mut self, rng: &mut R)
where R: Rng + ?Sized;
/// Shuffle a slice in place, but exit early.
///
/// Returns two mutable slices from the source slice. The first contains
/// `amount` elements randomly permuted. The second has the remaining
/// elements that are not fully shuffled.
///
/// This is an efficient method to select `amount` elements at random from
/// the slice, provided the slice may be mutated.
///
/// If you only need to choose elements randomly and `amount > self.len()/2`
/// then you may improve performance by taking
/// `amount = values.len() - amount` and using only the second slice.
///
/// If `amount` is greater than the number of elements in the slice, this
/// will perform a full shuffle.
///
/// For slices, complexity is `O(m)` where `m = amount`.
fn partial_shuffle<R>(
&mut self, rng: &mut R, amount: usize,
) -> (&mut [Self::Item], &mut [Self::Item])
where R: Rng + ?Sized;
}
/// Extension trait on iterators, providing random sampling methods.
///
/// This trait is implemented on all iterators `I` where `I: Iterator + Sized`
/// and provides methods for
/// choosing one or more elements. You must `use` this trait:
///
/// ```
/// use rand::seq::IteratorRandom;
///
/// let mut rng = rand::thread_rng();
///
/// let faces = "😀😎😐😕😠😢";
/// println!("I am {}!", faces.chars().choose(&mut rng).unwrap());
/// ```
/// Example output (non-deterministic):
/// ```none
/// I am 😀!
/// ```
pub trait IteratorRandom: Iterator + Sized {
/// Choose one element at random from the iterator.
///
/// Returns `None` if and only if the iterator is empty.
///
/// This method uses [`Iterator::size_hint`] for optimisation. With an
/// accurate hint and where [`Iterator::nth`] is a constant-time operation
/// this method can offer `O(1)` performance. Where no size hint is
/// available, complexity is `O(n)` where `n` is the iterator length.
/// Partial hints (where `lower > 0`) also improve performance.
///
/// Note that the output values and the number of RNG samples used
/// depends on size hints. In particular, `Iterator` combinators that don't
/// change the values yielded but change the size hints may result in
/// `choose` returning different elements. If you want consistent results
/// and RNG usage consider using [`IteratorRandom::choose_stable`].
fn choose<R>(mut self, rng: &mut R) -> Option<Self::Item>
where R: Rng + ?Sized {
let (mut lower, mut upper) = self.size_hint();
let mut consumed = 0;
let mut result = None;
// Handling for this condition outside the loop allows the optimizer to eliminate the loop
// when the Iterator is an ExactSizeIterator. This has a large performance impact on e.g.
// seq_iter_choose_from_1000.
if upper == Some(lower) {
return if lower == 0 {
None
} else {
self.nth(gen_index(rng, lower))
};
}
// Continue until the iterator is exhausted
loop {
if lower > 1 {
let ix = gen_index(rng, lower + consumed);
let skip = if ix < lower {
result = self.nth(ix);
lower - (ix + 1)
} else {
lower
};
if upper == Some(lower) {
return result;
}
consumed += lower;
if skip > 0 {
self.nth(skip - 1);
}
} else {
let elem = self.next();
if elem.is_none() {
return result;
}
consumed += 1;
if gen_index(rng, consumed) == 0 {
result = elem;
}
}
let hint = self.size_hint();
lower = hint.0;
upper = hint.1;
}
}
/// Choose one element at random from the iterator.
///
/// Returns `None` if and only if the iterator is empty.
///
/// This method is very similar to [`choose`] except that the result
/// only depends on the length of the iterator and the values produced by
/// `rng`. Notably for any iterator of a given length this will make the
/// same requests to `rng` and if the same sequence of values are produced
/// the same index will be selected from `self`. This may be useful if you
/// need consistent results no matter what type of iterator you are working
/// with. If you do not need this stability prefer [`choose`].
///
/// Note that this method still uses [`Iterator::size_hint`] to skip
/// constructing elements where possible, however the selection and `rng`
/// calls are the same in the face of this optimization. If you want to
/// force every element to be created regardless call `.inspect(|e| ())`.
///
/// [`choose`]: IteratorRandom::choose
fn choose_stable<R>(mut self, rng: &mut R) -> Option<Self::Item>
where R: Rng + ?Sized {
let mut consumed = 0;
let mut result = None;
loop {
// Currently the only way to skip elements is `nth()`. So we need to
// store what index to access next here.
// This should be replaced by `advance_by()` once it is stable:
// https://github.com/rust-lang/rust/issues/77404
let mut next = 0;
let (lower, _) = self.size_hint();
if lower >= 2 {
let highest_selected = (0..lower)
.filter(|ix| gen_index(rng, consumed+ix+1) == 0)
.last();
consumed += lower;
next = lower;
if let Some(ix) = highest_selected {
result = self.nth(ix);
next -= ix + 1;
debug_assert!(result.is_some(), "iterator shorter than size_hint().0");
}
}
let elem = self.nth(next);
if elem.is_none() {
return result
}
if gen_index(rng, consumed+1) == 0 {
result = elem;
}
consumed += 1;
}
}
/// Collects values at random from the iterator into a supplied buffer
/// until that buffer is filled.
///
/// Although the elements are selected randomly, the order of elements in
/// the buffer is neither stable nor fully random. If random ordering is
/// desired, shuffle the result.
///
/// Returns the number of elements added to the buffer. This equals the length
/// of the buffer unless the iterator contains insufficient elements, in which
/// case this equals the number of elements available.
///
/// Complexity is `O(n)` where `n` is the length of the iterator.
/// For slices, prefer [`SliceRandom::choose_multiple`].
fn choose_multiple_fill<R>(mut self, rng: &mut R, buf: &mut [Self::Item]) -> usize
where R: Rng + ?Sized {
let amount = buf.len();
let mut len = 0;
while len < amount {
if let Some(elem) = self.next() {
buf[len] = elem;
len += 1;
} else {
// Iterator exhausted; stop early
return len;
}
}
// Continue, since the iterator was not exhausted
for (i, elem) in self.enumerate() {
let k = gen_index(rng, i + 1 + amount);
if let Some(slot) = buf.get_mut(k) {
*slot = elem;
}
}
len
}
/// Collects `amount` values at random from the iterator into a vector.
///
/// This is equivalent to `choose_multiple_fill` except for the result type.
///
/// Although the elements are selected randomly, the order of elements in
/// the buffer is neither stable nor fully random. If random ordering is
/// desired, shuffle the result.
///
/// The length of the returned vector equals `amount` unless the iterator
/// contains insufficient elements, in which case it equals the number of
/// elements available.
///
/// Complexity is `O(n)` where `n` is the length of the iterator.
/// For slices, prefer [`SliceRandom::choose_multiple`].
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
fn choose_multiple<R>(mut self, rng: &mut R, amount: usize) -> Vec<Self::Item>
where R: Rng + ?Sized {
let mut reservoir = Vec::with_capacity(amount);
reservoir.extend(self.by_ref().take(amount));
// Continue unless the iterator was exhausted
//
// note: this prevents iterators that "restart" from causing problems.
// If the iterator stops once, then so do we.
if reservoir.len() == amount {
for (i, elem) in self.enumerate() {
let k = gen_index(rng, i + 1 + amount);
if let Some(slot) = reservoir.get_mut(k) {
*slot = elem;
}
}
} else {
// Don't hang onto extra memory. There is a corner case where
// `amount` was much less than `self.len()`.
reservoir.shrink_to_fit();
}
reservoir
}
}
impl<T> SliceRandom for [T] {
type Item = T;
fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
where R: Rng + ?Sized {
if self.is_empty() {
None
} else {
Some(&self[gen_index(rng, self.len())])
}
}
fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
where R: Rng + ?Sized {
if self.is_empty() {
None
} else {
let len = self.len();
Some(&mut self[gen_index(rng, len)])
}
}
#[cfg(feature = "alloc")]
fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item>
where R: Rng + ?Sized {
let amount = ::core::cmp::min(amount, self.len());
SliceChooseIter {
slice: self,
_phantom: Default::default(),
indices: index::sample(rng, self.len(), amount).into_iter(),
}
}
#[cfg(feature = "alloc")]
fn choose_weighted<R, F, B, X>(
&self, rng: &mut R, weight: F,
) -> Result<&Self::Item, WeightedError>
where
R: Rng + ?Sized,
F: Fn(&Self::Item) -> B,
B: SampleBorrow<X>,
X: SampleUniform
+ for<'a> ::core::ops::AddAssign<&'a X>
+ ::core::cmp::PartialOrd<X>
+ Clone
+ Default,
{
use crate::distributions::{Distribution, WeightedIndex};
let distr = WeightedIndex::new(self.iter().map(weight))?;
Ok(&self[distr.sample(rng)])
}
#[cfg(feature = "alloc")]
fn choose_weighted_mut<R, F, B, X>(
&mut self, rng: &mut R, weight: F,
) -> Result<&mut Self::Item, WeightedError>
where
R: Rng + ?Sized,
F: Fn(&Self::Item) -> B,
B: SampleBorrow<X>,
X: SampleUniform
+ for<'a> ::core::ops::AddAssign<&'a X>
+ ::core::cmp::PartialOrd<X>
+ Clone
+ Default,
{
use crate::distributions::{Distribution, WeightedIndex};
let distr = WeightedIndex::new(self.iter().map(weight))?;
Ok(&mut self[distr.sample(rng)])
}
#[cfg(feature = "std")]
fn choose_multiple_weighted<R, F, X>(
&self, rng: &mut R, amount: usize, weight: F,
) -> Result<SliceChooseIter<Self, Self::Item>, WeightedError>
where
R: Rng + ?Sized,
F: Fn(&Self::Item) -> X,
X: Into<f64>,
{
let amount = ::core::cmp::min(amount, self.len());
Ok(SliceChooseIter {
slice: self,
_phantom: Default::default(),
indices: index::sample_weighted(
rng,
self.len(),
|idx| weight(&self[idx]).into(),
amount,
)?
.into_iter(),
})
}
fn shuffle<R>(&mut self, rng: &mut R)
where R: Rng + ?Sized {
for i in (1..self.len()).rev() {
// invariant: elements with index > i have been locked in place.
self.swap(i, gen_index(rng, i + 1));
}
}
fn partial_shuffle<R>(
&mut self, rng: &mut R, amount: usize,
) -> (&mut [Self::Item], &mut [Self::Item])
where R: Rng + ?Sized {
// This applies Durstenfeld's algorithm for the
// [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
// for an unbiased permutation, but exits early after choosing `amount`
// elements.
let len = self.len();
let end = if amount >= len { 0 } else { len - amount };
for i in (end..len).rev() {
// invariant: elements with index > i have been locked in place.
self.swap(i, gen_index(rng, i + 1));
}
let r = self.split_at_mut(end);
(r.1, r.0)
}
}
impl<I> IteratorRandom for I where I: Iterator + Sized {}
/// An iterator over multiple slice elements.
///
/// This struct is created by
/// [`SliceRandom::choose_multiple`](trait.SliceRandom.html#tymethod.choose_multiple).
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
#[derive(Debug)]
pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> {
slice: &'a S,
_phantom: ::core::marker::PhantomData<T>,
indices: index::IndexVecIntoIter,
}
#[cfg(feature = "alloc")]
impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> {
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
// TODO: investigate using SliceIndex::get_unchecked when stable
self.indices.next().map(|i| &self.slice[i as usize])
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.indices.len(), Some(self.indices.len()))
}
}
#[cfg(feature = "alloc")]
impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator
for SliceChooseIter<'a, S, T>
{
fn len(&self) -> usize {
self.indices.len()
}
}
// Sample a number uniformly between 0 and `ubound`. Uses 32-bit sampling where
// possible, primarily in order to produce the same output on 32-bit and 64-bit
// platforms.
#[inline]
fn gen_index<R: Rng + ?Sized>(rng: &mut R, ubound: usize) -> usize {
if ubound <= (core::u32::MAX as usize) {
rng.gen_range(0..ubound as u32) as usize
} else {
rng.gen_range(0..ubound)
}
}
#[cfg(test)]
mod test {
use super::*;
#[cfg(feature = "alloc")] use crate::Rng;
#[cfg(all(feature = "alloc", not(feature = "std")))] use alloc::vec::Vec;
#[test]
fn test_slice_choose() {
let mut r = crate::test::rng(107);
let chars = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
];
let mut chosen = [0i32; 14];
// The below all use a binomial distribution with n=1000, p=1/14.
// binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5
for _ in 0..1000 {
let picked = *chars.choose(&mut r).unwrap();
chosen[(picked as usize) - ('a' as usize)] += 1;
}
for count in chosen.iter() {
assert!(40 < *count && *count < 106);
}
chosen.iter_mut().for_each(|x| *x = 0);
for _ in 0..1000 {
*chosen.choose_mut(&mut r).unwrap() += 1;
}
for count in chosen.iter() {
assert!(40 < *count && *count < 106);
}
let mut v: [isize; 0] = [];
assert_eq!(v.choose(&mut r), None);
assert_eq!(v.choose_mut(&mut r), None);
}
#[test]
fn value_stability_slice() {
let mut r = crate::test::rng(413);
let chars = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
];
let mut nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
assert_eq!(chars.choose(&mut r), Some(&'l'));
assert_eq!(nums.choose_mut(&mut r), Some(&mut 10));
#[cfg(feature = "alloc")]
assert_eq!(
&chars
.choose_multiple(&mut r, 8)
.cloned()
.collect::<Vec<char>>(),
&['d', 'm', 'b', 'n', 'c', 'k', 'h', 'e']
);
#[cfg(feature = "alloc")]
assert_eq!(chars.choose_weighted(&mut r, |_| 1), Ok(&'f'));
#[cfg(feature = "alloc")]
assert_eq!(nums.choose_weighted_mut(&mut r, |_| 1), Ok(&mut 5));
let mut r = crate::test::rng(414);
nums.shuffle(&mut r);
assert_eq!(nums, [9, 5, 3, 10, 7, 12, 8, 11, 6, 4, 0, 2, 1]);
nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
let res = nums.partial_shuffle(&mut r, 6);
assert_eq!(res.0, &mut [7, 4, 8, 6, 9, 3]);
assert_eq!(res.1, &mut [0, 1, 2, 12, 11, 5, 10]);
}
#[derive(Clone)]
struct UnhintedIterator<I: Iterator + Clone> {
iter: I,
}
impl<I: Iterator + Clone> Iterator for UnhintedIterator<I> {
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
}
#[derive(Clone)]
struct ChunkHintedIterator<I: ExactSizeIterator + Iterator + Clone> {
iter: I,
chunk_remaining: usize,
chunk_size: usize,
hint_total_size: bool,
}
impl<I: ExactSizeIterator + Iterator + Clone> Iterator for ChunkHintedIterator<I> {
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
if self.chunk_remaining == 0 {
self.chunk_remaining = ::core::cmp::min(self.chunk_size, self.iter.len());
}
self.chunk_remaining = self.chunk_remaining.saturating_sub(1);
self.iter.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
(
self.chunk_remaining,
if self.hint_total_size {
Some(self.iter.len())
} else {
None
},
)
}
}
#[derive(Clone)]
struct WindowHintedIterator<I: ExactSizeIterator + Iterator + Clone> {
iter: I,
window_size: usize,
hint_total_size: bool,
}
impl<I: ExactSizeIterator + Iterator + Clone> Iterator for WindowHintedIterator<I> {
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
(
::core::cmp::min(self.iter.len(), self.window_size),
if self.hint_total_size {
Some(self.iter.len())
} else {
None
},
)
}
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_iterator_choose() {
let r = &mut crate::test::rng(109);
fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item = usize> + Clone>(r: &mut R, iter: Iter) {
let mut chosen = [0i32; 9];
for _ in 0..1000 {
let picked = iter.clone().choose(r).unwrap();
chosen[picked] += 1;
}
for count in chosen.iter() {
// Samples should follow Binomial(1000, 1/9)
// Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x
// Note: have seen 153, which is unlikely but not impossible.
assert!(
72 < *count && *count < 154,
"count not close to 1000/9: {}",
count
);
}
}
test_iter(r, 0..9);
test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned());
#[cfg(feature = "alloc")]
test_iter(r, (0..9).collect::<Vec<_>>().into_iter());
test_iter(r, UnhintedIterator { iter: 0..9 });
test_iter(r, ChunkHintedIterator {
iter: 0..9,
chunk_size: 4,
chunk_remaining: 4,
hint_total_size: false,
});
test_iter(r, ChunkHintedIterator {
iter: 0..9,
chunk_size: 4,
chunk_remaining: 4,
hint_total_size: true,
});
test_iter(r, WindowHintedIterator {
iter: 0..9,
window_size: 2,
hint_total_size: false,
});
test_iter(r, WindowHintedIterator {
iter: 0..9,
window_size: 2,
hint_total_size: true,
});
assert_eq!((0..0).choose(r), None);
assert_eq!(UnhintedIterator { iter: 0..0 }.choose(r), None);
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_iterator_choose_stable() {
let r = &mut crate::test::rng(109);
fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item = usize> + Clone>(r: &mut R, iter: Iter) {
let mut chosen = [0i32; 9];
for _ in 0..1000 {
let picked = iter.clone().choose_stable(r).unwrap();
chosen[picked] += 1;
}
for count in chosen.iter() {
// Samples should follow Binomial(1000, 1/9)
// Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x
// Note: have seen 153, which is unlikely but not impossible.
assert!(
72 < *count && *count < 154,
"count not close to 1000/9: {}",
count
);
}
}
test_iter(r, 0..9);
test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned());
#[cfg(feature = "alloc")]
test_iter(r, (0..9).collect::<Vec<_>>().into_iter());
test_iter(r, UnhintedIterator { iter: 0..9 });
test_iter(r, ChunkHintedIterator {
iter: 0..9,
chunk_size: 4,
chunk_remaining: 4,
hint_total_size: false,
});
test_iter(r, ChunkHintedIterator {
iter: 0..9,
chunk_size: 4,
chunk_remaining: 4,
hint_total_size: true,
});
test_iter(r, WindowHintedIterator {
iter: 0..9,
window_size: 2,
hint_total_size: false,
});
test_iter(r, WindowHintedIterator {
iter: 0..9,
window_size: 2,
hint_total_size: true,
});
assert_eq!((0..0).choose(r), None);
assert_eq!(UnhintedIterator { iter: 0..0 }.choose(r), None);
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_iterator_choose_stable_stability() {
fn test_iter(iter: impl Iterator<Item = usize> + Clone) -> [i32; 9] {
let r = &mut crate::test::rng(109);
let mut chosen = [0i32; 9];
for _ in 0..1000 {
let picked = iter.clone().choose_stable(r).unwrap();
chosen[picked] += 1;
}
chosen
}
let reference = test_iter(0..9);
assert_eq!(test_iter([0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned()), reference);
#[cfg(feature = "alloc")]
assert_eq!(test_iter((0..9).collect::<Vec<_>>().into_iter()), reference);
assert_eq!(test_iter(UnhintedIterator { iter: 0..9 }), reference);
assert_eq!(test_iter(ChunkHintedIterator {
iter: 0..9,
chunk_size: 4,
chunk_remaining: 4,
hint_total_size: false,
}), reference);
assert_eq!(test_iter(ChunkHintedIterator {
iter: 0..9,
chunk_size: 4,
chunk_remaining: 4,
hint_total_size: true,
}), reference);
assert_eq!(test_iter(WindowHintedIterator {
iter: 0..9,
window_size: 2,
hint_total_size: false,
}), reference);
assert_eq!(test_iter(WindowHintedIterator {
iter: 0..9,
window_size: 2,
hint_total_size: true,
}), reference);
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_shuffle() {
let mut r = crate::test::rng(108);
let empty: &mut [isize] = &mut [];
empty.shuffle(&mut r);
let mut one = [1];
one.shuffle(&mut r);
let b: &[_] = &[1];
assert_eq!(one, b);
let mut two = [1, 2];
two.shuffle(&mut r);
assert!(two == [1, 2] || two == [2, 1]);
fn move_last(slice: &mut [usize], pos: usize) {
// use slice[pos..].rotate_left(1); once we can use that
let last_val = slice[pos];
for i in pos..slice.len() - 1 {
slice[i] = slice[i + 1];
}
*slice.last_mut().unwrap() = last_val;
}
let mut counts = [0i32; 24];
for _ in 0..10000 {
let mut arr: [usize; 4] = [0, 1, 2, 3];
arr.shuffle(&mut r);
let mut permutation = 0usize;
let mut pos_value = counts.len();
for i in 0..4 {
pos_value /= 4 - i;
let pos = arr.iter().position(|&x| x == i).unwrap();
assert!(pos < (4 - i));
permutation += pos * pos_value;
move_last(&mut arr, pos);
assert_eq!(arr[3], i);
}
for (i, &a) in arr.iter().enumerate() {
assert_eq!(a, i);
}
counts[permutation] += 1;
}
for count in counts.iter() {
// Binomial(10000, 1/24) with average 416.667
// Octave: binocdf(n, 10000, 1/24)
// 99.9% chance samples lie within this range:
assert!(352 <= *count && *count <= 483, "count: {}", count);
}
}
#[test]
fn test_partial_shuffle() {
let mut r = crate::test::rng(118);
let mut empty: [u32; 0] = [];
let res = empty.partial_shuffle(&mut r, 10);
assert_eq!((res.0.len(), res.1.len()), (0, 0));
let mut v = [1, 2, 3, 4, 5];
let res = v.partial_shuffle(&mut r, 2);
assert_eq!((res.0.len(), res.1.len()), (2, 3));
assert!(res.0[0] != res.0[1]);
// First elements are only modified if selected, so at least one isn't modified:
assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3);
}
#[test]
#[cfg(feature = "alloc")]
fn test_sample_iter() {
let min_val = 1;
let max_val = 100;
let mut r = crate::test::rng(401);
let vals = (min_val..max_val).collect::<Vec<i32>>();
let small_sample = vals.iter().choose_multiple(&mut r, 5);
let large_sample = vals.iter().choose_multiple(&mut r, vals.len() + 5);
assert_eq!(small_sample.len(), 5);
assert_eq!(large_sample.len(), vals.len());
// no randomization happens when amount >= len
assert_eq!(large_sample, vals.iter().collect::<Vec<_>>());
assert!(small_sample
.iter()
.all(|e| { **e >= min_val && **e <= max_val }));
}
#[test]
#[cfg(feature = "alloc")]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_weighted() {
let mut r = crate::test::rng(406);
const N_REPS: u32 = 3000;
let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
let total_weight = weights.iter().sum::<u32>() as f32;
let verify = |result: [i32; 14]| {
for (i, count) in result.iter().enumerate() {
let exp = (weights[i] * N_REPS) as f32 / total_weight;
let mut err = (*count as f32 - exp).abs();
if err != 0.0 {
err /= exp;
}
assert!(err <= 0.25);
}
};
// choose_weighted
fn get_weight<T>(item: &(u32, T)) -> u32 {
item.0
}
let mut chosen = [0i32; 14];
let mut items = [(0u32, 0usize); 14]; // (weight, index)
for (i, item) in items.iter_mut().enumerate() {
*item = (weights[i], i);
}
for _ in 0..N_REPS {
let item = items.choose_weighted(&mut r, get_weight).unwrap();
chosen[item.1] += 1;
}
verify(chosen);
// choose_weighted_mut
let mut items = [(0u32, 0i32); 14]; // (weight, count)
for (i, item) in items.iter_mut().enumerate() {
*item = (weights[i], 0);
}
for _ in 0..N_REPS {
items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1;
}
for (ch, item) in chosen.iter_mut().zip(items.iter()) {
*ch = item.1;
}
verify(chosen);
// Check error cases
let empty_slice = &mut [10][0..0];
assert_eq!(
empty_slice.choose_weighted(&mut r, |_| 1),
Err(WeightedError::NoItem)
);
assert_eq!(
empty_slice.choose_weighted_mut(&mut r, |_| 1),
Err(WeightedError::NoItem)
);
assert_eq!(
['x'].choose_weighted_mut(&mut r, |_| 0),
Err(WeightedError::AllWeightsZero)
);
assert_eq!(
[0, -1].choose_weighted_mut(&mut r, |x| *x),
Err(WeightedError::InvalidWeight)
);
assert_eq!(
[-1, 0].choose_weighted_mut(&mut r, |x| *x),
Err(WeightedError::InvalidWeight)
);
}
#[test]
fn value_stability_choose() {
fn choose<I: Iterator<Item = u32>>(iter: I) -> Option<u32> {
let mut rng = crate::test::rng(411);
iter.choose(&mut rng)
}
assert_eq!(choose([].iter().cloned()), None);
assert_eq!(choose(0..100), Some(33));
assert_eq!(choose(UnhintedIterator { iter: 0..100 }), Some(40));
assert_eq!(
choose(ChunkHintedIterator {
iter: 0..100,
chunk_size: 32,
chunk_remaining: 32,
hint_total_size: false,
}),
Some(39)
);
assert_eq!(
choose(ChunkHintedIterator {
iter: 0..100,
chunk_size: 32,
chunk_remaining: 32,
hint_total_size: true,
}),
Some(39)
);
assert_eq!(
choose(WindowHintedIterator {
iter: 0..100,
window_size: 32,
hint_total_size: false,
}),
Some(90)
);
assert_eq!(
choose(WindowHintedIterator {
iter: 0..100,
window_size: 32,
hint_total_size: true,
}),
Some(90)
);
}
#[test]
fn value_stability_choose_stable() {
fn choose<I: Iterator<Item = u32>>(iter: I) -> Option<u32> {
let mut rng = crate::test::rng(411);
iter.choose_stable(&mut rng)
}
assert_eq!(choose([].iter().cloned()), None);
assert_eq!(choose(0..100), Some(40));
assert_eq!(choose(UnhintedIterator { iter: 0..100 }), Some(40));
assert_eq!(
choose(ChunkHintedIterator {
iter: 0..100,
chunk_size: 32,
chunk_remaining: 32,
hint_total_size: false,
}),
Some(40)
);
assert_eq!(
choose(ChunkHintedIterator {
iter: 0..100,
chunk_size: 32,
chunk_remaining: 32,
hint_total_size: true,
}),
Some(40)
);
assert_eq!(
choose(WindowHintedIterator {
iter: 0..100,
window_size: 32,
hint_total_size: false,
}),
Some(40)
);
assert_eq!(
choose(WindowHintedIterator {
iter: 0..100,
window_size: 32,
hint_total_size: true,
}),
Some(40)
);
}
#[test]
fn value_stability_choose_multiple() {
fn do_test<I: Iterator<Item = u32>>(iter: I, v: &[u32]) {
let mut rng = crate::test::rng(412);
let mut buf = [0u32; 8];
assert_eq!(iter.choose_multiple_fill(&mut rng, &mut buf), v.len());
assert_eq!(&buf[0..v.len()], v);
}
do_test(0..4, &[0, 1, 2, 3]);
do_test(0..8, &[0, 1, 2, 3, 4, 5, 6, 7]);
do_test(0..100, &[58, 78, 80, 92, 43, 8, 96, 7]);
#[cfg(feature = "alloc")]
{
fn do_test<I: Iterator<Item = u32>>(iter: I, v: &[u32]) {
let mut rng = crate::test::rng(412);
assert_eq!(iter.choose_multiple(&mut rng, v.len()), v);
}
do_test(0..4, &[0, 1, 2, 3]);
do_test(0..8, &[0, 1, 2, 3, 4, 5, 6, 7]);
do_test(0..100, &[58, 78, 80, 92, 43, 8, 96, 7]);
}
}
#[test]
#[cfg(feature = "std")]
fn test_multiple_weighted_edge_cases() {
use super::*;
let mut rng = crate::test::rng(413);
// Case 1: One of the weights is 0
let choices = [('a', 2), ('b', 1), ('c', 0)];
for _ in 0..100 {
let result = choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap()
.collect::<Vec<_>>();
assert_eq!(result.len(), 2);
assert!(!result.iter().any(|val| val.0 == 'c'));
}
// Case 2: All of the weights are 0
let choices = [('a', 0), ('b', 0), ('c', 0)];
assert_eq!(choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap().count(), 2);
// Case 3: Negative weights
let choices = [('a', -1), ('b', 1), ('c', 1)];
assert_eq!(
choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap_err(),
WeightedError::InvalidWeight
);
// Case 4: Empty list
let choices = [];
assert_eq!(choices
.choose_multiple_weighted(&mut rng, 0, |_: &()| 0)
.unwrap().count(), 0);
// Case 5: NaN weights
let choices = [('a', core::f64::NAN), ('b', 1.0), ('c', 1.0)];
assert_eq!(
choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap_err(),
WeightedError::InvalidWeight
);
// Case 6: +infinity weights
let choices = [('a', core::f64::INFINITY), ('b', 1.0), ('c', 1.0)];
for _ in 0..100 {
let result = choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap()
.collect::<Vec<_>>();
assert_eq!(result.len(), 2);
assert!(result.iter().any(|val| val.0 == 'a'));
}
// Case 7: -infinity weights
let choices = [('a', core::f64::NEG_INFINITY), ('b', 1.0), ('c', 1.0)];
assert_eq!(
choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap_err(),
WeightedError::InvalidWeight
);
// Case 8: -0 weights
let choices = [('a', -0.0), ('b', 1.0), ('c', 1.0)];
assert!(choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.is_ok());
}
#[test]
#[cfg(feature = "std")]
fn test_multiple_weighted_distributions() {
use super::*;
// The theoretical probabilities of the different outcomes are:
// AB: 0.5 * 0.5 = 0.250
// AC: 0.5 * 0.5 = 0.250
// BA: 0.25 * 0.67 = 0.167
// BC: 0.25 * 0.33 = 0.082
// CA: 0.25 * 0.67 = 0.167
// CB: 0.25 * 0.33 = 0.082
let choices = [('a', 2), ('b', 1), ('c', 1)];
let mut rng = crate::test::rng(414);
let mut results = [0i32; 3];
let expected_results = [4167, 4167, 1666];
for _ in 0..10000 {
let result = choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap()
.collect::<Vec<_>>();
assert_eq!(result.len(), 2);
match (result[0].0, result[1].0) {
('a', 'b') | ('b', 'a') => {
results[0] += 1;
}
('a', 'c') | ('c', 'a') => {
results[1] += 1;
}
('b', 'c') | ('c', 'b') => {
results[2] += 1;
}
(_, _) => panic!("unexpected result"),
}
}
let mut diffs = results
.iter()
.zip(&expected_results)
.map(|(a, b)| (a - b).abs());
assert!(!diffs.any(|deviation| deviation > 100));
}
}
|