1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
|
use super::{Inner, Runtime};
use reactor::Reactor;
use std::io;
use std::sync::Mutex;
use std::time::Duration;
use std::any::Any;
use num_cpus;
use tokio_reactor;
use tokio_threadpool::Builder as ThreadPoolBuilder;
use tokio_timer::clock::{self, Clock};
use tokio_timer::timer::{self, Timer};
#[cfg(feature = "experimental-tracing")]
use tracing_core as trace;
/// Builds Tokio Runtime with custom configuration values.
///
/// Methods can be chained in order to set the configuration values. The
/// Runtime is constructed by calling [`build`].
///
/// New instances of `Builder` are obtained via [`Builder::new`].
///
/// See function level documentation for details on the various configuration
/// settings.
///
/// [`build`]: #method.build
/// [`Builder::new`]: #method.new
///
/// # Examples
///
/// ```
/// extern crate tokio;
/// extern crate tokio_timer;
///
/// use std::time::Duration;
///
/// use tokio::runtime::Builder;
/// use tokio_timer::clock::Clock;
///
/// fn main() {
/// // build Runtime
/// let mut runtime = Builder::new()
/// .blocking_threads(4)
/// .clock(Clock::system())
/// .core_threads(4)
/// .keep_alive(Some(Duration::from_secs(60)))
/// .name_prefix("my-custom-name-")
/// .stack_size(3 * 1024 * 1024)
/// .build()
/// .unwrap();
///
/// // use runtime ...
/// }
/// ```
#[derive(Debug)]
pub struct Builder {
/// Thread pool specific builder
threadpool_builder: ThreadPoolBuilder,
/// The number of worker threads
core_threads: usize,
/// The clock to use
clock: Clock,
}
impl Builder {
/// Returns a new runtime builder initialized with default configuration
/// values.
///
/// Configuration methods can be chained on the return value.
pub fn new() -> Builder {
let core_threads = num_cpus::get().max(1);
let mut threadpool_builder = ThreadPoolBuilder::new();
threadpool_builder.name_prefix("tokio-runtime-worker-");
threadpool_builder.pool_size(core_threads);
Builder {
threadpool_builder,
core_threads,
clock: Clock::new(),
}
}
/// Set the `Clock` instance that will be used by the runtime.
pub fn clock(&mut self, clock: Clock) -> &mut Self {
self.clock = clock;
self
}
/// Set builder to set up the thread pool instance.
#[deprecated(
since = "0.1.9",
note = "use the `core_threads`, `blocking_threads`, `name_prefix`, \
`keep_alive`, and `stack_size` functions on `runtime::Builder`, \
instead")]
#[doc(hidden)]
pub fn threadpool_builder(&mut self, val: ThreadPoolBuilder) -> &mut Self {
self.threadpool_builder = val;
self
}
/// Sets a callback to handle panics in futures.
///
/// The callback is triggered when a panic during a future bubbles up to
/// Tokio. By default Tokio catches these panics, and they will be ignored.
/// The parameter passed to this callback is the same error value returned
/// from `std::panic::catch_unwind()`. To abort the process on panics, use
/// `std::panic::resume_unwind()` in this callback as shown below.
///
/// # Examples
///
/// ```
/// # extern crate tokio;
/// # extern crate futures;
/// # use tokio::runtime;
///
/// # pub fn main() {
/// let mut rt = runtime::Builder::new()
/// .panic_handler(|err| std::panic::resume_unwind(err))
/// .build()
/// .unwrap();
/// # }
/// ```
pub fn panic_handler<F>(&mut self, f: F) -> &mut Self
where
F: Fn(Box<Any + Send>) + Send + Sync + 'static,
{
self.threadpool_builder.panic_handler(f);
self
}
/// Set the maximum number of worker threads for the `Runtime`'s thread pool.
///
/// This must be a number between 1 and 32,768 though it is advised to keep
/// this value on the smaller side.
///
/// The default value is the number of cores available to the system.
///
/// # Examples
///
/// ```
/// # extern crate tokio;
/// # extern crate futures;
/// # use tokio::runtime;
///
/// # pub fn main() {
/// let mut rt = runtime::Builder::new()
/// .core_threads(4)
/// .build()
/// .unwrap();
/// # }
/// ```
pub fn core_threads(&mut self, val: usize) -> &mut Self {
self.core_threads = val;
self.threadpool_builder.pool_size(val);
self
}
/// Set the maximum number of concurrent blocking sections in the `Runtime`'s
/// thread pool.
///
/// When the maximum concurrent `blocking` calls is reached, any further
/// calls to `blocking` will return `NotReady` and the task is notified once
/// previously in-flight calls to `blocking` return.
///
/// This must be a number between 1 and 32,768 though it is advised to keep
/// this value on the smaller side.
///
/// The default value is 100.
///
/// # Examples
///
/// ```
/// # extern crate tokio;
/// # extern crate futures;
/// # use tokio::runtime;
///
/// # pub fn main() {
/// let mut rt = runtime::Builder::new()
/// .blocking_threads(200)
/// .build();
/// # }
/// ```
pub fn blocking_threads(&mut self, val: usize) -> &mut Self {
self.threadpool_builder.max_blocking(val);
self
}
/// Set the worker thread keep alive duration for threads in the `Runtime`'s
/// thread pool.
///
/// If set, a worker thread will wait for up to the specified duration for
/// work, at which point the thread will shutdown. When work becomes
/// available, a new thread will eventually be spawned to replace the one
/// that shut down.
///
/// When the value is `None`, the thread will wait for work forever.
///
/// The default value is `None`.
///
/// # Examples
///
/// ```
/// # extern crate tokio;
/// # extern crate futures;
/// # use tokio::runtime;
/// use std::time::Duration;
///
/// # pub fn main() {
/// let mut rt = runtime::Builder::new()
/// .keep_alive(Some(Duration::from_secs(30)))
/// .build();
/// # }
/// ```
pub fn keep_alive(&mut self, val: Option<Duration>) -> &mut Self {
self.threadpool_builder.keep_alive(val);
self
}
/// Set name prefix of threads spawned by the `Runtime`'s thread pool.
///
/// Thread name prefix is used for generating thread names. For example, if
/// prefix is `my-pool-`, then threads in the pool will get names like
/// `my-pool-1` etc.
///
/// The default prefix is "tokio-runtime-worker-".
///
/// # Examples
///
/// ```
/// # extern crate tokio;
/// # extern crate futures;
/// # use tokio::runtime;
///
/// # pub fn main() {
/// let mut rt = runtime::Builder::new()
/// .name_prefix("my-pool-")
/// .build();
/// # }
/// ```
pub fn name_prefix<S: Into<String>>(&mut self, val: S) -> &mut Self {
self.threadpool_builder.name_prefix(val);
self
}
/// Set the stack size (in bytes) for worker threads.
///
/// The actual stack size may be greater than this value if the platform
/// specifies minimal stack size.
///
/// The default stack size for spawned threads is 2 MiB, though this
/// particular stack size is subject to change in the future.
///
/// # Examples
///
/// ```
/// # extern crate tokio;
/// # extern crate futures;
/// # use tokio::runtime;
///
/// # pub fn main() {
/// let mut rt = runtime::Builder::new()
/// .stack_size(32 * 1024)
/// .build();
/// # }
/// ```
pub fn stack_size(&mut self, val: usize) -> &mut Self {
self.threadpool_builder.stack_size(val);
self
}
/// Execute function `f` after each thread is started but before it starts
/// doing work.
///
/// This is intended for bookkeeping and monitoring use cases.
///
/// # Examples
///
/// ```
/// # extern crate tokio;
/// # extern crate futures;
/// # use tokio::runtime;
///
/// # pub fn main() {
/// let thread_pool = runtime::Builder::new()
/// .after_start(|| {
/// println!("thread started");
/// })
/// .build();
/// # }
/// ```
pub fn after_start<F>(&mut self, f: F) -> &mut Self
where F: Fn() + Send + Sync + 'static
{
self.threadpool_builder.after_start(f);
self
}
/// Execute function `f` before each thread stops.
///
/// This is intended for bookkeeping and monitoring use cases.
///
/// # Examples
///
/// ```
/// # extern crate tokio;
/// # extern crate futures;
/// # use tokio::runtime;
///
/// # pub fn main() {
/// let thread_pool = runtime::Builder::new()
/// .before_stop(|| {
/// println!("thread stopping");
/// })
/// .build();
/// # }
/// ```
pub fn before_stop<F>(&mut self, f: F) -> &mut Self
where F: Fn() + Send + Sync + 'static
{
self.threadpool_builder.before_stop(f);
self
}
/// Create the configured `Runtime`.
///
/// The returned `ThreadPool` instance is ready to spawn tasks.
///
/// # Examples
///
/// ```
/// # extern crate tokio;
/// # use tokio::runtime::Builder;
/// # pub fn main() {
/// let runtime = Builder::new().build().unwrap();
/// // ... call runtime.run(...)
/// # let _ = runtime;
/// # }
/// ```
pub fn build(&mut self) -> io::Result<Runtime> {
// TODO(stjepang): Once we remove the `threadpool_builder` method, remove this line too.
self.threadpool_builder.pool_size(self.core_threads);
let mut reactor_handles = Vec::new();
let mut timer_handles = Vec::new();
let mut timers = Vec::new();
for _ in 0..self.core_threads {
// Create a new reactor.
let reactor = Reactor::new()?;
reactor_handles.push(reactor.handle());
// Create a new timer.
let timer = Timer::new_with_now(reactor, self.clock.clone());
timer_handles.push(timer.handle());
timers.push(Mutex::new(Some(timer)));
}
// Get a handle to the clock for the runtime.
let clock = self.clock.clone();
// Get the current trace dispatcher.
// TODO(eliza): when `tracing-core` is stable enough to take a
// public API dependency, we should allow users to set a custom
// subscriber for the runtime.
#[cfg(feature = "experimental-tracing")]
let dispatch = trace::dispatcher::get_default(trace::Dispatch::clone);
let pool = self
.threadpool_builder
.around_worker(move |w, enter| {
let index = w.id().to_usize();
tokio_reactor::with_default(&reactor_handles[index], enter, |enter| {
clock::with_default(&clock, enter, |enter| {
timer::with_default(&timer_handles[index], enter, |_| {
#[cfg(feature = "experimental-tracing")]
trace::dispatcher::with_default(&dispatch, || {
w.run();
});
#[cfg(not(feature = "experimental-tracing"))]
w.run();
});
})
});
})
.custom_park(move |worker_id| {
let index = worker_id.to_usize();
timers[index]
.lock()
.unwrap()
.take()
.unwrap()
})
.build();
// To support deprecated `reactor()` function
let reactor = Reactor::new()?;
let reactor_handle = reactor.handle();
Ok(Runtime {
inner: Some(Inner {
reactor_handle,
reactor: Mutex::new(Some(reactor)),
pool,
}),
})
}
}
|