1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
import rondpoint
let dico = Dictionnaire(un: .deux, deux: false, petitNombre: 0, grosNombre: 123456789)
let copyDico = copieDictionnaire(d: dico)
assert(dico == copyDico)
assert(copieEnumeration(e: .deux) == .deux)
assert(copieEnumerations(e: [.un, .deux]) == [.un, .deux])
assert(copieCarte(c:
["0": .zero,
"1": .un(premier: 1),
"2": .deux(premier: 2, second: "deux")
]) == [
"0": .zero,
"1": .un(premier: 1),
"2": .deux(premier: 2, second: "deux")
])
assert(EnumerationAvecDonnees.zero != EnumerationAvecDonnees.un(premier: 1))
assert(EnumerationAvecDonnees.un(premier: 1) == EnumerationAvecDonnees.un(premier: 1))
assert(EnumerationAvecDonnees.un(premier: 1) != EnumerationAvecDonnees.un(premier: 2))
assert(switcheroo(b: false))
// Test the roundtrip across the FFI.
// This shows that the values we send come back in exactly the same state as we sent them.
// i.e. it shows that lowering from swift and lifting into rust is symmetrical with
// lowering from rust and lifting into swift.
let rt = Retourneur()
// Booleans
[true, false].affirmAllerRetour(rt.identiqueBoolean)
// Bytes.
[.min, .max].affirmAllerRetour(rt.identiqueI8)
[0x00, 0xFF].map { $0 as UInt8 }.affirmAllerRetour(rt.identiqueU8)
// Shorts
[.min, .max].affirmAllerRetour(rt.identiqueI16)
[0x0000, 0xFFFF].map { $0 as UInt16 }.affirmAllerRetour(rt.identiqueU16)
// Ints
[0, 1, -1, .min, .max].affirmAllerRetour(rt.identiqueI32)
[0x00000000, 0xFFFFFFFF].map { $0 as UInt32 }.affirmAllerRetour(rt.identiqueU32)
// Longs
[.zero, 1, -1, .min, .max].affirmAllerRetour(rt.identiqueI64)
[.zero, 1, .min, .max].affirmAllerRetour(rt.identiqueU64)
// Floats
[.zero, 1, 0.25, .leastNonzeroMagnitude, .greatestFiniteMagnitude].affirmAllerRetour(rt.identiqueFloat)
// Doubles
[0.0, 1.0, .leastNonzeroMagnitude, .greatestFiniteMagnitude].affirmAllerRetour(rt.identiqueDouble)
// Strings
["", "abc", "null\0byte", "été", "ښي لاس ته لوستلو لوستل", "😻emoji 👨👧👦multi-emoji, 🇨🇭a flag, a canal, panama"]
.affirmAllerRetour(rt.identiqueString)
// Test one way across the FFI.
//
// We send one representation of a value to lib.rs, and it transforms it into another, a string.
// lib.rs sends the string back, and then we compare here in swift.
//
// This shows that the values are transformed into strings the same way in both swift and rust.
// i.e. if we assume that the string return works (we test this assumption elsewhere)
// we show that lowering from swift and lifting into rust has values that both swift and rust
// both stringify in the same way. i.e. the same values.
//
// If we roundtripping proves the symmetry of our lowering/lifting from here to rust, and lowering/lifting from rust t here,
// and this convinces us that lowering/lifting from here to rust is correct, then
// together, we've shown the correctness of the return leg.
let st = Stringifier()
// Test the effigacy of the string transport from rust. If this fails, but everything else
// works, then things are very weird.
let wellKnown = st.wellKnownString(value: "swift")
assert("uniffi 💚 swift!" == wellKnown, "wellKnownString 'uniffi 💚 swift!' == '\(wellKnown)'")
// Booleans
[true, false].affirmEnchaine(st.toStringBoolean)
// Bytes.
[.min, .max].affirmEnchaine(st.toStringI8)
[.min, .max].affirmEnchaine(st.toStringU8)
// Shorts
[.min, .max].affirmEnchaine(st.toStringI16)
[.min, .max].affirmEnchaine(st.toStringU16)
// Ints
[0, 1, -1, .min, .max].affirmEnchaine(st.toStringI32)
[0, 1, .min, .max].affirmEnchaine(st.toStringU32)
// Longs
[.zero, 1, -1, .min, .max].affirmEnchaine(st.toStringI64)
[.zero, 1, .min, .max].affirmEnchaine(st.toStringU64)
// Floats
[.zero, 1, -1, .leastNonzeroMagnitude, .greatestFiniteMagnitude].affirmEnchaine(st.toStringFloat) { Float.init($0) == $1 }
// Doubles
[.zero, 1, -1, .leastNonzeroMagnitude, .greatestFiniteMagnitude].affirmEnchaine(st.toStringDouble) { Double.init($0) == $1 }
// Some extension functions for testing the results of roundtripping and stringifying
extension Array where Element: Equatable {
static func defaultEquals(_ observed: String, expected: Element) -> Bool {
let exp = "\(expected)"
return observed == exp
}
func affirmEnchaine(_ fn: (Element) -> String, equals: (String, Element) -> Bool = defaultEquals) {
self.forEach { v in
let obs = fn(v)
assert(equals(obs, v), "toString_\(type(of:v))(\(v)): observed=\(obs), expected=\(v)")
}
}
func affirmAllerRetour(_ fn: (Element) -> Element) {
self.forEach { v in
assert(fn(v) == v, "identique_\(type(of:v))(\(v))")
}
}
}
// Prove to ourselves that default arguments are being used.
// Step 1: call the methods without arguments, and check against the UDL.
let op = Optionneur()
assert(op.sinonString() == "default")
assert(op.sinonBoolean() == false)
assert(op.sinonSequence() == [])
// optionals
assert(op.sinonNull() == nil)
assert(op.sinonZero() == 0)
// decimal integers
assert(op.sinonU8Dec() == UInt8(42))
assert(op.sinonI8Dec() == Int8(-42))
assert(op.sinonU16Dec() == UInt16(42))
assert(op.sinonI16Dec() == Int16(42))
assert(op.sinonU32Dec() == UInt32(42))
assert(op.sinonI32Dec() == Int32(42))
assert(op.sinonU64Dec() == UInt64(42))
assert(op.sinonI64Dec() == Int64(42))
// hexadecimal integers
assert(op.sinonU8Hex() == UInt8(0xff))
assert(op.sinonI8Hex() == Int8(-0x7f))
assert(op.sinonU16Hex() == UInt16(0xffff))
assert(op.sinonI16Hex() == Int16(0x7f))
assert(op.sinonU32Hex() == UInt32(0xffffffff))
assert(op.sinonI32Hex() == Int32(0x7fffffff))
assert(op.sinonU64Hex() == UInt64(0xffffffffffffffff))
assert(op.sinonI64Hex() == Int64(0x7fffffffffffffff))
// octal integers
assert(op.sinonU32Oct() == UInt32(0o755))
// floats
assert(op.sinonF32() == 42.0)
assert(op.sinonF64() == Double(42.1))
// enums
assert(op.sinonEnum() == .trois)
// Step 2. Convince ourselves that if we pass something else, then that changes the output.
// We have shown something coming out of the sinon methods, but without eyeballing the Rust
// we can't be sure that the arguments will change the return value.
["foo", "bar"].affirmAllerRetour(op.sinonString)
[true, false].affirmAllerRetour(op.sinonBoolean)
[["a", "b"], []].affirmAllerRetour(op.sinonSequence)
// optionals
["0", "1"].affirmAllerRetour(op.sinonNull)
[0, 1].affirmAllerRetour(op.sinonZero)
// integers
[0, 1].affirmAllerRetour(op.sinonU8Dec)
[0, 1].affirmAllerRetour(op.sinonI8Dec)
[0, 1].affirmAllerRetour(op.sinonU16Dec)
[0, 1].affirmAllerRetour(op.sinonI16Dec)
[0, 1].affirmAllerRetour(op.sinonU32Dec)
[0, 1].affirmAllerRetour(op.sinonI32Dec)
[0, 1].affirmAllerRetour(op.sinonU64Dec)
[0, 1].affirmAllerRetour(op.sinonI64Dec)
[0, 1].affirmAllerRetour(op.sinonU8Hex)
[0, 1].affirmAllerRetour(op.sinonI8Hex)
[0, 1].affirmAllerRetour(op.sinonU16Hex)
[0, 1].affirmAllerRetour(op.sinonI16Hex)
[0, 1].affirmAllerRetour(op.sinonU32Hex)
[0, 1].affirmAllerRetour(op.sinonI32Hex)
[0, 1].affirmAllerRetour(op.sinonU64Hex)
[0, 1].affirmAllerRetour(op.sinonI64Hex)
[0, 1].affirmAllerRetour(op.sinonU32Oct)
// floats
[0.0, 1.0].affirmAllerRetour(op.sinonF32)
[0.0, 1.0].affirmAllerRetour(op.sinonF64)
// enums
[.un, .deux, .trois].affirmAllerRetour(op.sinonEnum)
// Testing defaulting properties in record types.
let defaultes = OptionneurDictionnaire()
let explicite = OptionneurDictionnaire(
i8Var: Int8(-8),
u8Var: UInt8(8),
i16Var: Int16(-16),
u16Var: UInt16(0x10),
i32Var: -32,
u32Var: UInt32(32),
i64Var: Int64(-64),
u64Var: UInt64(64),
floatVar: Float(4.0),
doubleVar: Double(8.0),
booleanVar: true,
stringVar: "default",
listVar: [],
enumerationVar: .deux,
dictionnaireVar: nil
)
// …and makes sure they travel across and back the FFI.
assert(defaultes == explicite)
[defaultes].affirmAllerRetour(rt.identiqueOptionneurDictionnaire)
|