summaryrefslogtreecommitdiffstats
path: root/third_party/rust/wast/src/parser.rs
blob: 658fadfcd1e3aaaf3368c4262373856a1efb1971 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
//! Traits for parsing the WebAssembly Text format
//!
//! This module contains the traits, abstractions, and utilities needed to
//! define custom parsers for WebAssembly text format items. This module exposes
//! a recursive descent parsing strategy and centers around the
//! [`Parse`](crate::parser::Parse) trait for defining new fragments of
//! WebAssembly text syntax.
//!
//! The top-level [`parse`](crate::parser::parse) function can be used to fully parse AST fragments:
//!
//! ```
//! use wast::Wat;
//! use wast::parser::{self, ParseBuffer};
//!
//! # fn foo() -> Result<(), wast::Error> {
//! let wat = "(module (func))";
//! let buf = ParseBuffer::new(wat)?;
//! let module = parser::parse::<Wat>(&buf)?;
//! # Ok(())
//! # }
//! ```
//!
//! and you can also define your own new syntax with the
//! [`Parse`](crate::parser::Parse) trait:
//!
//! ```
//! use wast::kw;
//! use wast::core::{Import, Func};
//! use wast::parser::{Parser, Parse, Result};
//!
//! // Fields of a WebAssembly which only allow imports and functions, and all
//! // imports must come before all the functions
//! struct OnlyImportsAndFunctions<'a> {
//!     imports: Vec<Import<'a>>,
//!     functions: Vec<Func<'a>>,
//! }
//!
//! impl<'a> Parse<'a> for OnlyImportsAndFunctions<'a> {
//!     fn parse(parser: Parser<'a>) -> Result<Self> {
//!         // While the second token is `import` (the first is `(`, so we care
//!         // about the second) we parse an `ast::ModuleImport` inside of
//!         // parentheses. The `parens` function here ensures that what we
//!         // parse inside of it is surrounded by `(` and `)`.
//!         let mut imports = Vec::new();
//!         while parser.peek2::<kw::import>() {
//!             let import = parser.parens(|p| p.parse())?;
//!             imports.push(import);
//!         }
//!
//!         // Afterwards we assume everything else is a function. Note that
//!         // `parse` here is a generic function and type inference figures out
//!         // that we're parsing functions here and imports above.
//!         let mut functions = Vec::new();
//!         while !parser.is_empty() {
//!             let func = parser.parens(|p| p.parse())?;
//!             functions.push(func);
//!         }
//!
//!         Ok(OnlyImportsAndFunctions { imports, functions })
//!     }
//! }
//! ```
//!
//! This module is heavily inspired by [`syn`](https://docs.rs/syn) so you can
//! likely also draw inspiration from the excellent examples in the `syn` crate.

use crate::lexer::{Float, Integer, Lexer, Token};
use crate::token::Span;
use crate::Error;
use std::cell::{Cell, RefCell};
use std::collections::HashMap;
use std::fmt;
use std::usize;

/// The maximum recursive depth of parens to parse.
///
/// This is sort of a fundamental limitation of the way this crate is
/// designed. Everything is done through recursive descent parsing which
/// means, well, that we're recursively going down the stack as we parse
/// nested data structures. While we can handle this for wasm expressions
/// since that's a pretty local decision, handling this for nested
/// modules/components which be far trickier. For now we just say that when
/// the parser goes too deep we return an error saying there's too many
/// nested items. It would be great to not return an error here, though!
pub(crate) const MAX_PARENS_DEPTH: usize = 100;

/// A top-level convenience parseing function that parss a `T` from `buf` and
/// requires that all tokens in `buf` are consume.
///
/// This generic parsing function can be used to parse any `T` implementing the
/// [`Parse`] trait. It is not used from [`Parse`] trait implementations.
///
/// # Examples
///
/// ```
/// use wast::Wat;
/// use wast::parser::{self, ParseBuffer};
///
/// # fn foo() -> Result<(), wast::Error> {
/// let wat = "(module (func))";
/// let buf = ParseBuffer::new(wat)?;
/// let module = parser::parse::<Wat>(&buf)?;
/// # Ok(())
/// # }
/// ```
///
/// or parsing simply a fragment
///
/// ```
/// use wast::parser::{self, ParseBuffer};
///
/// # fn foo() -> Result<(), wast::Error> {
/// let wat = "12";
/// let buf = ParseBuffer::new(wat)?;
/// let val = parser::parse::<u32>(&buf)?;
/// assert_eq!(val, 12);
/// # Ok(())
/// # }
/// ```
pub fn parse<'a, T: Parse<'a>>(buf: &'a ParseBuffer<'a>) -> Result<T> {
    let parser = buf.parser();
    let result = parser.parse()?;
    if parser.cursor().advance_token().is_none() {
        Ok(result)
    } else {
        Err(parser.error("extra tokens remaining after parse"))
    }
}

/// A trait for parsing a fragment of syntax in a recursive descent fashion.
///
/// The [`Parse`] trait is main abstraction you'll be working with when defining
/// custom parser or custom syntax for your WebAssembly text format (or when
/// using the official format items). Almost all items in the
/// [`core`](crate::core) module implement the [`Parse`] trait, and you'll
/// commonly use this with:
///
/// * The top-level [`parse`] function to parse an entire input.
/// * The intermediate [`Parser::parse`] function to parse an item out of an
///   input stream and then parse remaining items.
///
/// Implementation of [`Parse`] take a [`Parser`] as input and will mutate the
/// parser as they parse syntax. Once a token is consume it cannot be
/// "un-consumed". Utilities such as [`Parser::peek`] and [`Parser::lookahead1`]
/// can be used to determine what to parse next.
///
/// ## When to parse `(` and `)`?
///
/// Conventionally types are not responsible for parsing their own `(` and `)`
/// tokens which surround the type. For example WebAssembly imports look like:
///
/// ```text
/// (import "foo" "bar" (func (type 0)))
/// ```
///
/// but the [`Import`](crate::core::Import) type parser looks like:
///
/// ```
/// # use wast::kw;
/// # use wast::parser::{Parser, Parse, Result};
/// # struct Import<'a>(&'a str);
/// impl<'a> Parse<'a> for Import<'a> {
///     fn parse(parser: Parser<'a>) -> Result<Self> {
///         parser.parse::<kw::import>()?;
///         // ...
/// # panic!()
///     }
/// }
/// ```
///
/// It is assumed here that the `(` and `)` tokens which surround an `import`
/// statement in the WebAssembly text format are parsed by the parent item
/// parsing `Import`.
///
/// Note that this is just a convention, so it's not necessarily required for
/// all types. It's recommended that your types stick to this convention where
/// possible to avoid nested calls to [`Parser::parens`] or accidentally trying
/// to parse too many parenthesis.
///
/// # Examples
///
/// Let's say you want to define your own WebAssembly text format which only
/// contains imports and functions. You also require all imports to be listed
/// before all functions. An example [`Parse`] implementation might look like:
///
/// ```
/// use wast::core::{Import, Func};
/// use wast::kw;
/// use wast::parser::{Parser, Parse, Result};
///
/// // Fields of a WebAssembly which only allow imports and functions, and all
/// // imports must come before all the functions
/// struct OnlyImportsAndFunctions<'a> {
///     imports: Vec<Import<'a>>,
///     functions: Vec<Func<'a>>,
/// }
///
/// impl<'a> Parse<'a> for OnlyImportsAndFunctions<'a> {
///     fn parse(parser: Parser<'a>) -> Result<Self> {
///         // While the second token is `import` (the first is `(`, so we care
///         // about the second) we parse an `ast::ModuleImport` inside of
///         // parentheses. The `parens` function here ensures that what we
///         // parse inside of it is surrounded by `(` and `)`.
///         let mut imports = Vec::new();
///         while parser.peek2::<kw::import>() {
///             let import = parser.parens(|p| p.parse())?;
///             imports.push(import);
///         }
///
///         // Afterwards we assume everything else is a function. Note that
///         // `parse` here is a generic function and type inference figures out
///         // that we're parsing functions here and imports above.
///         let mut functions = Vec::new();
///         while !parser.is_empty() {
///             let func = parser.parens(|p| p.parse())?;
///             functions.push(func);
///         }
///
///         Ok(OnlyImportsAndFunctions { imports, functions })
///     }
/// }
/// ```
pub trait Parse<'a>: Sized {
    /// Attempts to parse `Self` from `parser`, returning an error if it could
    /// not be parsed.
    ///
    /// This method will mutate the state of `parser` after attempting to parse
    /// an instance of `Self`. If an error happens then it is likely fatal and
    /// there is no guarantee of how many tokens have been consumed from
    /// `parser`.
    ///
    /// As recommended in the documentation of [`Parse`], implementations of
    /// this function should not start out by parsing `(` and `)` tokens, but
    /// rather parents calling recursive parsers should parse the `(` and `)`
    /// tokens for their child item that's being parsed.
    ///
    /// # Errors
    ///
    /// This function will return an error if `Self` could not be parsed. Note
    /// that creating an [`Error`] is not exactly a cheap operation, so
    /// [`Error`] is typically fatal and propagated all the way back to the top
    /// parse call site.
    fn parse(parser: Parser<'a>) -> Result<Self>;
}

/// A trait for types which be used to "peek" to see if they're the next token
/// in an input stream of [`Parser`].
///
/// Often when implementing [`Parse`] you'll need to query what the next token
/// in the stream is to figure out what to parse next. This [`Peek`] trait
/// defines the set of types that can be tested whether they're the next token
/// in the input stream.
///
/// Implementations of [`Peek`] should only be present on types that consume
/// exactly one token (not zero, not more, exactly one). Types implementing
/// [`Peek`] should also typically implement [`Parse`] should also typically
/// implement [`Parse`].
///
/// See the documentation of [`Parser::peek`] for example usage.
pub trait Peek {
    /// Tests to see whether this token is the first token within the [`Cursor`]
    /// specified.
    ///
    /// Returns `true` if [`Parse`] for this type is highly likely to succeed
    /// failing no other error conditions happening (like an integer literal
    /// being too big).
    fn peek(cursor: Cursor<'_>) -> bool;

    /// The same as `peek`, except it checks the token immediately following
    /// the current token.
    fn peek2(mut cursor: Cursor<'_>) -> bool {
        if cursor.advance_token().is_some() {
            Self::peek(cursor)
        } else {
            false
        }
    }

    /// Returns a human-readable name of this token to display when generating
    /// errors about this token missing.
    fn display() -> &'static str;
}

/// A convenience type definition for `Result` where the error is hardwired to
/// [`Error`].
pub type Result<T, E = Error> = std::result::Result<T, E>;

/// A low-level buffer of tokens which represents a completely lexed file.
///
/// A `ParseBuffer` will immediately lex an entire file and then store all
/// tokens internally. A `ParseBuffer` only used to pass to the top-level
/// [`parse`] function.
pub struct ParseBuffer<'a> {
    // list of tokens from the tokenized source (including whitespace and
    // comments), and the second element is how to skip this token, if it can be
    // skipped.
    tokens: Box<[(Token<'a>, Cell<NextTokenAt>)]>,
    input: &'a str,
    cur: Cell<usize>,
    known_annotations: RefCell<HashMap<String, usize>>,
    depth: Cell<usize>,
}

#[derive(Copy, Clone, Debug)]
enum NextTokenAt {
    /// Haven't computed where the next token is yet.
    Unknown,
    /// Previously computed the index of the next token.
    Index(usize),
    /// There is no next token, this is the last token.
    Eof,
}

/// An in-progress parser for the tokens of a WebAssembly text file.
///
/// A `Parser` is argument to the [`Parse`] trait and is now the input stream is
/// interacted with to parse new items. Cloning [`Parser`] or copying a parser
/// refers to the same stream of tokens to parse, you cannot clone a [`Parser`]
/// and clone two items.
///
/// For more information about a [`Parser`] see its methods.
#[derive(Copy, Clone)]
pub struct Parser<'a> {
    buf: &'a ParseBuffer<'a>,
}

/// A helpful structure to perform a lookahead of one token to determine what to
/// parse.
///
/// For more information see the [`Parser::lookahead1`] method.
pub struct Lookahead1<'a> {
    parser: Parser<'a>,
    attempts: Vec<&'static str>,
}

/// An immutable cursor into a list of tokens.
///
/// This cursor cannot be mutated but can be used to parse more tokens in a list
/// of tokens. Cursors are created from the [`Parser::step`] method. This is a
/// very low-level parsing structure and you likely won't use it much.
#[derive(Copy, Clone)]
pub struct Cursor<'a> {
    parser: Parser<'a>,
    cur: usize,
}

impl ParseBuffer<'_> {
    /// Creates a new [`ParseBuffer`] by lexing the given `input` completely.
    ///
    /// # Errors
    ///
    /// Returns an error if `input` fails to lex.
    pub fn new(input: &str) -> Result<ParseBuffer<'_>> {
        ParseBuffer::new_with_lexer(Lexer::new(input))
    }

    /// Creates a new [`ParseBuffer`] by lexing the given `input` completely.
    ///
    /// # Errors
    ///
    /// Returns an error if `input` fails to lex.
    pub fn new_with_lexer(lexer: Lexer<'_>) -> Result<ParseBuffer<'_>> {
        let mut tokens = Vec::new();
        let input = lexer.input();
        for token in lexer {
            tokens.push((token?, Cell::new(NextTokenAt::Unknown)));
        }
        let ret = ParseBuffer {
            tokens: tokens.into_boxed_slice(),
            cur: Cell::new(0),
            depth: Cell::new(0),
            input,
            known_annotations: Default::default(),
        };
        ret.validate_annotations()?;
        Ok(ret)
    }

    fn parser(&self) -> Parser<'_> {
        Parser { buf: self }
    }

    // Validates that all annotations properly parse in that they have balanced
    // delimiters. This is required since while parsing we generally skip
    // annotations and there's no real opportunity to return a parse error.
    fn validate_annotations(&self) -> Result<()> {
        use crate::lexer::Token::*;
        enum State {
            None,
            LParen,
            Annotation { depth: usize, span: Span },
        }
        let mut state = State::None;
        for token in self.tokens.iter() {
            state = match (&token.0, state) {
                // From nothing, a `(` starts the search for an annotation
                (LParen(_), State::None) => State::LParen,
                // ... otherwise in nothing we alwyas preserve that state.
                (_, State::None) => State::None,

                // If the previous state was an `LParen`, we may have an
                // annotation if the next keyword is reserved
                (Reserved(s), State::LParen) if s.starts_with('@') && !s.is_empty() => {
                    let offset = self.input_pos(s);
                    State::Annotation {
                        span: Span { offset },
                        depth: 1,
                    }
                }
                // ... otherwise anything after an `LParen` kills the lparen
                // state.
                (_, State::LParen) => State::None,

                // Once we're in an annotation we need to balance parentheses,
                // so handle the depth changes.
                (LParen(_), State::Annotation { span, depth }) => State::Annotation {
                    span,
                    depth: depth + 1,
                },
                (RParen(_), State::Annotation { depth: 1, .. }) => State::None,
                (RParen(_), State::Annotation { span, depth }) => State::Annotation {
                    span,
                    depth: depth - 1,
                },
                // ... and otherwise all tokens are allowed in annotations.
                (_, s @ State::Annotation { .. }) => s,
            };
        }
        if let State::Annotation { span, .. } = state {
            return Err(Error::new(span, "unclosed annotation".to_string()));
        }
        Ok(())
    }

    fn input_pos(&self, src: &str) -> usize {
        src.as_ptr() as usize - self.input.as_ptr() as usize
    }
}

impl<'a> Parser<'a> {
    /// Returns whether there are no more `Token` tokens to parse from this
    /// [`Parser`].
    ///
    /// This indicates that either we've reached the end of the input, or we're
    /// a sub-[`Parser`] inside of a parenthesized expression and we've hit the
    /// `)` token.
    ///
    /// Note that if `false` is returned there *may* be more comments. Comments
    /// and whitespace are not considered for whether this parser is empty.
    pub fn is_empty(self) -> bool {
        match self.cursor().advance_token() {
            Some(Token::RParen(_)) | None => true,
            Some(_) => false, // more tokens to parse!
        }
    }

    pub(crate) fn has_meaningful_tokens(self) -> bool {
        self.buf.tokens[self.cursor().cur..].iter().any(|(t, _)| {
            !matches!(
                t,
                Token::Whitespace(_) | Token::LineComment(_) | Token::BlockComment(_)
            )
        })
    }

    /// Parses a `T` from this [`Parser`].
    ///
    /// This method has a trivial definition (it simply calls
    /// [`T::parse`](Parse::parse)) but is here for syntactic purposes. This is
    /// what you'll call 99% of the time in a [`Parse`] implementation in order
    /// to parse sub-items.
    ///
    /// Typically you always want to use `?` with the result of this method, you
    /// should not handle errors and decide what else to parse. To handle
    /// branches in parsing, use [`Parser::peek`].
    ///
    /// # Examples
    ///
    /// A good example of using `parse` is to see how the [`TableType`] type is
    /// parsed in this crate. A [`TableType`] is defined in the official
    /// specification as [`tabletype`][spec] and is defined as:
    ///
    /// [spec]: https://webassembly.github.io/spec/core/text/types.html#table-types
    ///
    /// ```text
    /// tabletype ::= lim:limits et:reftype
    /// ```
    ///
    /// so to parse a [`TableType`] we recursively need to parse a [`Limits`]
    /// and a [`RefType`]
    ///
    /// ```
    /// # use wast::core::*;
    /// # use wast::parser::*;
    /// struct TableType<'a> {
    ///     limits: Limits,
    ///     elem: RefType<'a>,
    /// }
    ///
    /// impl<'a> Parse<'a> for TableType<'a> {
    ///     fn parse(parser: Parser<'a>) -> Result<Self> {
    ///         // parse the `lim` then `et` in sequence
    ///         Ok(TableType {
    ///             limits: parser.parse()?,
    ///             elem: parser.parse()?,
    ///         })
    ///     }
    /// }
    /// ```
    ///
    /// [`Limits`]: crate::core::Limits
    /// [`TableType`]: crate::core::TableType
    /// [`RefType`]: crate::core::RefType
    pub fn parse<T: Parse<'a>>(self) -> Result<T> {
        T::parse(self)
    }

    /// Performs a cheap test to see whether the current token in this stream is
    /// `T`.
    ///
    /// This method can be used to efficiently determine what next to parse. The
    /// [`Peek`] trait is defined for types which can be used to test if they're
    /// the next item in the input stream.
    ///
    /// Nothing is actually parsed in this method, nor does this mutate the
    /// state of this [`Parser`]. Instead, this simply performs a check.
    ///
    /// This method is frequently combined with the [`Parser::lookahead1`]
    /// method to automatically produce nice error messages if some tokens
    /// aren't found.
    ///
    /// # Examples
    ///
    /// For an example of using the `peek` method let's take a look at parsing
    /// the [`Limits`] type. This is [defined in the official spec][spec] as:
    ///
    /// ```text
    /// limits ::= n:u32
    ///          | n:u32 m:u32
    /// ```
    ///
    /// which means that it's either one `u32` token or two, so we need to know
    /// whether to consume two tokens or one:
    ///
    /// ```
    /// # use wast::parser::*;
    /// struct Limits {
    ///     min: u32,
    ///     max: Option<u32>,
    /// }
    ///
    /// impl<'a> Parse<'a> for Limits {
    ///     fn parse(parser: Parser<'a>) -> Result<Self> {
    ///         // Always parse the first number...
    ///         let min = parser.parse()?;
    ///
    ///         // ... and then test if there's a second number before parsing
    ///         let max = if parser.peek::<u32>() {
    ///             Some(parser.parse()?)
    ///         } else {
    ///             None
    ///         };
    ///
    ///         Ok(Limits { min, max })
    ///     }
    /// }
    /// ```
    ///
    /// [spec]: https://webassembly.github.io/spec/core/text/types.html#limits
    /// [`Limits`]: crate::core::Limits
    pub fn peek<T: Peek>(self) -> bool {
        T::peek(self.cursor())
    }

    /// Same as the [`Parser::peek`] method, except checks the next token, not
    /// the current token.
    pub fn peek2<T: Peek>(self) -> bool {
        let mut cursor = self.cursor();
        if cursor.advance_token().is_some() {
            T::peek(cursor)
        } else {
            false
        }
    }

    /// Same as the [`Parser::peek2`] method, except checks the next next token,
    /// not the next token.
    pub fn peek3<T: Peek>(self) -> bool {
        let mut cursor = self.cursor();
        if cursor.advance_token().is_some() && cursor.advance_token().is_some() {
            T::peek(cursor)
        } else {
            false
        }
    }

    /// A helper structure to perform a sequence of `peek` operations and if
    /// they all fail produce a nice error message.
    ///
    /// This method purely exists for conveniently producing error messages and
    /// provides no functionality that [`Parser::peek`] doesn't already give.
    /// The [`Lookahead1`] structure has one main method [`Lookahead1::peek`],
    /// which is the same method as [`Parser::peek`]. The difference is that the
    /// [`Lookahead1::error`] method needs no arguments.
    ///
    /// # Examples
    ///
    /// Let's look at the parsing of [`Index`]. This type is either a `u32` or
    /// an [`Id`] and is used in name resolution primarily. The [official
    /// grammar for an index][spec] is:
    ///
    /// ```text
    /// idx ::= x:u32
    ///       | v:id
    /// ```
    ///
    /// Which is to say that an index is either a `u32` or an [`Id`]. When
    /// parsing an [`Index`] we can do:
    ///
    /// ```
    /// # use wast::token::*;
    /// # use wast::parser::*;
    /// enum Index<'a> {
    ///     Num(u32),
    ///     Id(Id<'a>),
    /// }
    ///
    /// impl<'a> Parse<'a> for Index<'a> {
    ///     fn parse(parser: Parser<'a>) -> Result<Self> {
    ///         let mut l = parser.lookahead1();
    ///         if l.peek::<Id>() {
    ///             Ok(Index::Id(parser.parse()?))
    ///         } else if l.peek::<u32>() {
    ///             Ok(Index::Num(parser.parse()?))
    ///         } else {
    ///             // produces error message of `expected identifier or u32`
    ///             Err(l.error())
    ///         }
    ///     }
    /// }
    /// ```
    ///
    /// [spec]: https://webassembly.github.io/spec/core/text/modules.html#indices
    /// [`Index`]: crate::token::Index
    /// [`Id`]: crate::token::Id
    pub fn lookahead1(self) -> Lookahead1<'a> {
        Lookahead1 {
            attempts: Vec::new(),
            parser: self,
        }
    }

    /// Parse an item surrounded by parentheses.
    ///
    /// WebAssembly's text format is all based on s-expressions, so naturally
    /// you're going to want to parse a lot of parenthesized things! As noted in
    /// the documentation of [`Parse`] you typically don't parse your own
    /// surrounding `(` and `)` tokens, but the parser above you parsed them for
    /// you. This is method method the parser above you uses.
    ///
    /// This method will parse a `(` token, and then call `f` on a sub-parser
    /// which when finished asserts that a `)` token is the next token. This
    /// requires that `f` consumes all tokens leading up to the paired `)`.
    ///
    /// Usage will often simply be `parser.parens(|p| p.parse())?` to
    /// automatically parse a type within parentheses, but you can, as always,
    /// go crazy and do whatever you'd like too.
    ///
    /// # Examples
    ///
    /// A good example of this is to see how a `Module` is parsed. This isn't
    /// the exact definition, but it's close enough!
    ///
    /// ```
    /// # use wast::kw;
    /// # use wast::core::*;
    /// # use wast::parser::*;
    /// struct Module<'a> {
    ///     fields: Vec<ModuleField<'a>>,
    /// }
    ///
    /// impl<'a> Parse<'a> for Module<'a> {
    ///     fn parse(parser: Parser<'a>) -> Result<Self> {
    ///         // Modules start out with a `module` keyword
    ///         parser.parse::<kw::module>()?;
    ///
    ///         // And then everything else is `(field ...)`, so while we've got
    ///         // items left we continuously parse parenthesized items.
    ///         let mut fields = Vec::new();
    ///         while !parser.is_empty() {
    ///             fields.push(parser.parens(|p| p.parse())?);
    ///         }
    ///         Ok(Module { fields })
    ///     }
    /// }
    /// ```
    pub fn parens<T>(self, f: impl FnOnce(Parser<'a>) -> Result<T>) -> Result<T> {
        self.buf.depth.set(self.buf.depth.get() + 1);
        let before = self.buf.cur.get();
        let res = self.step(|cursor| {
            let mut cursor = match cursor.lparen() {
                Some(rest) => rest,
                None => return Err(cursor.error("expected `(`")),
            };
            cursor.parser.buf.cur.set(cursor.cur);
            let result = f(cursor.parser)?;
            cursor.cur = cursor.parser.buf.cur.get();
            match cursor.rparen() {
                Some(rest) => Ok((result, rest)),
                None => Err(cursor.error("expected `)`")),
            }
        });
        self.buf.depth.set(self.buf.depth.get() - 1);
        if res.is_err() {
            self.buf.cur.set(before);
        }
        res
    }

    /// Return the depth of nested parens we've parsed so far.
    ///
    /// This is a low-level method that is only useful for implementing
    /// recursion limits in custom parsers.
    pub fn parens_depth(&self) -> usize {
        self.buf.depth.get()
    }

    /// Checks that the parser parens depth hasn't exceeded the maximum depth.
    pub(crate) fn depth_check(&self) -> Result<()> {
        if self.parens_depth() > MAX_PARENS_DEPTH {
            Err(self.error("item nesting too deep"))
        } else {
            Ok(())
        }
    }

    fn cursor(self) -> Cursor<'a> {
        Cursor {
            parser: self,
            cur: self.buf.cur.get(),
        }
    }

    /// A low-level parsing method you probably won't use.
    ///
    /// This is used to implement parsing of the most primitive types in the
    /// [`core`](crate::core) module. You probably don't want to use this, but
    /// probably want to use something like [`Parser::parse`] or
    /// [`Parser::parens`].
    pub fn step<F, T>(self, f: F) -> Result<T>
    where
        F: FnOnce(Cursor<'a>) -> Result<(T, Cursor<'a>)>,
    {
        let (result, cursor) = f(self.cursor())?;
        self.buf.cur.set(cursor.cur);
        Ok(result)
    }

    /// Creates an error whose line/column information is pointing at the
    /// current token.
    ///
    /// This is used to produce human-readable error messages which point to the
    /// right location in the input stream, and the `msg` here is arbitrary text
    /// used to associate with the error and indicate why it was generated.
    pub fn error(self, msg: impl fmt::Display) -> Error {
        self.error_at(self.cursor().cur_span(), &msg)
    }

    fn error_at(self, span: Span, msg: &dyn fmt::Display) -> Error {
        Error::parse(span, self.buf.input, msg.to_string())
    }

    /// Returns the span of the current token
    pub fn cur_span(&self) -> Span {
        self.cursor().cur_span()
    }

    /// Returns the span of the previous token
    pub fn prev_span(&self) -> Span {
        self.cursor()
            .prev_span()
            .unwrap_or_else(|| Span::from_offset(0))
    }

    /// Registers a new known annotation with this parser to allow parsing
    /// annotations with this name.
    ///
    /// [WebAssembly annotations][annotation] are a proposal for the text format
    /// which allows decorating the text format with custom structured
    /// information. By default all annotations are ignored when parsing, but
    /// the whole purpose of them is to sometimes parse them!
    ///
    /// To support parsing text annotations this method is used to allow
    /// annotations and their tokens to *not* be skipped. Once an annotation is
    /// registered with this method, then while the return value has not been
    /// dropped (e.g. the scope of where this function is called) annotations
    /// with the name `annotation` will be parse of the token stream and not
    /// implicitly skipped.
    ///
    /// # Skipping annotations
    ///
    /// The behavior of skipping unknown/unregistered annotations can be
    /// somewhat subtle and surprising, so if you're interested in parsing
    /// annotations it's important to point out the importance of this method
    /// and where to call it.
    ///
    /// Generally when parsing tokens you'll be bottoming out in various
    /// `Cursor` methods. These are all documented as advancing the stream as
    /// much as possible to the next token, skipping "irrelevant stuff" like
    /// comments, whitespace, etc. The `Cursor` methods will also skip unknown
    /// annotations. This means that if you parse *any* token, it will skip over
    /// any number of annotations that are unknown at all times.
    ///
    /// To parse an annotation you must, before parsing any token of the
    /// annotation, register the annotation via this method. This includes the
    /// beginning `(` token, which is otherwise skipped if the annotation isn't
    /// marked as registered. Typically parser parse the *contents* of an
    /// s-expression, so this means that the outer parser of an s-expression
    /// must register the custom annotation name, rather than the inner parser.
    ///
    /// # Return
    ///
    /// This function returns an RAII guard which, when dropped, will unregister
    /// the `annotation` given. Parsing `annotation` is only supported while the
    /// returned value is still alive, and once dropped the parser will go back
    /// to skipping annotations with the name `annotation`.
    ///
    /// # Example
    ///
    /// Let's see an example of how the `@name` annotation is parsed for modules
    /// to get an idea of how this works:
    ///
    /// ```
    /// # use wast::kw;
    /// # use wast::token::NameAnnotation;
    /// # use wast::parser::*;
    /// struct Module<'a> {
    ///     name: Option<NameAnnotation<'a>>,
    /// }
    ///
    /// impl<'a> Parse<'a> for Module<'a> {
    ///     fn parse(parser: Parser<'a>) -> Result<Self> {
    ///         // Modules start out with a `module` keyword
    ///         parser.parse::<kw::module>()?;
    ///
    ///         // Next may be `(@name "foo")`. Typically this annotation would
    ///         // skipped, but we don't want it skipped, so we register it.
    ///         // Note that the parse implementation of
    ///         // `Option<NameAnnotation>` is the one that consumes the
    ///         // parentheses here.
    ///         let _r = parser.register_annotation("name");
    ///         let name = parser.parse()?;
    ///
    ///         // ... and normally you'd otherwise parse module fields here ...
    ///
    ///         Ok(Module { name })
    ///     }
    /// }
    /// ```
    ///
    /// Another example is how we parse the `@custom` annotation. Note that this
    /// is parsed as part of `ModuleField`, so note how the annotation is
    /// registered *before* we parse the parentheses of the annotation.
    ///
    /// ```
    /// # use wast::{kw, annotation};
    /// # use wast::core::Custom;
    /// # use wast::parser::*;
    /// struct Module<'a> {
    ///     fields: Vec<ModuleField<'a>>,
    /// }
    ///
    /// impl<'a> Parse<'a> for Module<'a> {
    ///     fn parse(parser: Parser<'a>) -> Result<Self> {
    ///         // Modules start out with a `module` keyword
    ///         parser.parse::<kw::module>()?;
    ///
    ///         // register the `@custom` annotation *first* before we start
    ///         // parsing fields, because each field is contained in
    ///         // parentheses and to parse the parentheses of an annotation we
    ///         // have to known to not skip it.
    ///         let _r = parser.register_annotation("custom");
    ///
    ///         let mut fields = Vec::new();
    ///         while !parser.is_empty() {
    ///             fields.push(parser.parens(|p| p.parse())?);
    ///         }
    ///         Ok(Module { fields })
    ///     }
    /// }
    ///
    /// enum ModuleField<'a> {
    ///     Custom(Custom<'a>),
    ///     // ...
    /// }
    ///
    /// impl<'a> Parse<'a> for ModuleField<'a> {
    ///     fn parse(parser: Parser<'a>) -> Result<Self> {
    ///         // Note that because we have previously registered the `@custom`
    ///         // annotation with the parser we known that `peek` methods like
    ///         // this, working on the annotation token, are enabled to ever
    ///         // return `true`.
    ///         if parser.peek::<annotation::custom>() {
    ///             return Ok(ModuleField::Custom(parser.parse()?));
    ///         }
    ///
    ///         // .. typically we'd parse other module fields here...
    ///
    ///         Err(parser.error("unknown module field"))
    ///     }
    /// }
    /// ```
    ///
    /// [annotation]: https://github.com/WebAssembly/annotations
    pub fn register_annotation<'b>(self, annotation: &'b str) -> impl Drop + 'b
    where
        'a: 'b,
    {
        let mut annotations = self.buf.known_annotations.borrow_mut();
        if !annotations.contains_key(annotation) {
            annotations.insert(annotation.to_string(), 0);
        }
        *annotations.get_mut(annotation).unwrap() += 1;

        return RemoveOnDrop(self, annotation);

        struct RemoveOnDrop<'a>(Parser<'a>, &'a str);

        impl Drop for RemoveOnDrop<'_> {
            fn drop(&mut self) {
                let mut annotations = self.0.buf.known_annotations.borrow_mut();
                let slot = annotations.get_mut(self.1).unwrap();
                *slot -= 1;
            }
        }
    }
}

impl<'a> Cursor<'a> {
    /// Returns the span of the next `Token` token.
    ///
    /// Does not take into account whitespace or comments.
    pub fn cur_span(&self) -> Span {
        let offset = match self.clone().advance_token() {
            Some(t) => self.parser.buf.input_pos(t.src()),
            None => self.parser.buf.input.len(),
        };
        Span { offset }
    }

    /// Returns the span of the previous `Token` token.
    ///
    /// Does not take into account whitespace or comments.
    pub(crate) fn prev_span(&self) -> Option<Span> {
        let (token, _) = self.parser.buf.tokens.get(self.cur.checked_sub(1)?)?;
        Some(Span {
            offset: self.parser.buf.input_pos(token.src()),
        })
    }

    /// Same as [`Parser::error`], but works with the current token in this
    /// [`Cursor`] instead.
    pub fn error(&self, msg: impl fmt::Display) -> Error {
        self.parser.error_at(self.cur_span(), &msg)
    }

    /// Attempts to advance this cursor if the current token is a `(`.
    ///
    /// If the current token is `(`, returns a new [`Cursor`] pointing at the
    /// rest of the tokens in the stream. Otherwise returns `None`.
    ///
    /// This function will automatically skip over any comments, whitespace, or
    /// unknown annotations.
    pub fn lparen(mut self) -> Option<Self> {
        match self.advance_token()? {
            Token::LParen(_) => Some(self),
            _ => None,
        }
    }

    /// Attempts to advance this cursor if the current token is a `)`.
    ///
    /// If the current token is `)`, returns a new [`Cursor`] pointing at the
    /// rest of the tokens in the stream. Otherwise returns `None`.
    ///
    /// This function will automatically skip over any comments, whitespace, or
    /// unknown annotations.
    pub fn rparen(mut self) -> Option<Self> {
        match self.advance_token()? {
            Token::RParen(_) => Some(self),
            _ => None,
        }
    }

    /// Attempts to advance this cursor if the current token is a
    /// [`Token::Id`](crate::lexer::Token)
    ///
    /// If the current token is `Id`, returns the identifier minus the leading
    /// `$` character as well as a new [`Cursor`] pointing at the rest of the
    /// tokens in the stream. Otherwise returns `None`.
    ///
    /// This function will automatically skip over any comments, whitespace, or
    /// unknown annotations.
    pub fn id(mut self) -> Option<(&'a str, Self)> {
        match self.advance_token()? {
            Token::Id(id) => Some((&id[1..], self)),
            _ => None,
        }
    }

    /// Attempts to advance this cursor if the current token is a
    /// [`Token::Keyword`](crate::lexer::Token)
    ///
    /// If the current token is `Keyword`, returns the keyword as well as a new
    /// [`Cursor`] pointing at the rest of the tokens in the stream. Otherwise
    /// returns `None`.
    ///
    /// This function will automatically skip over any comments, whitespace, or
    /// unknown annotations.
    pub fn keyword(mut self) -> Option<(&'a str, Self)> {
        match self.advance_token()? {
            Token::Keyword(id) => Some((id, self)),
            _ => None,
        }
    }

    /// Attempts to advance this cursor if the current token is a
    /// [`Token::Reserved`](crate::lexer::Token)
    ///
    /// If the current token is `Reserved`, returns the reserved token as well
    /// as a new [`Cursor`] pointing at the rest of the tokens in the stream.
    /// Otherwise returns `None`.
    ///
    /// This function will automatically skip over any comments, whitespace, or
    /// unknown annotations.
    pub fn reserved(mut self) -> Option<(&'a str, Self)> {
        match self.advance_token()? {
            Token::Reserved(id) => Some((id, self)),
            _ => None,
        }
    }

    /// Attempts to advance this cursor if the current token is a
    /// [`Token::Integer`](crate::lexer::Token)
    ///
    /// If the current token is `Integer`, returns the integer as well as a new
    /// [`Cursor`] pointing at the rest of the tokens in the stream. Otherwise
    /// returns `None`.
    ///
    /// This function will automatically skip over any comments, whitespace, or
    /// unknown annotations.
    pub fn integer(mut self) -> Option<(&'a Integer<'a>, Self)> {
        match self.advance_token()? {
            Token::Integer(i) => Some((i, self)),
            _ => None,
        }
    }

    /// Attempts to advance this cursor if the current token is a
    /// [`Token::Float`](crate::lexer::Token)
    ///
    /// If the current token is `Float`, returns the float as well as a new
    /// [`Cursor`] pointing at the rest of the tokens in the stream. Otherwise
    /// returns `None`.
    ///
    /// This function will automatically skip over any comments, whitespace, or
    /// unknown annotations.
    pub fn float(mut self) -> Option<(&'a Float<'a>, Self)> {
        match self.advance_token()? {
            Token::Float(f) => Some((f, self)),
            _ => None,
        }
    }

    /// Attempts to advance this cursor if the current token is a
    /// [`Token::String`](crate::lexer::Token)
    ///
    /// If the current token is `String`, returns the byte value of the string
    /// as well as a new [`Cursor`] pointing at the rest of the tokens in the
    /// stream. Otherwise returns `None`.
    ///
    /// This function will automatically skip over any comments, whitespace, or
    /// unknown annotations.
    pub fn string(mut self) -> Option<(&'a [u8], Self)> {
        match self.advance_token()? {
            Token::String(s) => Some((s.val(), self)),
            _ => None,
        }
    }

    /// Attempts to advance this cursor if the current token is a
    /// [`Token::Reserved`](crate::lexer::Token) and looks like the start of an
    /// annotation.
    ///
    /// [Annotations][annotation] are a WebAssembly proposal for the text format
    /// which allows placing structured text inside of a text file, for example
    /// to specify the name section or other custom sections.
    ///
    /// This function will attempt to see if the current token is the `@foo`
    /// part of the annotation. This requires the previous token to be `(` and
    /// the current token is `Reserved` which starts with `@` and has a nonzero
    /// length for the following name.
    ///
    /// Note that this will skip *unknown* annoations. Only pre-registered
    /// annotations will be returned here.
    ///
    /// This function will automatically skip over any comments, whitespace, or
    /// unknown annotations.
    ///
    /// [annotation]: https://github.com/WebAssembly/annotations
    pub fn annotation(self) -> Option<(&'a str, Self)> {
        let (token, cursor) = self.reserved()?;
        if !token.starts_with('@') || token.len() <= 1 {
            return None;
        }
        match &self.parser.buf.tokens.get(self.cur.wrapping_sub(1))?.0 {
            Token::LParen(_) => Some((&token[1..], cursor)),
            _ => None,
        }
    }

    /// Attempts to advance this cursor if the current token is a
    /// [`Token::LineComment`](crate::lexer::Token) or a
    /// [`Token::BlockComment`](crate::lexer::Token)
    ///
    /// This function will only skip whitespace, no other tokens.
    pub fn comment(mut self) -> Option<(&'a str, Self)> {
        let comment = loop {
            match &self.parser.buf.tokens.get(self.cur)?.0 {
                Token::LineComment(c) | Token::BlockComment(c) => {
                    self.cur += 1;
                    break c;
                }
                Token::Whitespace(_) => {
                    self.cur += 1;
                }
                _ => return None,
            }
        };
        Some((comment, self))
    }

    fn advance_token(&mut self) -> Option<&'a Token<'a>> {
        let known_annotations = self.parser.buf.known_annotations.borrow();
        let is_known_annotation = |name: &str| match known_annotations.get(name) {
            Some(0) | None => false,
            Some(_) => true,
        };

        loop {
            let (token, next) = self.parser.buf.tokens.get(self.cur)?;

            // If we're currently pointing at a token, and it's not the start
            // of an annotation, then we return that token and advance
            // ourselves to just after that token.
            match token {
                Token::Whitespace(_) | Token::LineComment(_) | Token::BlockComment(_) => {}
                _ => match self.annotation_start() {
                    Some(n) if !is_known_annotation(n) => {}
                    _ => {
                        self.cur += 1;
                        return Some(token);
                    }
                },
            }

            // ... otherwise we need to skip the current token, and possibly
            // more. Here we're skipping whitespace, comments, annotations, etc.
            // Basically stuff that's intended to not be that relevant to the
            // text format. This is a pretty common operation, though, and we
            // may do it multiple times through peeks and such. As a result
            // this is somewhat cached.
            //
            // The `next` field, if "unknown", means we haven't calculated the
            // next token. Otherwise it's an index of where to resume searching
            // for the next token.
            //
            // Note that this entire operation happens in a loop (hence the
            // "somewhat cached") because the set of known annotations is
            // dynamic and we can't cache which annotations are skipped. What we
            // can do though is cache the number of tokens in the annotation so
            // we know how to skip ahead of it.
            match next.get() {
                NextTokenAt::Unknown => match self.find_next() {
                    Some(i) => {
                        next.set(NextTokenAt::Index(i));
                        self.cur = i;
                    }
                    None => {
                        next.set(NextTokenAt::Eof);
                        return None;
                    }
                },
                NextTokenAt::Eof => return None,
                NextTokenAt::Index(i) => self.cur = i,
            }
        }
    }

    fn annotation_start(&self) -> Option<&'a str> {
        match self.parser.buf.tokens.get(self.cur).map(|p| &p.0) {
            Some(Token::LParen(_)) => {}
            _ => return None,
        }
        let reserved = match self.parser.buf.tokens.get(self.cur + 1).map(|p| &p.0) {
            Some(Token::Reserved(n)) => n,
            _ => return None,
        };
        if reserved.starts_with('@') && reserved.len() > 1 {
            Some(&reserved[1..])
        } else {
            None
        }
    }

    /// Finds the next "real" token from the current position onwards.
    ///
    /// This is a somewhat expensive operation to call quite a lot, so it's
    /// cached in the token list. See the comment above in `advance_token` for
    /// how this works.
    ///
    /// Returns the index of the next relevant token to parse
    fn find_next(mut self) -> Option<usize> {
        // If we're pointing to the start of annotation we need to skip it
        // in its entirety, so match the parentheses and figure out where
        // the annotation ends.
        if self.annotation_start().is_some() {
            let mut depth = 1;
            self.cur += 1;
            while depth > 0 {
                match &self.parser.buf.tokens.get(self.cur)?.0 {
                    Token::LParen(_) => depth += 1,
                    Token::RParen(_) => depth -= 1,
                    _ => {}
                }
                self.cur += 1;
            }
            return Some(self.cur);
        }

        // ... otherwise we're pointing at whitespace/comments, so we need to
        // figure out how many of them we can skip.
        loop {
            let (token, _) = self.parser.buf.tokens.get(self.cur)?;
            // and otherwise we skip all comments/whitespace and otherwise
            // get real intersted once a normal `Token` pops up.
            match token {
                Token::Whitespace(_) | Token::LineComment(_) | Token::BlockComment(_) => {
                    self.cur += 1
                }
                _ => return Some(self.cur),
            }
        }
    }
}

impl Lookahead1<'_> {
    /// Attempts to see if `T` is the next token in the [`Parser`] this
    /// [`Lookahead1`] references.
    ///
    /// For more information see [`Parser::lookahead1`] and [`Parser::peek`]
    pub fn peek<T: Peek>(&mut self) -> bool {
        if self.parser.peek::<T>() {
            true
        } else {
            self.attempts.push(T::display());
            false
        }
    }

    /// Generates an error message saying that one of the tokens passed to
    /// [`Lookahead1::peek`] method was expected.
    ///
    /// Before calling this method you should call [`Lookahead1::peek`] for all
    /// possible tokens you'd like to parse.
    pub fn error(self) -> Error {
        match self.attempts.len() {
            0 => {
                if self.parser.is_empty() {
                    self.parser.error("unexpected end of input")
                } else {
                    self.parser.error("unexpected token")
                }
            }
            1 => {
                let message = format!("unexpected token, expected {}", self.attempts[0]);
                self.parser.error(&message)
            }
            2 => {
                let message = format!(
                    "unexpected token, expected {} or {}",
                    self.attempts[0], self.attempts[1]
                );
                self.parser.error(&message)
            }
            _ => {
                let join = self.attempts.join(", ");
                let message = format!("unexpected token, expected one of: {}", join);
                self.parser.error(&message)
            }
        }
    }
}

impl<'a, T: Peek + Parse<'a>> Parse<'a> for Option<T> {
    fn parse(parser: Parser<'a>) -> Result<Option<T>> {
        if parser.peek::<T>() {
            Ok(Some(parser.parse()?))
        } else {
            Ok(None)
        }
    }
}