1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
|
/*
* Copyright 2019 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/decompiler.h"
#include "src/decompiler-ast.h"
#include "src/decompiler-ls.h"
#include "src/decompiler-naming.h"
#include "src/stream.h"
#define WABT_TRACING 0
#include "src/tracing.h"
#include <inttypes.h>
namespace wabt {
struct Decompiler {
Decompiler(const Module& module, const DecompileOptions& options)
: mc(module), options(options) {}
// Sorted such that "greater precedence" is also the bigger enum val.
enum Precedence {
// Low precedence.
None, // precedence doesn't matter, since never nested.
Assign, // =
OtherBin, // min
Bit, // & |
Equal, // == != < > >= <=
Shift, // << >>
Add, // + -
Multiply, // * / %
If, // if{}
Indexing, // []
Atomic, // (), a, 1, a()
// High precedence.
};
// Anything besides these will get parentheses if used with equal precedence,
// for clarity.
bool Associative(Precedence p) {
return p == Precedence::Add || p == Precedence::Multiply;
}
struct Value {
std::vector<std::string> v;
// Lazily add bracketing only if the parent requires it.
// This is the precedence level of this value, for example, if this
// precedence is Add, and the parent is Multiply, bracketing is needed,
// but not if it is the reverse.
Precedence precedence;
Value(std::vector<std::string>&& v, Precedence p)
: v(v), precedence(p) {}
size_t width() {
size_t w = 0;
for (auto &s : v) {
w = std::max(w, s.size());
}
return w;
}
// This value should really never be copied, only moved.
Value(Value&& rhs) = default;
Value(const Value& rhs) = delete;
Value& operator=(Value&& rhs) = default;
Value& operator=(const Value& rhs) = delete;
};
std::string to_string(double d) {
auto s = std::to_string(d);
// Remove redundant trailing '0's that to_string produces.
while (s.size() > 2 && s.back() == '0' && s[s.size() - 2] != '.')
s.pop_back();
return s;
}
std::string Indent(size_t amount) {
return std::string(amount, ' ');
}
std::string OpcodeToToken(Opcode opcode) {
std::string s = opcode.GetDecomp();
std::replace(s.begin(), s.end(), '.', '_');
return s;
}
void IndentValue(Value &val, size_t amount, string_view first_indent) {
auto indent = Indent(amount);
for (auto& stat : val.v) {
auto is = (&stat != &val.v[0] || first_indent.empty())
? string_view(indent)
: first_indent;
stat.insert(0, is.data(), is.size());
}
}
Value WrapChild(Value &child, string_view prefix, string_view postfix,
Precedence precedence) {
auto width = prefix.size() + postfix.size() + child.width();
auto &v = child.v;
if (width < target_exp_width ||
(prefix.size() <= indent_amount && postfix.size() <= indent_amount)) {
if (v.size() == 1) {
// Fits in a single line.
v[0].insert(0, prefix.data(), prefix.size());
v[0].append(postfix.data(), postfix.size());
} else {
// Multiline, but with prefix on same line.
IndentValue(child, prefix.size(), prefix);
v.back().append(postfix.data(), postfix.size());
}
} else {
// Multiline with prefix on its own line.
IndentValue(child, indent_amount, {});
v.insert(v.begin(), std::string(prefix));
v.back().append(postfix.data(), postfix.size());
}
child.precedence = precedence;
return std::move(child);
}
void BracketIfNeeded(Value &val, Precedence parent_precedence) {
if (parent_precedence < val.precedence ||
(parent_precedence == val.precedence &&
Associative(parent_precedence))) return;
val = WrapChild(val, "(", ")", Precedence::Atomic);
}
Value WrapBinary(std::vector<Value>& args, string_view infix,
bool indent_right, Precedence precedence) {
assert(args.size() == 2);
auto& left = args[0];
auto& right = args[1];
BracketIfNeeded(left, precedence);
BracketIfNeeded(right, precedence);
auto width = infix.size() + left.width() + right.width() + 2;
if (width < target_exp_width && left.v.size() == 1 && right.v.size() == 1) {
return Value{{cat(left.v[0], " ", infix, " ", right.v[0])}, precedence};
} else {
Value bin { {}, precedence };
std::move(left.v.begin(), left.v.end(), std::back_inserter(bin.v));
bin.v.back().append(" ", 1);
bin.v.back().append(infix.data(), infix.size());
if (indent_right) IndentValue(right, indent_amount, {});
std::move(right.v.begin(), right.v.end(), std::back_inserter(bin.v));
return bin;
}
}
Value WrapNAry(std::vector<Value>& args, string_view prefix,
string_view postfix, Precedence precedence) {
size_t total_width = 0;
size_t max_width = 0;
bool multiline = false;
for (auto& child : args) {
auto w = child.width();
max_width = std::max(max_width, w);
total_width += w;
multiline = multiline || child.v.size() > 1;
}
if (!multiline &&
(total_width + prefix.size() + postfix.size() < target_exp_width ||
args.empty())) {
// Single line.
auto s = std::string(prefix);
for (auto& child : args) {
if (&child != &args[0])
s += ", ";
s += child.v[0];
}
s += postfix;
return Value{{std::move(s)}, precedence};
} else {
// Multi-line.
Value ml { {}, precedence };
auto ident_with_name = max_width + prefix.size() < target_exp_width;
size_t i = 0;
for (auto& child : args) {
IndentValue(child, ident_with_name ? prefix.size() : indent_amount,
!i && ident_with_name ? prefix : string_view {});
if (i < args.size() - 1) child.v.back() += ",";
std::move(child.v.begin(), child.v.end(),
std::back_inserter(ml.v));
i++;
}
if (!ident_with_name) ml.v.insert(ml.v.begin(), std::string(prefix));
ml.v.back() += postfix;
return ml;
}
}
string_view VarName(string_view name) {
assert(!name.empty());
return name[0] == '$' ? name.substr(1) : name;
}
template<ExprType T> Value Get(const VarExpr<T>& ve) {
return Value{{std::string(VarName(ve.var.name()))}, Precedence::Atomic};
}
template<ExprType T> Value Set(Value& child, const VarExpr<T>& ve) {
return WrapChild(child, VarName(ve.var.name()) + " = ", "", Precedence::Assign);
}
std::string TempVarName(Index n) {
// FIXME: this needs much better variable naming. Problem is, the code
// in generate-names.cc has allready run, its dictionaries deleted, so it
// is not easy to integrate with it.
return "t" + std::to_string(n);
}
std::string LocalDecl(const std::string& name, Type t) {
auto struc = lst.GenTypeDecl(name);
return cat(VarName(name), ":",
struc.empty() ? GetDecompTypeName(t) : struc);
}
bool ConstIntVal(const Expr* e, uint64_t &dest) {
dest = 0;
if (!e || e->type() != ExprType::Const) return false;
auto& c = cast<ConstExpr>(e)->const_;
if (c.type() != Type::I32 && c.type() != Type::I64) return false;
dest = c.type() == Type::I32 ? c.u32() : c.u64();
return true;
}
void LoadStore(Value &val, const Node& addr_exp, uint64_t offset,
Opcode opc, Address align, Type op_type) {
bool append_type = true;
auto access = lst.GenAccess(offset, addr_exp);
if (!access.empty()) {
if (access == "*") {
// The variable was declared as a typed pointer, so this access
// doesn't need a type.
append_type = false;
} else {
// We can do this load/store as a struct access.
BracketIfNeeded(val, Precedence::Indexing);
val.v.back() += "." + access;
return;
}
}
// Detect absolute addressing, which we try to turn into references to the
// data section when possible.
uint64_t abs_base;
if (ConstIntVal(addr_exp.e, abs_base)) {
// We don't care what part of the absolute address was stored where,
// 1[0] and 0[1] are the same.
abs_base += offset;
// FIXME: make this less expensive with a binary search or whatever.
for (auto dat : mc.module.data_segments) {
uint64_t dat_base;
if (dat->offset.size() == 1 &&
ConstIntVal(&dat->offset.front(), dat_base) &&
abs_base >= dat_base &&
abs_base < dat_base + dat->data.size()) {
// We are inside the range of this data segment!
// Turn expression into data_name[index]
val = Value { { dat->name }, Precedence::Atomic };
// The new offset is from the start of the data segment, instead of
// whatever it was.. this may be a different value from both the
// original const and offset!
offset = abs_base - dat_base;
}
}
}
// Do the load/store as a generalized indexing operation.
// The offset is divisible by the alignment in 99.99% of
// cases, but the spec doesn't guarantee it, so we must
// have a backup syntax.
auto index = offset % align == 0
? std::to_string(offset / align)
: cat(std::to_string(offset), "@", std::to_string(align));
// Detect the very common case of (base + (index << 2))[0]:int etc.
// so we can instead do base[index]:int
// TODO: (index << 2) on the left of + occurs also.
// TODO: sadly this does not address cases where the shift amount > align.
// (which happens for arrays of structs or arrays of long (with align=4)).
// TODO: also very common is (v = base + (index << 2))[0]:int
if (addr_exp.etype == ExprType::Binary) {
auto& pe = *cast<BinaryExpr>(addr_exp.e);
auto& shift_exp = addr_exp.children[1];
if (pe.opcode == Opcode::I32Add &&
shift_exp.etype == ExprType::Binary) {
auto& se = *cast<BinaryExpr>(shift_exp.e);
auto& const_exp = shift_exp.children[1];
if (se.opcode == Opcode::I32Shl &&
const_exp.etype == ExprType::Const) {
auto& ce = *cast<ConstExpr>(const_exp.e);
if (ce.const_.type() == Type::I32 &&
(1ULL << ce.const_.u32()) == align) {
// Pfew, case detected :( Lets re-write this in Haskell.
// TODO: we're decompiling these twice.
// The thing to the left of << is going to be part of the index.
auto ival = DecompileExpr(shift_exp.children[0], &shift_exp);
if (ival.v.size() == 1) { // Don't bother if huge.
if (offset == 0) {
index = ival.v[0];
} else {
BracketIfNeeded(ival, Precedence::Add);
index = cat(ival.v[0], " + ", index);
}
// We're going to use the thing to the left of + as the new
// base address:
val = DecompileExpr(addr_exp.children[0], &addr_exp);
}
}
}
}
}
BracketIfNeeded(val, Precedence::Indexing);
val.v.back() += cat("[", index, "]");
if (append_type) {
val.v.back() +=
cat(":", GetDecompTypeName(GetMemoryType(op_type, opc)),
lst.GenAlign(align, opc));
}
val.precedence = Precedence::Indexing;
}
Value DecompileExpr(const Node& n, const Node* parent) {
std::vector<Value> args;
for (auto& c : n.children) {
args.push_back(DecompileExpr(c, &n));
}
// First deal with the specialized node types.
switch (n.ntype) {
case NodeType::FlushToVars: {
std::string decls = "let ";
for (Index i = 0; i < n.u.var_count; i++) {
if (i) decls += ", ";
decls += TempVarName(n.u.var_start + i);
}
decls += " = ";
return WrapNAry(args, decls, "", Precedence::Assign);
}
case NodeType::FlushedVar: {
return Value { { TempVarName(n.u.var_start) }, Precedence::Atomic };
}
case NodeType::Statements: {
Value stats { {}, Precedence::None };
for (size_t i = 0; i < n.children.size(); i++) {
auto& s = args[i].v.back();
if (s.back() != '}' && s.back() != ':') s += ';';
std::move(args[i].v.begin(), args[i].v.end(),
std::back_inserter(stats.v));
}
return stats;
}
case NodeType::EndReturn: {
return WrapNAry(args, "return ", "", Precedence::None);
}
case NodeType::Decl: {
cur_ast->vars_defined[n.u.var->name()].defined = true;
return Value{
{"var " + LocalDecl(std::string(n.u.var->name()),
cur_func->GetLocalType(*n.u.var))},
Precedence::None};
}
case NodeType::DeclInit: {
if (cur_ast->vars_defined[n.u.var->name()].defined) {
// This has already been pre-declared, output as assign.
return WrapChild(args[0], cat(VarName(n.u.var->name()), " = "), "",
Precedence::None);
} else {
return WrapChild(
args[0],
cat("var ",
LocalDecl(std::string(n.u.var->name()),
cur_func->GetLocalType(*n.u.var)),
" = "),
"", Precedence::None);
}
}
case NodeType::Expr:
// We're going to fall thru to the second switch to deal with ExprType.
break;
case NodeType::Uninitialized:
assert(false);
break;
}
// Existing ExprTypes.
switch (n.etype) {
case ExprType::Const: {
auto& c = cast<ConstExpr>(n.e)->const_;
switch (c.type()) {
case Type::I32:
return Value{{std::to_string(static_cast<int32_t>(c.u32()))},
Precedence::Atomic};
case Type::I64:
return Value{{std::to_string(static_cast<int64_t>(c.u64())) + "L"},
Precedence::Atomic};
case Type::F32: {
float f = Bitcast<float>(c.f32_bits());
return Value{{to_string(f) + "f"}, Precedence::Atomic};
}
case Type::F64: {
double d = Bitcast<double>(c.f64_bits());
return Value{{to_string(d)}, Precedence::Atomic};
}
case Type::V128:
return Value{{"V128"}, Precedence::Atomic}; // FIXME
default:
WABT_UNREACHABLE;
}
}
case ExprType::LocalGet: {
return Get(*cast<LocalGetExpr>(n.e));
}
case ExprType::GlobalGet: {
return Get(*cast<GlobalGetExpr>(n.e));
}
case ExprType::LocalSet: {
return Set(args[0], *cast<LocalSetExpr>(n.e));
}
case ExprType::GlobalSet: {
return Set(args[0], *cast<GlobalSetExpr>(n.e));
}
case ExprType::LocalTee: {
auto& te = *cast<LocalTeeExpr>(n.e);
return args.empty() ? Get(te) : Set(args[0], te);
}
case ExprType::Binary: {
auto& be = *cast<BinaryExpr>(n.e);
auto opcs = OpcodeToToken(be.opcode);
// TODO: Is this selection better done on Opcode values directly?
// What if new values get added and OtherBin doesn't make sense?
auto prec = Precedence::OtherBin;
if (opcs == "*" || opcs == "/" || opcs == "%") {
prec = Precedence::Multiply;
} else if (opcs == "+" || opcs == "-") {
prec = Precedence::Add;
} else if (opcs == "&" || opcs == "|" || opcs == "^") {
prec = Precedence::Bit;
} else if (opcs == "<<" || opcs == ">>") {
prec = Precedence::Shift;
}
return WrapBinary(args, opcs, false, prec);
}
case ExprType::Compare: {
auto& ce = *cast<CompareExpr>(n.e);
return WrapBinary(args, OpcodeToToken(ce.opcode), false,
Precedence::Equal);
}
case ExprType::Unary: {
auto& ue = *cast<UnaryExpr>(n.e);
//BracketIfNeeded(stack.back());
// TODO: also version without () depending on precedence.
return WrapChild(args[0], OpcodeToToken(ue.opcode) + "(", ")",
Precedence::Atomic);
}
case ExprType::Load: {
auto& le = *cast<LoadExpr>(n.e);
LoadStore(args[0], n.children[0], le.offset, le.opcode, le.align,
le.opcode.GetResultType());
return std::move(args[0]);
}
case ExprType::Store: {
auto& se = *cast<StoreExpr>(n.e);
LoadStore(args[0], n.children[0], se.offset, se.opcode, se.align,
se.opcode.GetParamType2());
return WrapBinary(args, "=", true, Precedence::Assign);
}
case ExprType::If: {
auto ife = cast<IfExpr>(n.e);
Value *elsep = nullptr;
if (!ife->false_.empty()) {
elsep = &args[2];
}
auto& thenp = args[1];
auto& ifs = args[0];
bool multiline = ifs.v.size() > 1 || thenp.v.size() > 1;
size_t width = ifs.width() + thenp.width();
if (elsep) {
width += elsep->width();
multiline = multiline || elsep->v.size() > 1;
}
multiline = multiline || width > target_exp_width;
if (multiline) {
auto if_start = string_view("if (");
IndentValue(ifs, if_start.size(), if_start);
ifs.v.back() += ") {";
IndentValue(thenp, indent_amount, {});
std::move(thenp.v.begin(), thenp.v.end(), std::back_inserter(ifs.v));
if (elsep) {
ifs.v.push_back("} else {");
IndentValue(*elsep, indent_amount, {});
std::move(elsep->v.begin(), elsep->v.end(), std::back_inserter(ifs.v));
}
ifs.v.push_back("}");
ifs.precedence = Precedence::If;
return std::move(ifs);
} else {
auto s = cat("if (", ifs.v[0], ") { ", thenp.v[0], " }");
if (elsep)
s += cat(" else { ", elsep->v[0], " }");
return Value{{std::move(s)}, Precedence::If};
}
}
case ExprType::Block: {
auto& val = args[0];
val.v.push_back(
cat("label ", VarName(cast<BlockExpr>(n.e)->block.label), ":"));
// If this block is part of a larger statement scope, it doesn't
// need its own indenting, but if its part of an exp we wrap it in {}.
if (parent && parent->ntype != NodeType::Statements
&& parent->etype != ExprType::Block
&& parent->etype != ExprType::Loop
&& (parent->etype != ExprType::If ||
&parent->children[0] == &n)) {
IndentValue(val, indent_amount, {});
val.v.insert(val.v.begin(), "{");
val.v.push_back("}");
}
val.precedence = Precedence::Atomic;
return std::move(val);
}
case ExprType::Loop: {
auto& val = args[0];
auto& block = cast<LoopExpr>(n.e)->block;
IndentValue(val, indent_amount, {});
val.v.insert(val.v.begin(), cat("loop ", VarName(block.label), " {"));
val.v.push_back("}");
val.precedence = Precedence::Atomic;
return std::move(val);
}
case ExprType::Br: {
auto be = cast<BrExpr>(n.e);
return Value{{(n.u.lt == LabelType::Loop ? "continue " : "goto ") +
VarName(be->var.name())},
Precedence::None};
}
case ExprType::BrIf: {
auto bie = cast<BrIfExpr>(n.e);
auto jmp = n.u.lt == LabelType::Loop ? "continue" : "goto";
return WrapChild(args[0], "if (", cat(") ", jmp, " ",
VarName(bie->var.name())),
Precedence::None);
}
case ExprType::Return: {
return WrapNAry(args, "return ", "", Precedence::None);
}
case ExprType::Rethrow: {
return WrapNAry(args, "rethrow ", "", Precedence::None);
}
case ExprType::Drop: {
// Silent dropping of return values is very common, so currently
// don't output this.
return std::move(args[0]);
}
case ExprType::Nop: {
return Value{{"nop"}, Precedence::None};
}
case ExprType::Unreachable: {
return Value{{"unreachable"}, Precedence::None};
}
case ExprType::RefNull: {
return Value{{"null"}, Precedence::Atomic};
}
case ExprType::BrTable: {
auto bte = cast<BrTableExpr>(n.e);
std::string ts = "br_table[";
for (auto &v : bte->targets) {
ts += VarName(v.name());
ts += ", ";
}
ts += "..";
ts += VarName(bte->default_target.name());
ts += "](";
return WrapChild(args[0], ts, ")", Precedence::Atomic);
}
default: {
// Everything that looks like a function call.
std::string name;
auto precedence = Precedence::Atomic;
switch (n.etype) {
case ExprType::Call:
name = cast<CallExpr>(n.e)->var.name();
break;
case ExprType::ReturnCall:
name = "return_call " + cast<ReturnCallExpr>(n.e)->var.name();
precedence = Precedence::None;
break;
case ExprType::Convert:
name = std::string(OpcodeToToken(cast<ConvertExpr>(n.e)->opcode));
break;
case ExprType::Ternary:
name = std::string(OpcodeToToken(cast<TernaryExpr>(n.e)->opcode));
break;
case ExprType::Select:
// This one looks like it could be translated to "?:" style ternary,
// but the arguments are NOT lazy, and side effects definitely do
// occur in the branches. So it has no clear equivalent in C-syntax.
// To emphasize that all args are being evaluated in order, we
// leave it as a function call.
name = "select_if";
break;
case ExprType::MemoryGrow:
name = "memory_grow";
break;
case ExprType::MemorySize:
name = "memory_size";
break;
case ExprType::MemoryCopy:
name = "memory_copy";
break;
case ExprType::MemoryFill:
name = "memory_fill";
break;
case ExprType::RefIsNull:
name = "is_null";
break;
case ExprType::CallIndirect:
name = "call_indirect";
break;
case ExprType::ReturnCallIndirect:
name = "return_call call_indirect";
break;
default:
name = GetExprTypeName(n.etype);
break;
}
return WrapNAry(args, name + "(", ")", precedence);
}
}
}
bool CheckImportExport(std::string& s,
ExternalKind kind,
Index index,
string_view name) {
// Figure out if this thing is imported, exported, or neither.
auto is_import = mc.module.IsImport(kind, Var(index));
// TODO: is this the best way to check for export?
// FIXME: this doesn't work for functions that get renamed in some way,
// as the export has the original name..
auto xport = mc.module.GetExport(name);
auto is_export = xport && xport->kind == kind;
if (is_export)
s += "export ";
if (is_import)
s += "import ";
return is_import;
}
std::string InitExp(const ExprList &el) {
assert(!el.empty());
AST ast(mc, nullptr);
ast.Construct(el, 1, 0, false);
auto val = DecompileExpr(ast.exp_stack[0], nullptr);
assert(ast.exp_stack.size() == 1 && val.v.size() == 1);
return std::move(val.v[0]);
}
// FIXME: Merge with WatWriter::WriteQuotedData somehow.
std::string BinaryToString(const std::vector<uint8_t> &in) {
std::string s = "\"";
size_t line_start = 0;
static const char s_hexdigits[] = "0123456789abcdef";
for (auto c : in) {
if (c >= ' ' && c <= '~') {
s += c;
} else {
s += '\\';
s += s_hexdigits[c >> 4];
s += s_hexdigits[c & 0xf];
}
if (s.size() - line_start > target_exp_width) {
if (line_start == 0) {
s = " " + s;
}
s += "\"\n ";
line_start = s.size();
s += "\"";
}
}
s += '\"';
return s;
}
std::string Decompile() {
std::string s;
// Memories.
Index memory_index = 0;
for (auto m : mc.module.memories) {
auto is_import =
CheckImportExport(s, ExternalKind::Memory, memory_index, m->name);
s += cat("memory ", m->name);
if (!is_import) {
s += cat("(initial: ", std::to_string(m->page_limits.initial),
", max: ", std::to_string(m->page_limits.max), ")");
}
s += ";\n";
memory_index++;
}
if (!mc.module.memories.empty())
s += "\n";
// Globals.
Index global_index = 0;
for (auto g : mc.module.globals) {
auto is_import =
CheckImportExport(s, ExternalKind::Global, global_index, g->name);
s += cat("global ", g->name, ":", GetDecompTypeName(g->type));
if (!is_import) {
s += cat(" = ", InitExp(g->init_expr));
}
s += ";\n";
global_index++;
}
if (!mc.module.globals.empty())
s += "\n";
// Tables.
Index table_index = 0;
for (auto tab : mc.module.tables) {
auto is_import =
CheckImportExport(s, ExternalKind::Table, table_index, tab->name);
s += cat("table ", tab->name, ":", GetDecompTypeName(tab->elem_type));
if (!is_import) {
s += cat("(min: ", std::to_string(tab->elem_limits.initial),
", max: ", std::to_string(tab->elem_limits.max), ")");
}
s += ";\n";
table_index++;
}
if (!mc.module.tables.empty())
s += "\n";
// Data.
for (auto dat : mc.module.data_segments) {
s += cat("data ", dat->name, "(offset: ", InitExp(dat->offset), ") =");
auto ds = BinaryToString(dat->data);
if (ds.size() > target_exp_width / 2) {
s += "\n";
} else {
s += " ";
}
s += ds;
s += ";\n";
}
if (!mc.module.data_segments.empty())
s += "\n";
// Code.
Index func_index = 0;
for (auto f : mc.module.funcs) {
cur_func = f;
auto is_import =
CheckImportExport(s, ExternalKind::Func, func_index, f->name);
AST ast(mc, f);
cur_ast = *
if (!is_import) {
ast.Construct(f->exprs, f->GetNumResults(), 0, true);
lst.Track(ast.exp_stack[0]);
lst.CheckLayouts();
}
s += cat("function ", f->name, "(");
for (Index i = 0; i < f->GetNumParams(); i++) {
if (i)
s += ", ";
auto t = f->GetParamType(i);
auto name = "$" + IndexToAlphaName(i);
s += LocalDecl(name, t);
}
s += ")";
if (f->GetNumResults()) {
if (f->GetNumResults() == 1) {
s += cat(":", GetDecompTypeName(f->GetResultType(0)));
} else {
s += ":(";
for (Index i = 0; i < f->GetNumResults(); i++) {
if (i)
s += ", ";
s += GetDecompTypeName(f->GetResultType(i));
}
s += ")";
}
}
if (is_import) {
s += ";";
} else {
s += " {\n";
auto val = DecompileExpr(ast.exp_stack[0], nullptr);
IndentValue(val, indent_amount, {});
for (auto& stat : val.v) {
s += stat;
s += "\n";
}
s += "}";
}
s += "\n\n";
mc.EndFunc();
lst.Clear();
func_index++;
cur_ast = nullptr;
cur_func = nullptr;
}
return s;
}
ModuleContext mc;
const DecompileOptions& options;
size_t indent_amount = 2;
size_t target_exp_width = 70;
const Func* cur_func = nullptr;
AST* cur_ast = nullptr;
LoadStoreTracking lst;
};
std::string Decompile(const Module& module, const DecompileOptions& options) {
Decompiler decompiler(module, options);
return decompiler.Decompile();
}
} // namespace wabt
|