summaryrefslogtreecommitdiffstats
path: root/third_party/wasm2c/src/literal.cc
blob: 0061772e2debfb7b0a7567443aac736953cf6747 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
/*
 * Copyright 2016 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "src/literal.h"

#include <cassert>
#include <cerrno>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <type_traits>

namespace wabt {

namespace {

template <typename T>
struct FloatTraitsBase {};

// The "PlusOne" values are used because normal IEEE floats have an implicit
// leading one, so they have an additional bit of precision.

template <>
struct FloatTraitsBase<float> {
  typedef uint32_t Uint;
  static constexpr int kBits = sizeof(Uint) * 8;
  static constexpr int kSigBits = 23;
  static constexpr float kHugeVal = HUGE_VALF;
  static constexpr int kMaxHexBufferSize = WABT_MAX_FLOAT_HEX;

  static float Strto(const char* s, char** endptr) { return strtof(s, endptr); }
};

template <>
struct FloatTraitsBase<double> {
  typedef uint64_t Uint;
  static constexpr int kBits = sizeof(Uint) * 8;
  static constexpr int kSigBits = 52;
  static constexpr float kHugeVal = HUGE_VAL;
  static constexpr int kMaxHexBufferSize = WABT_MAX_DOUBLE_HEX;

  static double Strto(const char* s, char** endptr) {
    return strtod(s, endptr);
  }
};

template <typename T>
struct FloatTraits : FloatTraitsBase<T> {
  typedef typename FloatTraitsBase<T>::Uint Uint;
  using FloatTraitsBase<T>::kBits;
  using FloatTraitsBase<T>::kSigBits;

  static constexpr int kExpBits = kBits - kSigBits - 1;
  static constexpr int kSignShift = kBits - 1;
  static constexpr Uint kSigMask = (Uint(1) << kSigBits) - 1;
  static constexpr int kSigPlusOneBits = kSigBits + 1;
  static constexpr Uint kSigPlusOneMask = (Uint(1) << kSigPlusOneBits) - 1;
  static constexpr int kExpMask = (1 << kExpBits) - 1;
  static constexpr int kMaxExp = 1 << (kExpBits - 1);
  static constexpr int kMinExp = -kMaxExp + 1;
  static constexpr int kExpBias = -kMinExp;
  static constexpr Uint kQuietNanTag = Uint(1) << (kSigBits - 1);
};

template <typename T>
class FloatParser {
 public:
  typedef FloatTraits<T> Traits;
  typedef typename Traits::Uint Uint;
  typedef T Float;

  static Result Parse(LiteralType,
                      const char* s,
                      const char* end,
                      Uint* out_bits);

 private:
  static bool StringStartsWith(const char* start,
                               const char* end,
                               const char* prefix);
  static Uint Make(bool sign, int exp, Uint sig);
  static Uint ShiftAndRoundToNearest(Uint significand,
                                     int shift,
                                     bool seen_trailing_non_zero);

  static Result ParseFloat(const char* s, const char* end, Uint* out_bits);
  static Result ParseNan(const char* s, const char* end, Uint* out_bits);
  static Result ParseHex(const char* s, const char* end, Uint* out_bits);
  static void ParseInfinity(const char* s, const char* end, Uint* out_bits);
};

template <typename T>
class FloatWriter {
 public:
  typedef FloatTraits<T> Traits;
  typedef typename Traits::Uint Uint;

  static void WriteHex(char* out, size_t size, Uint bits);
};

// Return 1 if the non-NULL-terminated string starting with |start| and ending
// with |end| starts with the NULL-terminated string |prefix|.
template <typename T>
// static
bool FloatParser<T>::StringStartsWith(const char* start,
                                      const char* end,
                                      const char* prefix) {
  while (start < end && *prefix) {
    if (*start != *prefix) {
      return false;
    }
    start++;
    prefix++;
  }
  return *prefix == 0;
}

// static
template <typename T>
Result FloatParser<T>::ParseFloat(const char* s,
                                  const char* end,
                                  Uint* out_bits) {
  // Here is the normal behavior for strtof/strtod:
  //
  // input     | errno  |   output   |
  // ---------------------------------
  // overflow  | ERANGE | +-HUGE_VAL |
  // underflow | ERANGE |        0.0 |
  // otherwise |      0 |      value |
  //
  // So normally we need to clear errno before calling strto{f,d}, and check
  // afterward whether it was set to ERANGE.
  //
  // glibc seems to have a bug where
  // strtof("340282356779733661637539395458142568448") will return HUGE_VAL,
  // but will not set errno to ERANGE. Since this function is only called when
  // we know that we have parsed a "normal" number (i.e. not "inf"), we know
  // that if we ever get HUGE_VAL, it must be overflow.
  //
  // The WebAssembly spec also ignores underflow, so we don't need to check for
  // ERANGE at all.

  // WebAssembly floats can contain underscores, but strto* can't parse those,
  // so remove them first.
  assert(s <= end);
  const size_t kBufferSize = end - s + 1;  // +1 for \0.
  char* buffer = static_cast<char*>(alloca(kBufferSize));
  auto buffer_end =
      std::copy_if(s, end, buffer, [](char c) -> bool { return c != '_'; });
  assert(buffer_end < buffer + kBufferSize);
  *buffer_end = 0;

  char* endptr;
  Float value = Traits::Strto(buffer, &endptr);
  if (endptr != buffer_end ||
      (value == Traits::kHugeVal || value == -Traits::kHugeVal)) {
    return Result::Error;
  }

  memcpy(out_bits, &value, sizeof(value));
  return Result::Ok;
}

// static
template <typename T>
typename FloatParser<T>::Uint FloatParser<T>::Make(bool sign,
                                                   int exp,
                                                   Uint sig) {
  assert(exp >= Traits::kMinExp && exp <= Traits::kMaxExp);
  assert(sig <= Traits::kSigMask);
  return (Uint(sign) << Traits::kSignShift) |
         (Uint(exp + Traits::kExpBias) << Traits::kSigBits) | sig;
}

// static
template <typename T>
typename FloatParser<T>::Uint FloatParser<T>::ShiftAndRoundToNearest(
    Uint significand,
    int shift,
    bool seen_trailing_non_zero) {
  assert(shift > 0);
  // Round ties to even.
  if ((significand & (Uint(1) << shift)) || seen_trailing_non_zero) {
    significand += Uint(1) << (shift - 1);
  }
  significand >>= shift;
  return significand;
}

// static
template <typename T>
Result FloatParser<T>::ParseNan(const char* s,
                                const char* end,
                                Uint* out_bits) {
  bool is_neg = false;
  if (*s == '-') {
    is_neg = true;
    s++;
  } else if (*s == '+') {
    s++;
  }
  assert(StringStartsWith(s, end, "nan"));
  s += 3;

  Uint tag;
  if (s != end) {
    tag = 0;
    assert(StringStartsWith(s, end, ":0x"));
    s += 3;

    for (; s < end; ++s) {
      if (*s == '_') {
        continue;
      }
      uint32_t digit;
      CHECK_RESULT(ParseHexdigit(*s, &digit));
      tag = tag * 16 + digit;
      // Check for overflow.
      if (tag > Traits::kSigMask) {
        return Result::Error;
      }
    }

    // NaN cannot have a zero tag, that is reserved for infinity.
    if (tag == 0) {
      return Result::Error;
    }
  } else {
    tag = Traits::kQuietNanTag;
  }

  *out_bits = Make(is_neg, Traits::kMaxExp, tag);
  return Result::Ok;
}

// static
template <typename T>
Result FloatParser<T>::ParseHex(const char* s,
                                const char* end,
                                Uint* out_bits) {
  bool is_neg = false;
  if (*s == '-') {
    is_neg = true;
    s++;
  } else if (*s == '+') {
    s++;
  }
  assert(StringStartsWith(s, end, "0x"));
  s += 2;

  // Loop over the significand; everything up to the 'p'.
  // This code is a bit nasty because we want to support extra zeroes anywhere
  // without having to use many significand bits.
  // e.g.
  // 0x00000001.0p0 => significand = 1, significand_exponent = 0
  // 0x10000000.0p0 => significand = 1, significand_exponent = 28
  // 0x0.000001p0 => significand = 1, significand_exponent = -24
  bool seen_dot = false;
  bool seen_trailing_non_zero = false;
  Uint significand = 0;
  int significand_exponent = 0;  // Exponent adjustment due to dot placement.
  for (; s < end; ++s) {
    uint32_t digit;
    if (*s == '_') {
      continue;
    } else if (*s == '.') {
      seen_dot = true;
    } else if (Succeeded(ParseHexdigit(*s, &digit))) {
      if (Traits::kBits - Clz(significand) <= Traits::kSigPlusOneBits) {
        significand = (significand << 4) + digit;
        if (seen_dot) {
          significand_exponent -= 4;
        }
      } else {
        if (!seen_trailing_non_zero && digit != 0) {
          seen_trailing_non_zero = true;
        }
        if (!seen_dot) {
          significand_exponent += 4;
        }
      }
    } else {
      break;
    }
  }

  if (significand == 0) {
    // 0 or -0.
    *out_bits = Make(is_neg, Traits::kMinExp, 0);
    return Result::Ok;
  }

  int exponent = 0;
  bool exponent_is_neg = false;
  if (s < end) {
    assert(*s == 'p' || *s == 'P');
    s++;
    // Exponent is always positive, but significand_exponent is signed.
    // significand_exponent_add is negated if exponent will be negative, so it
    // can be easily summed to see if the exponent is too large (see below).
    int significand_exponent_add = 0;
    if (*s == '-') {
      exponent_is_neg = true;
      significand_exponent_add = -significand_exponent;
      s++;
    } else if (*s == '+') {
      s++;
      significand_exponent_add = significand_exponent;
    }

    for (; s < end; ++s) {
      if (*s == '_') {
        continue;
      }

      uint32_t digit = (*s - '0');
      assert(digit <= 9);
      exponent = exponent * 10 + digit;
      if (exponent + significand_exponent_add >= Traits::kMaxExp) {
        break;
      }
    }
  }

  if (exponent_is_neg) {
    exponent = -exponent;
  }

  int significand_bits = Traits::kBits - Clz(significand);
  // -1 for the implicit 1 bit of the significand.
  exponent += significand_exponent + significand_bits - 1;

  if (exponent <= Traits::kMinExp) {
    // Maybe subnormal.
    auto update_seen_trailing_non_zero = [&](int shift) {
      assert(shift > 0);
      auto mask = (Uint(1) << (shift - 1)) - 1;
      seen_trailing_non_zero |= (significand & mask) != 0;
    };

    // Normalize significand.
    if (significand_bits > Traits::kSigBits) {
      int shift = significand_bits - Traits::kSigBits;
      update_seen_trailing_non_zero(shift);
      significand >>= shift;
    } else if (significand_bits < Traits::kSigBits) {
      significand <<= (Traits::kSigBits - significand_bits);
    }

    int shift = Traits::kMinExp - exponent;
    if (shift <= Traits::kSigBits) {
      if (shift) {
        update_seen_trailing_non_zero(shift);
        significand =
            ShiftAndRoundToNearest(significand, shift, seen_trailing_non_zero) &
            Traits::kSigMask;
      }
      exponent = Traits::kMinExp;

      if (significand != 0) {
        *out_bits = Make(is_neg, exponent, significand);
        return Result::Ok;
      }
    }

    // Not subnormal, too small; return 0 or -0.
    *out_bits = Make(is_neg, Traits::kMinExp, 0);
  } else {
    // Maybe Normal value.
    if (significand_bits > Traits::kSigPlusOneBits) {
      significand = ShiftAndRoundToNearest(
          significand, significand_bits - Traits::kSigPlusOneBits,
          seen_trailing_non_zero);
      if (significand > Traits::kSigPlusOneMask) {
        exponent++;
      }
    } else if (significand_bits < Traits::kSigPlusOneBits) {
      significand <<= (Traits::kSigPlusOneBits - significand_bits);
    }

    if (exponent >= Traits::kMaxExp) {
      // Would be inf or -inf, but the spec doesn't allow rounding hex-floats to
      // infinity.
      return Result::Error;
    }

    *out_bits = Make(is_neg, exponent, significand & Traits::kSigMask);
  }

  return Result::Ok;
}

// static
template <typename T>
void FloatParser<T>::ParseInfinity(const char* s,
                                   const char* end,
                                   Uint* out_bits) {
  bool is_neg = false;
  if (*s == '-') {
    is_neg = true;
    s++;
  } else if (*s == '+') {
    s++;
  }
  assert(StringStartsWith(s, end, "inf"));
  *out_bits = Make(is_neg, Traits::kMaxExp, 0);
}

// static
template <typename T>
Result FloatParser<T>::Parse(LiteralType literal_type,
                             const char* s,
                             const char* end,
                             Uint* out_bits) {
#if COMPILER_IS_MSVC
  if (literal_type == LiteralType::Int && StringStartsWith(s, end, "0x")) {
    // Some MSVC crt implementation of strtof doesn't support hex strings
    literal_type = LiteralType::Hexfloat;
  }
#endif
  switch (literal_type) {
    case LiteralType::Int:
    case LiteralType::Float:
      return ParseFloat(s, end, out_bits);

    case LiteralType::Hexfloat:
      return ParseHex(s, end, out_bits);

    case LiteralType::Infinity:
      ParseInfinity(s, end, out_bits);
      return Result::Ok;

    case LiteralType::Nan:
      return ParseNan(s, end, out_bits);
  }

  WABT_UNREACHABLE;
}

// static
template <typename T>
void FloatWriter<T>::WriteHex(char* out, size_t size, Uint bits) {
  static constexpr int kNumNybbles = Traits::kBits / 4;
  static constexpr int kTopNybbleShift = Traits::kBits - 4;
  static constexpr Uint kTopNybble = Uint(0xf) << kTopNybbleShift;
  static const char s_hex_digits[] = "0123456789abcdef";

  char buffer[Traits::kMaxHexBufferSize];
  char* p = buffer;
  bool is_neg = (bits >> Traits::kSignShift);
  int exp = ((bits >> Traits::kSigBits) & Traits::kExpMask) - Traits::kExpBias;
  Uint sig = bits & Traits::kSigMask;

  if (is_neg) {
    *p++ = '-';
  }
  if (exp == Traits::kMaxExp) {
    // Infinity or nan.
    if (sig == 0) {
      strcpy(p, "inf");
      p += 3;
    } else {
      strcpy(p, "nan");
      p += 3;
      if (sig != Traits::kQuietNanTag) {
        strcpy(p, ":0x");
        p += 3;
        // Skip leading zeroes.
        int num_nybbles = kNumNybbles;
        while ((sig & kTopNybble) == 0) {
          sig <<= 4;
          num_nybbles--;
        }
        while (num_nybbles) {
          Uint nybble = (sig >> kTopNybbleShift) & 0xf;
          *p++ = s_hex_digits[nybble];
          sig <<= 4;
          --num_nybbles;
        }
      }
    }
  } else {
    bool is_zero = sig == 0 && exp == Traits::kMinExp;
    strcpy(p, "0x");
    p += 2;
    *p++ = is_zero ? '0' : '1';

    // Shift sig up so the top 4-bits are at the top of the Uint.
    sig <<= Traits::kBits - Traits::kSigBits;

    if (sig) {
      if (exp == Traits::kMinExp) {
        // Subnormal; shift the significand up, and shift out the implicit 1.
        Uint leading_zeroes = Clz(sig);
        if (leading_zeroes < Traits::kSignShift) {
          sig <<= leading_zeroes + 1;
        } else {
          sig = 0;
        }
        exp -= leading_zeroes;
      }

      *p++ = '.';
      while (sig) {
        int nybble = (sig >> kTopNybbleShift) & 0xf;
        *p++ = s_hex_digits[nybble];
        sig <<= 4;
      }
    }
    *p++ = 'p';
    if (is_zero) {
      strcpy(p, "+0");
      p += 2;
    } else {
      if (exp < 0) {
        *p++ = '-';
        exp = -exp;
      } else {
        *p++ = '+';
      }
      if (exp >= 1000) {
        *p++ = '1';
      }
      if (exp >= 100) {
        *p++ = '0' + (exp / 100) % 10;
      }
      if (exp >= 10) {
        *p++ = '0' + (exp / 10) % 10;
      }
      *p++ = '0' + exp % 10;
    }
  }

  size_t len = p - buffer;
  if (len >= size) {
    len = size - 1;
  }
  memcpy(out, buffer, len);
  out[len] = '\0';
}

}  // end anonymous namespace

Result ParseHexdigit(char c, uint32_t* out) {
  if (static_cast<unsigned int>(c - '0') <= 9) {
    *out = c - '0';
    return Result::Ok;
  } else if (static_cast<unsigned int>(c - 'a') < 6) {
    *out = 10 + (c - 'a');
    return Result::Ok;
  } else if (static_cast<unsigned int>(c - 'A') < 6) {
    *out = 10 + (c - 'A');
    return Result::Ok;
  }
  return Result::Error;
}

Result ParseUint64(const char* s, const char* end, uint64_t* out) {
  if (s == end) {
    return Result::Error;
  }
  uint64_t value = 0;
  if (*s == '0' && s + 1 < end && s[1] == 'x') {
    s += 2;
    if (s == end) {
      return Result::Error;
    }
    constexpr uint64_t kMaxDiv16 = UINT64_MAX / 16;
    constexpr uint64_t kMaxMod16 = UINT64_MAX % 16;
    for (; s < end; ++s) {
      uint32_t digit;
      if (*s == '_') {
        continue;
      }
      CHECK_RESULT(ParseHexdigit(*s, &digit));
      // Check for overflow.
      if (value > kMaxDiv16 || (value == kMaxDiv16 && digit > kMaxMod16)) {
        return Result::Error;
      }
      value = value * 16 + digit;
    }
  } else {
    constexpr uint64_t kMaxDiv10 = UINT64_MAX / 10;
    constexpr uint64_t kMaxMod10 = UINT64_MAX % 10;
    for (; s < end; ++s) {
      if (*s == '_') {
        continue;
      }
      uint32_t digit = (*s - '0');
      if (digit > 9) {
        return Result::Error;
      }
      // Check for overflow.
      if (value > kMaxDiv10 || (value == kMaxDiv10 && digit > kMaxMod10)) {
        return Result::Error;
      }
      value = value * 10 + digit;
    }
  }
  if (s != end) {
    return Result::Error;
  }
  *out = value;
  return Result::Ok;
}

Result ParseInt64(const char* s,
                  const char* end,
                  uint64_t* out,
                  ParseIntType parse_type) {
  bool has_sign = false;
  if (*s == '-' || *s == '+') {
    if (parse_type == ParseIntType::UnsignedOnly) {
      return Result::Error;
    }
    if (*s == '-') {
      has_sign = true;
    }
    s++;
  }
  uint64_t value = 0;
  Result result = ParseUint64(s, end, &value);
  if (has_sign) {
    // abs(INT64_MIN) == INT64_MAX + 1.
    if (value > static_cast<uint64_t>(INT64_MAX) + 1) {
      return Result::Error;
    }
    value = UINT64_MAX - value + 1;
  }
  *out = value;
  return result;
}

namespace {
uint32_t AddWithCarry(uint32_t x, uint32_t y, uint32_t* carry) {
  // Increments *carry if the addition overflows, otherwise leaves carry alone.
  if ((0xffffffff - x) < y) ++*carry;
  return x + y;
}

void Mul10(v128* v) {
  // Multiply-by-10 decomposes into (x << 3) + (x << 1). We implement those
  // operations with carrying from smaller quads of the v128 to the larger
  // quads.

  constexpr uint32_t kTopThreeBits = 0xe0000000;
  constexpr uint32_t kTopBit = 0x80000000;

  uint32_t carry_into_v1 =
      ((v->u32(0) & kTopThreeBits) >> 29) + ((v->u32(0) & kTopBit) >> 31);
  v->set_u32(0, AddWithCarry(v->u32(0) << 3, v->u32(0) << 1, &carry_into_v1));
  uint32_t carry_into_v2 =
      ((v->u32(1) & kTopThreeBits) >> 29) + ((v->u32(1) & kTopBit) >> 31);
  v->set_u32(1, AddWithCarry(v->u32(1) << 3, v->u32(1) << 1, &carry_into_v2));
  v->set_u32(1, AddWithCarry(v->u32(1), carry_into_v1, &carry_into_v2));
  uint32_t carry_into_v3 =
      ((v->u32(2) & kTopThreeBits) >> 29) + ((v->u32(2) & kTopBit) >> 31);
  v->set_u32(2, AddWithCarry(v->u32(2) << 3, v->u32(2) << 1, &carry_into_v3));
  v->set_u32(2, AddWithCarry(v->u32(2), carry_into_v2, &carry_into_v3));
  v->set_u32(3, v->u32(3) * 10 + carry_into_v3);
}
}

Result ParseUint128(const char* s,
                    const char* end,
                    v128* out) {
  if (s == end) {
    return Result::Error;
  }

  out->set_zero();

  while (true) {
    uint32_t digit = (*s - '0');
    if (digit > 9) {
      return Result::Error;
    }

    uint32_t carry_into_v1 = 0;
    uint32_t carry_into_v2 = 0;
    uint32_t carry_into_v3 = 0;
    uint32_t overflow = 0;
    out->set_u32(0, AddWithCarry(out->u32(0), digit, &carry_into_v1));
    out->set_u32(1, AddWithCarry(out->u32(1), carry_into_v1, &carry_into_v2));
    out->set_u32(2, AddWithCarry(out->u32(2), carry_into_v2, &carry_into_v3));
    out->set_u32(3, AddWithCarry(out->u32(3), carry_into_v3, &overflow));
    if (overflow) {
      return Result::Error;
    }

    ++s;

    if (s == end) {
      break;
    }

    Mul10(out);
  }
  return Result::Ok;
}

template <typename U>
Result ParseInt(const char* s,
                const char* end,
                U* out,
                ParseIntType parse_type) {
  typedef typename std::make_signed<U>::type S;
  uint64_t value;
  bool has_sign = false;
  if (*s == '-' || *s == '+') {
    if (parse_type == ParseIntType::UnsignedOnly) {
      return Result::Error;
    }
    if (*s == '-') {
      has_sign = true;
    }
    s++;
  }
  CHECK_RESULT(ParseUint64(s, end, &value));

  if (has_sign) {
    // abs(INTN_MIN) == INTN_MAX + 1.
    if (value > static_cast<uint64_t>(std::numeric_limits<S>::max()) + 1) {
      return Result::Error;
    }
    value = std::numeric_limits<U>::max() - value + 1;
  } else {
    if (value > static_cast<uint64_t>(std::numeric_limits<U>::max())) {
      return Result::Error;
    }
  }
  *out = static_cast<U>(value);
  return Result::Ok;
}

Result ParseInt8(const char* s,
                 const char* end,
                 uint8_t* out,
                 ParseIntType parse_type) {
  return ParseInt(s, end, out, parse_type);
}

Result ParseInt16(const char* s,
                  const char* end,
                  uint16_t* out,
                  ParseIntType parse_type) {
  return ParseInt(s, end, out, parse_type);
}

Result ParseInt32(const char* s,
                  const char* end,
                  uint32_t* out,
                  ParseIntType parse_type) {
  return ParseInt(s, end, out, parse_type);
}

Result ParseFloat(LiteralType literal_type,
                  const char* s,
                  const char* end,
                  uint32_t* out_bits) {
  return FloatParser<float>::Parse(literal_type, s, end, out_bits);
}

Result ParseDouble(LiteralType literal_type,
                   const char* s,
                   const char* end,
                   uint64_t* out_bits) {
  return FloatParser<double>::Parse(literal_type, s, end, out_bits);
}

void WriteFloatHex(char* buffer, size_t size, uint32_t bits) {
  return FloatWriter<float>::WriteHex(buffer, size, bits);
}

void WriteDoubleHex(char* buffer, size_t size, uint64_t bits) {
  return FloatWriter<double>::WriteHex(buffer, size, bits);
}

void WriteUint128(char* buffer, size_t size, v128 bits) {
  uint64_t digits;
  uint64_t remainder;
  char reversed_buffer[40];
  size_t len = 0;
  do {
    remainder = bits.u32(3);

    for (int i = 3; i != 0; --i) {
      digits = remainder / 10;
      remainder = ((remainder - digits * 10) << 32) + bits.u32(i-1);
      bits.set_u32(i, digits);
    }

    digits = remainder / 10;
    remainder = remainder - digits * 10;
    bits.set_u32(0, digits);

    char remainder_buffer[21];
    snprintf(remainder_buffer, 21, "%" PRIu64, remainder);
    int remainder_buffer_len = strlen(remainder_buffer);
    assert(len + remainder_buffer_len < sizeof(reversed_buffer));
    memcpy(&reversed_buffer[len], remainder_buffer, remainder_buffer_len);
    len += remainder_buffer_len;
  } while (!bits.is_zero());
  size_t truncated_tail = 0;
  if (len >= size) {
    truncated_tail = len - size + 1;
    len = size - 1;
  }
  std::reverse_copy(reversed_buffer + truncated_tail,
                    reversed_buffer + len + truncated_tail,
                    buffer);
  buffer[len] = '\0';
}

}  // namespace wabt