1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
|
/* GIMP - The GNU Image Manipulation Program
* Copyright (C) 1995 Spencer Kimball and Peter Mattis
*
* gimpoperationflood.c
* Copyright (C) 2016 Ell
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/* Implementation of the Flood algorithm.
* See https://wiki.gimp.org/wiki/Algorithms:Flood for details.
*/
#include "config.h"
#include <string.h> /* For `memcpy()`. */
#include <cairo.h>
#include <gegl.h>
#include <gdk-pixbuf/gdk-pixbuf.h>
#include "libgimpbase/gimpbase.h"
#include "operations-types.h"
#include "gimpoperationflood.h"
/* Maximal gap, in pixels, between consecutive dirty ranges, below (and
* including) which they are coalesced, at the beginning of the distribution
* step.
*/
#define GIMP_OPERATION_FLOOD_COALESCE_MAX_GAP 32
typedef struct _GimpOperationFloodSegment GimpOperationFloodSegment;
typedef struct _GimpOperationFloodDirtyRange GimpOperationFloodDirtyRange;
typedef struct _GimpOperationFloodContext GimpOperationFloodContext;
/* A segment. */
struct _GimpOperationFloodSegment
{
/* A boolean flag indicating whether the image- and ROI-virtual coordinate
* systems should be transposed when processing this segment. TRUE iff the
* segment is vertical.
*/
guint transpose : 1;
/* The y-coordinate of the segment, in the ROI-virtual coordinate system. */
guint y : 8 * sizeof (guint) - 3;
/* The difference between the y-coordinates of the source segment and this
* segment, in the ROI-virtual coordinate system. Either -1 or +1 for
* ordinary segments, and 0 for seed segments, as a special case.
*
* Note the use of `signed` as the type specifier. The C standard doesn't
* specify the signedness of bit-fields whose type specifier is `int`, or a
* typedef-name defined as `int`, such as `gint`.
*/
signed source_y_delta : 2;
/* The x-coordinates of the first and last pixels of the segment, in the ROI-
* virtual coordinate system. Note that this is a closed range:
* [x[0], x[1]].
*/
gint x[2];
};
/* Make sure the maximal image dimension fits in
* `GimpOperationFloodSegment::y`.
*/
G_STATIC_ASSERT (GIMP_MAX_IMAGE_SIZE <= (1 << (8 * sizeof (guint) - 3)));
/* A dirty range of the current segment. */
struct _GimpOperationFloodDirtyRange
{
/* A boolean flag indicating whether the range was extended, or its existing
* pixels were modified, during the horizontal propagation step.
*/
gboolean modified;
/* The x-coordinates of the first and last pixels of the range, in the ROI-
* virtual coordinate system. Note that this is a closed range:
* [x[0], x[1]].
*/
gint x[2];
};
/* Common parameters for the various parts of the algorithm. */
struct _GimpOperationFloodContext
{
/* Input image. */
GeglBuffer *input;
/* Input image format. */
const Babl *input_format;
/* Output image. */
GeglBuffer *output;
/* Output image format. */
const Babl *output_format;
/* Region of interset. */
GeglRectangle roi;
/* Current segment. */
GimpOperationFloodSegment segment;
/* The following arrays hold the ground- and water-level of the current- and
* source-segments. The vertical- and horizontal-propagation steps don't
* generally access the input and output GEGL buffers directly, but rather
* read from, and write to, these arrays, for efficiency. These arrays are
* read-from, and written-to, the corresponding GEGL buffers before and after
* these steps.
*/
/* Ground level of the current segment, indexed by x-coordinate in the ROI-
* virtual coordinate system. Only valid inside the range
* `[segment.x[0], segment.x[1]]`.
*/
gfloat *ground;
/* Water level of the current segment, indexed by x-coordinate in the ROI-
* virtual coordinate system. Initially only valid inside the range
* `[segment.x[0], segment.x[1]]`, but may be written-to outside this range
* during horizontal propagation, if the dirty ranges are extended past the
* bounds of the segment.
*/
gfloat *water;
/* Water level of the source segment, indexed by x-coordinate in the ROI-
* virtual coordinate system. Only valid inside the range
* `[segment.x[0], segment.x[1]]`.
*/
gfloat *source_water;
/* A common buffer for the water level of the current- and source-segments.
* `water` and `source_water` are pointers into this buffer. This buffer is
* used as an optimization, in order to read the water level of both segments
* from the output GEGL buffer in a single call, and is otherwise not used
* directly (`water` and `source_water` are used to access the water level
* instead.)
*/
gfloat *water_buffer;
};
static void gimp_operation_flood_prepare (GeglOperation *operation);
static GeglRectangle gimp_operation_flood_get_required_for_output (GeglOperation *self,
const gchar *input_pad,
const GeglRectangle *roi);
static GeglRectangle gimp_operation_flood_get_cached_region (GeglOperation *self,
const GeglRectangle *roi);
static void gimp_operation_flood_process_push (GQueue *queue,
gboolean transpose,
gint y,
gint source_y_delta,
gint x0,
gint x1);
static void gimp_operation_flood_process_seed (GQueue *queue,
const GeglRectangle *roi);
static void gimp_operation_flood_process_transform_rect (const GimpOperationFloodContext *ctx,
GeglRectangle *dest,
const GeglRectangle *src);
static void gimp_operation_flood_process_fetch (GimpOperationFloodContext *ctx);
static gint gimp_operation_flood_process_propagate_vertical (GimpOperationFloodContext *ctx,
GimpOperationFloodDirtyRange *dirty_ranges);
static void gimp_operation_flood_process_propagate_horizontal (GimpOperationFloodContext *ctx,
gint dir,
GimpOperationFloodDirtyRange *dirty_ranges,
gint range_count);
static gint gimp_operation_flood_process_coalesce (const GimpOperationFloodContext *ctx,
GimpOperationFloodDirtyRange *dirty_ranges,
gint range_count,
gint gap);
static void gimp_operation_flood_process_commit (const GimpOperationFloodContext *ctx,
const GimpOperationFloodDirtyRange *dirty_ranges,
gint range_count);
static void gimp_operation_flood_process_distribute (const GimpOperationFloodContext *ctx,
GQueue *queue,
const GimpOperationFloodDirtyRange *dirty_ranges,
gint range_count);
static gboolean gimp_operation_flood_process (GeglOperation *operation,
GeglBuffer *input,
GeglBuffer *output,
const GeglRectangle *roi,
gint level);
G_DEFINE_TYPE (GimpOperationFlood, gimp_operation_flood,
GEGL_TYPE_OPERATION_FILTER)
#define parent_class gimp_operation_flood_parent_class
/* GEGL graph for the test case. */
static const gchar* reference_xml = "<?xml version='1.0' encoding='UTF-8'?>"
"<gegl>"
"<node operation='gimp:flood'> </node>"
"<node operation='gegl:load'>"
" <params>"
" <param name='path'>flood-input.png</param>"
" </params>"
"</node>"
"</gegl>";
static void
gimp_operation_flood_class_init (GimpOperationFloodClass *klass)
{
GeglOperationClass *operation_class = GEGL_OPERATION_CLASS (klass);
GeglOperationFilterClass *filter_class = GEGL_OPERATION_FILTER_CLASS (klass);
/* The input and output buffers must be different, since we generally need to
* be able to access the input-image values after having written to the
* output buffer.
*/
operation_class->want_in_place = FALSE;
/* We don't want `GeglOperationFilter` to split the image across multiple
* threads, since this operation depends on, and affects, the image as a
* whole.
*/
operation_class->threaded = FALSE;
/* Note that both of these options are the default; we set them here for
* explicitness.
*/
gegl_operation_class_set_keys (operation_class,
"name", "gimp:flood",
"categories", "gimp",
"description", "GIMP Flood operation",
"reference", "https://wiki.gimp.org/wiki/Algorithms:Flood",
"reference-image", "flood-output.png",
"reference-composition", reference_xml,
NULL);
operation_class->prepare = gimp_operation_flood_prepare;
operation_class->get_required_for_output = gimp_operation_flood_get_required_for_output;
operation_class->get_cached_region = gimp_operation_flood_get_cached_region;
filter_class->process = gimp_operation_flood_process;
}
static void
gimp_operation_flood_init (GimpOperationFlood *self)
{
}
static void
gimp_operation_flood_prepare (GeglOperation *operation)
{
const Babl *space = gegl_operation_get_source_space (operation, "input");
gegl_operation_set_format (operation, "input", babl_format_with_space ("Y float", space));
gegl_operation_set_format (operation, "output", babl_format_with_space ("Y float", space));
}
static GeglRectangle
gimp_operation_flood_get_required_for_output (GeglOperation *self,
const gchar *input_pad,
const GeglRectangle *roi)
{
return *gegl_operation_source_get_bounding_box (self, "input");
}
static GeglRectangle
gimp_operation_flood_get_cached_region (GeglOperation *self,
const GeglRectangle *roi)
{
return *gegl_operation_source_get_bounding_box (self, "input");
}
/* Pushes a single segment into the queue. */
static void
gimp_operation_flood_process_push (GQueue *queue,
gboolean transpose,
gint y,
gint source_y_delta,
gint x0,
gint x1)
{
GimpOperationFloodSegment *segment;
segment = g_slice_new (GimpOperationFloodSegment);
segment->transpose = transpose;
segment->y = y;
segment->source_y_delta = source_y_delta;
segment->x[0] = x0;
segment->x[1] = x1;
g_queue_push_tail (queue, segment);
}
/* Pushes the seed segments into the queue. Recall that the seed segments are
* indicated by having their `source_y_delta` field equal 0.
*
* `roi` is given in the image-physical coordinate system.
*/
static void
gimp_operation_flood_process_seed (GQueue *queue,
const GeglRectangle *roi)
{
if (roi->width == 0 || roi->height == 0)
return;
/* Top edge. */
gimp_operation_flood_process_push (queue,
/* transpose = */ FALSE,
/* y = */ 0,
/* source_y_delta = */ 0,
/* x0 = */ 0,
/* x1 = */ roi->width - 1);
if (roi->height == 1)
return;
/* Bottom edge. */
gimp_operation_flood_process_push (queue,
/* transpose = */ FALSE,
/* y = */ roi->height - 1,
/* source_y_delta = */ 0,
/* x0 = */ 0,
/* x1 = */ roi->width - 1);
if (roi->height == 2)
return;
/* Left edge. */
gimp_operation_flood_process_push (queue,
/* transpose = */ TRUE,
/* y = */ 0,
/* source_y_delta = */ 0,
/* x0 = */ 1,
/* x1 = */ roi->height - 2);
if (roi->width == 1)
return;
/* Right edge. */
gimp_operation_flood_process_push (queue,
/* transpose = */ TRUE,
/* y = */ roi->width - 1,
/* source_y_delta = */ 0,
/* x0 = */ 1,
/* x1 = */ roi->height - 2);
}
/* Transforms a `GeglRectangle` between the image-physical and image-virtual
* coordinate systems, in either direction, based on the attributes of the
* current segment (namely, its `transpose` flag.)
*
* Takes the input rectangle through `src`, and stores the result in `dest`.
* Both parameters may refer to the same object.
*/
static void
gimp_operation_flood_process_transform_rect (const GimpOperationFloodContext *ctx,
GeglRectangle *dest,
const GeglRectangle *src)
{
if (! ctx->segment.transpose)
*dest = *src;
else
{
gint temp;
temp = src->x;
dest->x = src->y;
dest->y = temp;
temp = src->width;
dest->width = src->height;
dest->height = temp;
}
}
/* Reads the ground- and water-level for the current- and source-segments from
* the GEGL buffers into the corresponding arrays. Sets up the `water` and
* `source_water` pointers of `ctx` to point to the right location in
* `water_buffer`.
*/
static void
gimp_operation_flood_process_fetch (GimpOperationFloodContext *ctx)
{
/* Image-virtual and image-physical rectangles, respectively. */
GeglRectangle iv_rect, ip_rect;
/* Set the horizontal extent of the rectangle to span the entire segment. */
iv_rect.x = ctx->roi.x + ctx->segment.x[0];
iv_rect.width = ctx->segment.x[1] - ctx->segment.x[0] + 1;
/* For reading the water level, we treat ordinary (non-seed) and seed
* segments differently.
*/
if (ctx->segment.source_y_delta != 0)
{
/* Ordinary segment. */
/* We set the vertical extent of the rectangle to span both the current-
* and the source-segments, and set the `water` and `source_water`
* pointers to point to two consecutive rows of the `water_buffer` array
* (the y-coordinate of the rectangle, and which row is above which,
* depends on whether the source segment is above, or below, the current
* one.)
*/
if (ctx->segment.source_y_delta < 0)
{
iv_rect.y = ctx->roi.y + ctx->segment.y - 1;
ctx->water = ctx->water_buffer + ctx->roi.width;
ctx->source_water = ctx->water_buffer;
}
else
{
iv_rect.y = ctx->roi.y + ctx->segment.y;
ctx->water = ctx->water_buffer;
ctx->source_water = ctx->water_buffer + ctx->roi.width;
}
iv_rect.height = 2;
/* Transform `iv_rect` to the image-physical coordinate system, and store
* the result in `ip_rect`.
*/
gimp_operation_flood_process_transform_rect (ctx, &ip_rect, &iv_rect);
/* Read the water level from the output GEGL buffer into `water_buffer`.
*
* Notice the stride: If the current segment is horizontal, then we're
* reading a pair of rows directly into the correct locations inside
* `water_buffer` (i.e., `water` and `source_water`). On the other hand,
* if the current segment is vertical, then we're reading a pair of
* *columns*; we set the stride to 2-pixels so that the current- and
* source-water levels are interleaved in `water_buffer`, and reorder
* them below.
*/
gegl_buffer_get (ctx->output, &ip_rect, 1.0, ctx->output_format,
ctx->water_buffer + ctx->segment.x[0],
sizeof (gfloat) *
(ctx->segment.transpose ? 2 : ctx->roi.width),
GEGL_ABYSS_NONE);
/* As mentioned above, if the current segment is vertical, then the
* water levels of the current- and source-segments are interleaved in
* `water_buffer`. We deinterleave the water levels into `water` and
* `source_water`, using the yet-to-be-written-to `ground` array as a
* temporary buffer, as necessary.
*/
if (ctx->segment.transpose)
{
const gfloat *src;
gfloat *dest1, *dest2, *temp;
gint size, temp_size;
gint i;
src = ctx->water_buffer + ctx->segment.x[0];
dest1 = ctx->water_buffer + ctx->segment.x[0];
dest2 = ctx->water_buffer + ctx->roi.width + ctx->segment.x[0];
temp = ctx->ground;
size = ctx->segment.x[1] - ctx->segment.x[0] + 1;
temp_size = MAX (0, 2 * size - ctx->roi.width);
for (i = 0; i < temp_size; i++)
{
dest1[i] = src[2 * i];
temp[i] = src[2 * i + 1];
}
for (; i < size; i++)
{
dest1[i] = src[2 * i];
dest2[i] = src[2 * i + 1];
}
memcpy (dest2, temp, sizeof (gfloat) * temp_size);
}
}
else
{
/* Seed segment. */
gint x;
/* Set the `water` and `source_water` pointers to point to consecutive
* rows of the `water_buffer` array.
*/
ctx->water = ctx->water_buffer;
ctx->source_water = ctx->water_buffer + ctx->roi.width;
/* Set the vertical extent of the rectangle to span a the current
* segment's row.
*/
iv_rect.y = ctx->roi.y + ctx->segment.y;
iv_rect.height = 1;
/* Transform `iv_rect` to the image-physical coordinate system, and store
* the result in `ip_rect`.
*/
gimp_operation_flood_process_transform_rect (ctx, &ip_rect, &iv_rect);
/* Read the water level of the current segment from the output GEGL
* buffer into `water`.
*/
gegl_buffer_get (ctx->output, &ip_rect, 1.0, ctx->output_format,
ctx->water + ctx->segment.x[0],
GEGL_AUTO_ROWSTRIDE, GEGL_ABYSS_NONE);
/* Initialize `source_water` to 0, as this is a seed segment. */
for (x = ctx->segment.x[0]; x <= ctx->segment.x[1]; x++)
ctx->source_water[x] = 0.0;
}
/* Set the vertical extent of the rectangle to span a the current segment's
* row.
*/
iv_rect.y = ctx->roi.y + ctx->segment.y;
iv_rect.height = 1;
/* Transform `iv_rect` to the image-physical coordinate system, and store the
* result in `ip_rect`.
*/
gimp_operation_flood_process_transform_rect (ctx, &ip_rect, &iv_rect);
/* Read the ground level of the current segment from the input GEGL buffer
* into `ground`.
*/
gegl_buffer_get (ctx->input, &ip_rect, 1.0, ctx->input_format,
ctx->ground + ctx->segment.x[0],
GEGL_AUTO_ROWSTRIDE, GEGL_ABYSS_NONE);
}
/* Performs the vertical propagation step of the algorithm. Writes the dirty
* ranges to the `dirty_ranges` parameter, and returns the number of dirty
* ranges as the function's result.
*/
static gint
gimp_operation_flood_process_propagate_vertical (GimpOperationFloodContext *ctx,
GimpOperationFloodDirtyRange *dirty_ranges)
{
GimpOperationFloodDirtyRange *range = dirty_ranges;
gint x;
for (x = ctx->segment.x[0]; x <= ctx->segment.x[1]; x++)
{
/* Scan the segment until we find a pixel whose water level needs to be
* updated.
*/
if (ctx->source_water[x] < ctx->water[x] &&
ctx->ground[x] < ctx->water[x])
{
/* Compute and update the water level. */
gfloat level = MAX (ctx->source_water[x], ctx->ground[x]);
ctx->water[x] = level;
/* Start a new dirty range at the current pixel. */
range->x[0] = x;
range->modified = FALSE;
for (x++; x <= ctx->segment.x[1]; x++)
{
/* Keep scanning the segment while the water level of consecutive
* pixels needs to be updated.
*/
if (ctx->source_water[x] < ctx->water[x] &&
ctx->ground[x] < ctx->water[x])
{
/* Compute and update the water level. */
gfloat other_level = MAX (ctx->source_water[x],
ctx->ground[x]);
ctx->water[x] = other_level;
/* If the water level of the current pixel, `other_level`,
* equals the water level of the current dirty range,
* `level`, we keep scanning, making the current pixel part
* of the current range. On the other hand, if the current
* pixel's water level is different than the that of the
* current range, we finalize the range, and start a new one
* at the current pixel.
*/
if (other_level != level)
{
range->x[1] = x - 1;
range++;
range->x[0] = x;
range->modified = FALSE;
level = other_level;
}
}
else
break;
}
/* Finalize the current dirty range. */
range->x[1] = x - 1;
range++;
/* Make sure we don't over-increment `x` on the continuation of the
* loop.
*/
if (x > ctx->segment.x[1])
break;
}
}
/* Return the number of dirty ranges. */
return range - dirty_ranges;
}
/* Performs a single pass of the horizontal propagation step of the algorithm.
* `dir` controls the direction of the pass: either +1 for a left-to-right
* pass, or -1 for a right-to-left pass. The dirty ranges are passed through
* the `dirty_ranges` array (and their number in `range_count`), and are
* modified in-place.
*/
static void
gimp_operation_flood_process_propagate_horizontal (GimpOperationFloodContext *ctx,
gint dir,
GimpOperationFloodDirtyRange *dirty_ranges,
gint range_count)
{
/* The index of the terminal (i.e., "`dir`-most") component of the `x[]`
* array of `GimpOperationFloodSegment` and `GimpOperationFloodDirtyRange`,
* based on the scan direction. Equals 1 (i.e., the right component) when
* `dir` is +1 (i.e., left-to-right), and equals 0 (i.e., the left component)
* when `dir` is -1 (i.e., right-to-left).
*/
gint x_component;
/* One-past the final x-coordinate of the ROI, in the ROI-virtual coordinate
* system, based on the scan direction. That is, the x-coordinate of the
* pixel to the right of the rightmost pixel, for a left-to-right scan, and
* of the pixel to the left of the leftmost pixel, for a right-to-left scan.
*/
gint roi_lim;
/* One-past the final x-coordinate of the segment, in the ROI-virtual
* coordinate system, based on the scan direction, in a similar fashion to
* `roi_lim`.
*/
gint segment_lim;
/* The indices of the first, and one-past-the-last dirty ranges, based on the
* direction of the scan. Recall that when scanning right-to-left, we
* iterate over the ranges in reverse.
*/
gint first_range, last_range;
/* Index of the current dirty range. */
gint range_index;
/* Image-virtual and image-physical rectangles, respectively. */
GeglRectangle iv_rect, ip_rect;
/* Initialize the above variables based on the scan direction. */
if (dir > 0)
{
/* Left-to-right. */
x_component = 1;
roi_lim = ctx->roi.width;
first_range = 0;
last_range = range_count;
}
else
{
/* Right-to-left. */
x_component = 0;
roi_lim = -1;
first_range = range_count - 1;
last_range = -1;
}
segment_lim = ctx->segment.x[x_component] + dir;
/* We loop over the dirty ranges, in the direction of the scan. For each
* range, we iterate over the pixels, in the scan direction, starting at the
* outer edge of the range, and update the water level, considering only the
* water level of the previous and current pixels, until we arrive at a pixel
* whose water level remains the same, at which point we move to the next
* range, as described in the algorithm overview.
*/
for (range_index = first_range;
range_index != last_range;
range_index += dir)
{
/* Current dirty range. */
GimpOperationFloodDirtyRange *range;
/* Current pixel, in the ROI-virtual coordinate system. */
gint x;
/* We use `level` to compute the water level of the current pixel. At
* the beginning of each iteration, it holds the water level of the
* previous pixel.
*/
gfloat level;
/* The `inside` flag indicates whether `x` is inside the current segment.
* Recall that we may iterate past the bounds of the current segment, in
* which case we need to read the ground- and water-levels from the GEGL
* buffers directly, instead of the corresponding arrays.
*/
gboolean inside;
/* Loop limit. */
gint lim;
range = &dirty_ranges[range_index];
/* Last x-coordinate of the range, in the direction of the scan. */
x = range->x[x_component];
/* We start iterating on the pixel after `x`; initialize `level` to the
* water level of the previous pixel.
*/
level = ctx->water[x];
/* The ranges produced by the vertical propagation step are all within
* the bounds of the segment; the horizontal propagation step may only
* extend them in the direction of the scan. Therefore, on both passes
* of the horizontal propagation step, the last pixel of each range, in
* the direction of the scan, is initially inside the segment.
*/
inside = TRUE;
/* If this isn't the last range, break the loop at the beginning of the
* next range. Otherwise, break the loop at the edge of the ROI.
*/
if (range_index + dir != last_range)
lim = (range + dir)->x[1 - x_component];
else
lim = roi_lim;
/* Loop over the pixels between the edge of the current range, and the
* beginning of the next range (or the edge of the ROI).
*/
for (x += dir; x != lim; x += dir)
{
gfloat ground_level, water_level;
/* Recall that `segment_lim` is one-past the last pixel of the
* segment. If we hit it, we've gone outside the segment bounds.
*/
if (x == segment_lim)
{
inside = FALSE;
/* Initialize the rectangle to sample pixels directly from the
* GEGL buffers.
*/
iv_rect.y = ctx->roi.y + ctx->segment.y;
iv_rect.width = 1;
iv_rect.height = 1;
}
/* If we're inside the segment, read the ground- and water-levels
* from the corresponding arrays; otherwise, read them from the GEGL
* buffers directly. Note that, on each pass, we may only write to
* pixels outside the segment *in direction of the scan* (in which
* case, the new values are written to the `water` array, but not
* directly to the output GEGL buffer), hence, when reading from the
* GEGL buffers, there's no danger of reading stale values, that were
* changed on the previous pass.
*/
if (inside)
{
ground_level = ctx->ground[x];
water_level = ctx->water[x];
}
else
{
iv_rect.x = ctx->roi.x + x;
/* Transform `iv_rect` to the image-physical coordinate system,
* and store the result in `ip_rect`.
*/
gimp_operation_flood_process_transform_rect (ctx,
&ip_rect, &iv_rect);
/* Read the current pixel's ground level. */
gegl_buffer_get (ctx->input, &ip_rect, 1.0, ctx->input_format,
&ground_level,
GEGL_AUTO_ROWSTRIDE, GEGL_ABYSS_NONE);
/* Read the current pixel's water level. */
gegl_buffer_get (ctx->output, &ip_rect, 1.0, ctx->output_format,
&water_level,
GEGL_AUTO_ROWSTRIDE, GEGL_ABYSS_NONE);
}
/* The new water level is the maximum of the current ground level,
* and the minimum of the current and previous water levels. Recall
* that `level` holds the previous water level, and that the current
* water level is never less than the ground level.
*/
if (level < ground_level)
level = ground_level;
if (level < water_level)
{
/* The water level changed. Update the current pixel, and set
* the `modified` flag of the current range, since it will be
* extended to include the current pixel.
*/
ctx->water[x] = level;
range->modified = TRUE;
}
else
/* The water level stayed the same. Break the loop. */
break;
}
/* Extend the current dirty range to include the last modified pixel, if
* any.
*/
range->x[x_component] = x - dir;
/* If we stopped the loop before hitting the edge of the next range, or
* if we're at the last range, continue to the next range (or quit).
*/
if (x != lim || range_index + dir == last_range)
continue;
/* If we hit the edge of the next range, we keep propagating the changes
* *inside* the next range, until we hit its other edge, or until the
* water level stays the same.
*/
range += dir;
lim = range->x[x_component] + dir;
for (; x != lim; x += dir)
{
/* Note that we're necessarily inside the segment right now, since
* the only range that could have been extended past the edge of the
* segment by the previous pass, is the first range of the current
* pass, while the range we're currently inside is at least the
* second.
*/
if (level < ctx->ground[x])
level = ctx->ground[x];
if (level < ctx->water[x])
{
ctx->water[x] = level;
/* Set the `modified` flag of the range, since the water level of
* its existing pixels changed.
*/
range->modified = TRUE;
}
else
break;
}
}
}
/* Coalesces consecutive dirty ranges that are separated by a gap less-than or
* equal-to `max_gap`, in-place, and returns the new number of ranges.
*/
static gint
gimp_operation_flood_process_coalesce (const GimpOperationFloodContext *ctx,
GimpOperationFloodDirtyRange *dirty_ranges,
gint range_count,
gint max_gap)
{
/* First and last ranges to coalesce, respectively. */
const GimpOperationFloodDirtyRange *first_range, *last_range;
/* Destination range. */
GimpOperationFloodDirtyRange *range = dirty_ranges;
for (first_range = dirty_ranges;
first_range != dirty_ranges + range_count;
first_range++)
{
/* The `modified` flag of the coalesced range -- the logical-OR of the
* `modified` flags of the individual ranges.
*/
gboolean modified = first_range->modified;
/* Find all consecutive ranges with a small-enough gap. */
for (last_range = first_range;
last_range + 1 != dirty_ranges + range_count;
last_range++)
{
if ((last_range + 1)->x[0] - last_range->x[1] > max_gap)
break;
modified |= (last_range + 1)->modified;
}
/* Write the coalesced range, or copy the current range, to the
* destination range.
*/
if (first_range != last_range || first_range != range)
{
range->x[0] = first_range->x[0];
range->x[1] = last_range->x[1];
range->modified = modified;
}
first_range = last_range;
range++;
}
/* Return the new range count. */
return range - dirty_ranges;
}
/* Writes the updated water level of the dirty ranges back to the output GEGL
* buffer.
*/
static void
gimp_operation_flood_process_commit (const GimpOperationFloodContext *ctx,
const GimpOperationFloodDirtyRange *dirty_ranges,
gint range_count)
{
const GimpOperationFloodDirtyRange *range;
/* Image-virtual and image-physical rectangles, respectively. */
GeglRectangle iv_rect, ip_rect;
/* Set the vertical extent of the rectangle to span a the current segment's
* row.
*/
iv_rect.y = ctx->roi.y + ctx->segment.y;
iv_rect.height = 1;
for (range = dirty_ranges; range != dirty_ranges + range_count; range++)
{
/* Set the horizontal extent of the rectangle to span the dirty range. */
iv_rect.x = ctx->roi.x + range->x[0];
iv_rect.width = range->x[1] - range->x[0] + 1;
/* Transform `iv_rect` to the image-physical coordinate system, and store
* the result in `ip_rect`.
*/
gimp_operation_flood_process_transform_rect (ctx, &ip_rect, &iv_rect);
/* Write the updated water level to the output GEGL buffer. */
gegl_buffer_set (ctx->output, &ip_rect, 0, ctx->output_format,
ctx->water + range->x[0],
GEGL_AUTO_ROWSTRIDE);
}
}
/* Pushes the new segments, corresponding to the dirty ranges of the current
* segment, into the queue.
*/
static void
gimp_operation_flood_process_distribute (const GimpOperationFloodContext *ctx,
GQueue *queue,
const GimpOperationFloodDirtyRange *dirty_ranges,
gint range_count)
{
const GimpOperationFloodDirtyRange *range;
static const gint y_deltas[] = {-1, +1};
gint i;
/* For each neighboring row... */
for (i = 0; i < G_N_ELEMENTS (y_deltas); i++)
{
/* The difference between the negihboring row's y-coordinate and the
* current row's y-corindate, in the ROI-virtual coordinate system.
*/
gint y_delta = y_deltas[i];
/* The negihboring row's y-coordinate in the ROI-virtual coordinate
* system.
*/
gint y = ctx->segment.y + y_delta;
/* If the neighboring row is outside the ROI, skip it. */
if (y < 0 || y >= ctx->roi.height)
continue;
/* For each dirty range... */
for (range = dirty_ranges; range != dirty_ranges + range_count; range++)
{
/* If the range was modified during horizontal propagation, or if the
* neighboring row is not the source segment's row... (note that the
* latter is always true for seed segments.)
*/
if (range->modified || y_delta != ctx->segment.source_y_delta)
{
/* Push a new segment into the queue, spanning the same pixels as
* the dirty range on the neighboring row, using the current row
* as its source segment.
*/
gimp_operation_flood_process_push (queue,
ctx->segment.transpose,
y,
-y_delta,
range->x[0],
range->x[1]);
}
}
}
}
/* Main algorithm. */
static gboolean
gimp_operation_flood_process (GeglOperation *operation,
GeglBuffer *input,
GeglBuffer *output,
const GeglRectangle *roi,
gint level)
{
const Babl *input_format = gegl_operation_get_format (operation, "input");
const Babl *output_format = gegl_operation_get_format (operation, "output");
GeglColor *color;
gint max_size;
GimpOperationFloodContext ctx;
GimpOperationFloodDirtyRange *dirty_ranges;
GQueue *queue;
/* Make sure the input- and output-buffers are different. */
g_return_val_if_fail (input != output, FALSE);
/* Make sure the ROI is small enough for the `GimpOperationFloodSegment::y`
* field.
*/
g_return_val_if_fail (roi->width <= GIMP_MAX_IMAGE_SIZE &&
roi->height <= GIMP_MAX_IMAGE_SIZE, FALSE);
ctx.input = input;
ctx.input_format = input_format;
ctx.output = output;
ctx.output_format = output_format;
/* All buffers need to have enough capacity to process a full row, or a full
* column, since, when processing vertical segments, we treat the image as
* transposed.
*/
max_size = MAX (roi->width, roi->height);
ctx.ground = g_new (gfloat, max_size);
/* The `water_buffer` array needs to be able to hold two rows (or columns). */
ctx.water_buffer = g_new (gfloat, 2 * max_size);
dirty_ranges = g_new (GimpOperationFloodDirtyRange, max_size);
/* Initialize the water level to 1 everywhere. */
color = gegl_color_new ("#fff");
gegl_buffer_set_color (output, roi, color);
g_object_unref (color);
/* Create the queue and push the seed segments. */
queue = g_queue_new ();
gimp_operation_flood_process_seed (queue, roi);
/* While there are segments to process in the queue... */
while (! g_queue_is_empty (queue))
{
GimpOperationFloodSegment *segment;
gint range_count;
/* Pop a segment off the top of the queue, copy it to `ctx.segment`, and
* free its memory.
*/
segment = (GimpOperationFloodSegment *) g_queue_pop_head (queue);
ctx.segment = *segment;
g_slice_free (GimpOperationFloodSegment, segment);
/* Transform the ROI from the image-physical coordinate system to the
* image-virtual coordinate system, and store the result in `ctx.roi`.
*/
gimp_operation_flood_process_transform_rect (&ctx, &ctx.roi, roi);
/* Read the ground- and water-levels of the current- and source-segments
* from the corresponding GEGL buffers to the corresponding arrays.
*/
gimp_operation_flood_process_fetch (&ctx);
/* Perform the vertical propagation step. */
range_count = gimp_operation_flood_process_propagate_vertical (&ctx,
dirty_ranges);
/* If no dirty ranges were produced during vertical propagation, then the
* water level of the current segment didn't change, and we can short-
* circuit early.
*/
if (range_count == 0)
continue;
/* Perform both passes of the horizontal propagation step. */
gimp_operation_flood_process_propagate_horizontal (&ctx,
/* Left-to-right */ +1,
dirty_ranges,
range_count);
gimp_operation_flood_process_propagate_horizontal (&ctx,
/* Right-to-left */ -1,
dirty_ranges,
range_count);
/* Coalesce consecutive dirty ranges separated by a gap less-than or
* equal-to `GIMP_OPERATION_FLOOD_COALESCE_MAX_GAP`.
*/
range_count = gimp_operation_flood_process_coalesce (&ctx,
dirty_ranges,
range_count,
GIMP_OPERATION_FLOOD_COALESCE_MAX_GAP);
/* Write the updated water level back to the output GEGL buffer. */
gimp_operation_flood_process_commit (&ctx, dirty_ranges, range_count);
/* Push the new segments into the queue. */
gimp_operation_flood_process_distribute (&ctx, queue,
dirty_ranges, range_count);
}
g_queue_free (queue);
g_free (dirty_ranges);
g_free (ctx.water_buffer);
g_free (ctx.ground);
return TRUE;
}
|