summaryrefslogtreecommitdiffstats
path: root/plugins/color/gsd-night-light-common.c
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/color/gsd-night-light-common.c')
-rw-r--r--plugins/color/gsd-night-light-common.c137
1 files changed, 137 insertions, 0 deletions
diff --git a/plugins/color/gsd-night-light-common.c b/plugins/color/gsd-night-light-common.c
new file mode 100644
index 0000000..5fe756e
--- /dev/null
+++ b/plugins/color/gsd-night-light-common.c
@@ -0,0 +1,137 @@
+/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 8 -*-
+ *
+ * Copyright (C) 2017 Richard Hughes <richard@hughsie.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see <http://www.gnu.org/licenses/>.
+ *
+ */
+
+#include "config.h"
+
+#include <glib.h>
+#include <math.h>
+
+#include "gsd-night-light-common.h"
+
+static gdouble
+deg2rad (gdouble degrees)
+{
+ return (M_PI * degrees) / 180.f;
+}
+
+static gdouble
+rad2deg (gdouble radians)
+{
+ return radians * (180.f / M_PI);
+}
+
+/*
+ * Formulas taken from https://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html
+ *
+ * The returned values are fractional hours, so 6am would be 6.0 and 4:30pm
+ * would be 16.5.
+ *
+ * The values returned by this function might not make sense for locations near
+ * the polar regions. For example, in the north of Lapland there might not be
+ * a sunrise at all.
+ */
+gboolean
+gsd_night_light_get_sunrise_sunset (GDateTime *dt,
+ gdouble pos_lat, gdouble pos_long,
+ gdouble *sunrise, gdouble *sunset)
+{
+ g_autoptr(GDateTime) dt_zero = g_date_time_new_utc (1900, 1, 1, 0, 0, 0);
+ GTimeSpan ts = g_date_time_difference (dt, dt_zero);
+
+ g_return_val_if_fail (pos_lat <= 90.f && pos_lat >= -90.f, FALSE);
+ g_return_val_if_fail (pos_long <= 180.f && pos_long >= -180.f, FALSE);
+
+ gdouble tz_offset = (gdouble) g_date_time_get_utc_offset (dt) / G_USEC_PER_SEC / 60 / 60; // B5
+ gdouble date_as_number = ts / G_USEC_PER_SEC / 24 / 60 / 60 + 2; // B7
+ gdouble time_past_local_midnight = 0; // E2, unused in this calculation
+ gdouble julian_day = date_as_number + 2415018.5 +
+ time_past_local_midnight - tz_offset / 24;
+ gdouble julian_century = (julian_day - 2451545) / 36525;
+ gdouble geom_mean_long_sun = fmod (280.46646 + julian_century *
+ (36000.76983 + julian_century * 0.0003032), 360); // I2
+ gdouble geom_mean_anom_sun = 357.52911 + julian_century *
+ (35999.05029 - 0.0001537 * julian_century); // J2
+ gdouble eccent_earth_orbit = 0.016708634 - julian_century *
+ (0.000042037 + 0.0000001267 * julian_century); // K2
+ gdouble sun_eq_of_ctr = sin (deg2rad (geom_mean_anom_sun)) *
+ (1.914602 - julian_century * (0.004817 + 0.000014 * julian_century)) +
+ sin (deg2rad (2 * geom_mean_anom_sun)) * (0.019993 - 0.000101 * julian_century) +
+ sin (deg2rad (3 * geom_mean_anom_sun)) * 0.000289; // L2
+ gdouble sun_true_long = geom_mean_long_sun + sun_eq_of_ctr; // M2
+ gdouble sun_app_long = sun_true_long - 0.00569 - 0.00478 *
+ sin (deg2rad (125.04 - 1934.136 * julian_century)); // P2
+ gdouble mean_obliq_ecliptic = 23 + (26 + ((21.448 - julian_century *
+ (46.815 + julian_century * (0.00059 - julian_century * 0.001813)))) / 60) / 60; // Q2
+ gdouble obliq_corr = mean_obliq_ecliptic + 0.00256 *
+ cos (deg2rad (125.04 - 1934.136 * julian_century)); // R2
+ gdouble sun_declin = rad2deg (asin (sin (deg2rad (obliq_corr)) *
+ sin (deg2rad (sun_app_long)))); // T2
+ gdouble var_y = tan (deg2rad (obliq_corr/2)) * tan (deg2rad (obliq_corr / 2)); // U2
+ gdouble eq_of_time = 4 * rad2deg (var_y * sin (2 * deg2rad (geom_mean_long_sun)) -
+ 2 * eccent_earth_orbit * sin (deg2rad (geom_mean_anom_sun)) +
+ 4 * eccent_earth_orbit * var_y *
+ sin (deg2rad (geom_mean_anom_sun)) *
+ cos (2 * deg2rad (geom_mean_long_sun)) -
+ 0.5 * var_y * var_y * sin (4 * deg2rad (geom_mean_long_sun)) -
+ 1.25 * eccent_earth_orbit * eccent_earth_orbit *
+ sin (2 * deg2rad (geom_mean_anom_sun))); // V2
+ gdouble ha_sunrise = rad2deg (acos (cos (deg2rad (90.833)) / (cos (deg2rad (pos_lat)) *
+ cos (deg2rad (sun_declin))) - tan (deg2rad (pos_lat)) *
+ tan (deg2rad (sun_declin)))); // W2
+ gdouble solar_noon = (720 - 4 * pos_long - eq_of_time + tz_offset * 60) / 1440; // X2
+ gdouble sunrise_time = solar_noon - ha_sunrise * 4 / 1440; // Y2
+ gdouble sunset_time = solar_noon + ha_sunrise * 4 / 1440; // Z2
+
+ /* convert to hours */
+ if (sunrise != NULL)
+ *sunrise = sunrise_time * 24;
+ if (sunset != NULL)
+ *sunset = sunset_time * 24;
+ return TRUE;
+}
+
+gdouble
+gsd_night_light_frac_day_from_dt (GDateTime *dt)
+{
+ return g_date_time_get_hour (dt) +
+ (gdouble) g_date_time_get_minute (dt) / 60.f +
+ (gdouble) g_date_time_get_second (dt) / 3600.f;
+}
+
+gboolean
+gsd_night_light_frac_day_is_between (gdouble value,
+ gdouble start,
+ gdouble end)
+{
+ /* wrap end to the next day if it is before start,
+ * considering equal values as a full 24h period
+ */
+ if (end <= start)
+ end += 24;
+
+ /* wrap value to the next day if it is before the range */
+ if (value < start && value < end)
+ value += 24;
+
+ /* Check whether value falls into range; together with the 24h
+ * wrap around above this means that TRUE is always returned when
+ * start == end.
+ */
+ return value >= start && value < end;
+}