summaryrefslogtreecommitdiffstats
path: root/grub-core/lib/libgcrypt/cipher/pubkey.c
diff options
context:
space:
mode:
Diffstat (limited to 'grub-core/lib/libgcrypt/cipher/pubkey.c')
-rw-r--r--grub-core/lib/libgcrypt/cipher/pubkey.c4212
1 files changed, 4212 insertions, 0 deletions
diff --git a/grub-core/lib/libgcrypt/cipher/pubkey.c b/grub-core/lib/libgcrypt/cipher/pubkey.c
new file mode 100644
index 0000000..ca087ad
--- /dev/null
+++ b/grub-core/lib/libgcrypt/cipher/pubkey.c
@@ -0,0 +1,4212 @@
+/* pubkey.c - pubkey dispatcher
+ * Copyright (C) 1998, 1999, 2000, 2002, 2003, 2005,
+ * 2007, 2008, 2011 Free Software Foundation, Inc.
+ *
+ * This file is part of Libgcrypt.
+ *
+ * Libgcrypt is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser general Public License as
+ * published by the Free Software Foundation; either version 2.1 of
+ * the License, or (at your option) any later version.
+ *
+ * Libgcrypt is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <config.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <errno.h>
+
+#include "g10lib.h"
+#include "mpi.h"
+#include "cipher.h"
+#include "ath.h"
+
+
+static gcry_err_code_t pubkey_decrypt (int algo, gcry_mpi_t *result,
+ gcry_mpi_t *data, gcry_mpi_t *skey,
+ int flags);
+static gcry_err_code_t pubkey_sign (int algo, gcry_mpi_t *resarr,
+ gcry_mpi_t hash, gcry_mpi_t *skey);
+static gcry_err_code_t pubkey_verify (int algo, gcry_mpi_t hash,
+ gcry_mpi_t *data, gcry_mpi_t *pkey,
+ int (*cmp) (void *, gcry_mpi_t),
+ void *opaque);
+
+
+/* A dummy extraspec so that we do not need to tests the extraspec
+ field from the module specification against NULL and instead
+ directly test the respective fields of extraspecs. */
+static pk_extra_spec_t dummy_extra_spec;
+
+
+/* This is the list of the default public-key ciphers included in
+ libgcrypt. FIPS_ALLOWED indicated whether the algorithm is used in
+ FIPS mode. */
+static struct pubkey_table_entry
+{
+ gcry_pk_spec_t *pubkey;
+ pk_extra_spec_t *extraspec;
+ unsigned int algorithm;
+ int fips_allowed;
+} pubkey_table[] =
+ {
+#if USE_RSA
+ { &_gcry_pubkey_spec_rsa,
+ &_gcry_pubkey_extraspec_rsa, GCRY_PK_RSA, 1},
+#endif
+#if USE_ELGAMAL
+ { &_gcry_pubkey_spec_elg,
+ &_gcry_pubkey_extraspec_elg, GCRY_PK_ELG },
+ { &_gcry_pubkey_spec_elg,
+ &_gcry_pubkey_extraspec_elg, GCRY_PK_ELG_E },
+#endif
+#if USE_DSA
+ { &_gcry_pubkey_spec_dsa,
+ &_gcry_pubkey_extraspec_dsa, GCRY_PK_DSA, 1 },
+#endif
+#if USE_ECC
+ { &_gcry_pubkey_spec_ecdsa,
+ &_gcry_pubkey_extraspec_ecdsa, GCRY_PK_ECDSA, 0 },
+ { &_gcry_pubkey_spec_ecdh,
+ &_gcry_pubkey_extraspec_ecdsa, GCRY_PK_ECDH, 0 },
+#endif
+ { NULL, 0 },
+ };
+
+/* List of registered ciphers. */
+static gcry_module_t pubkeys_registered;
+
+/* This is the lock protecting PUBKEYS_REGISTERED. */
+static ath_mutex_t pubkeys_registered_lock = ATH_MUTEX_INITIALIZER;;
+
+/* Flag to check whether the default pubkeys have already been
+ registered. */
+static int default_pubkeys_registered;
+
+/* Convenient macro for registering the default digests. */
+#define REGISTER_DEFAULT_PUBKEYS \
+ do \
+ { \
+ ath_mutex_lock (&pubkeys_registered_lock); \
+ if (! default_pubkeys_registered) \
+ { \
+ pk_register_default (); \
+ default_pubkeys_registered = 1; \
+ } \
+ ath_mutex_unlock (&pubkeys_registered_lock); \
+ } \
+ while (0)
+
+/* These dummy functions are used in case a cipher implementation
+ refuses to provide it's own functions. */
+
+static gcry_err_code_t
+dummy_generate (int algorithm, unsigned int nbits, unsigned long dummy,
+ gcry_mpi_t *skey, gcry_mpi_t **retfactors)
+{
+ (void)algorithm;
+ (void)nbits;
+ (void)dummy;
+ (void)skey;
+ (void)retfactors;
+ fips_signal_error ("using dummy public key function");
+ return GPG_ERR_NOT_IMPLEMENTED;
+}
+
+static gcry_err_code_t
+dummy_check_secret_key (int algorithm, gcry_mpi_t *skey)
+{
+ (void)algorithm;
+ (void)skey;
+ fips_signal_error ("using dummy public key function");
+ return GPG_ERR_NOT_IMPLEMENTED;
+}
+
+static gcry_err_code_t
+dummy_encrypt (int algorithm, gcry_mpi_t *resarr, gcry_mpi_t data,
+ gcry_mpi_t *pkey, int flags)
+{
+ (void)algorithm;
+ (void)resarr;
+ (void)data;
+ (void)pkey;
+ (void)flags;
+ fips_signal_error ("using dummy public key function");
+ return GPG_ERR_NOT_IMPLEMENTED;
+}
+
+static gcry_err_code_t
+dummy_decrypt (int algorithm, gcry_mpi_t *result, gcry_mpi_t *data,
+ gcry_mpi_t *skey, int flags)
+{
+ (void)algorithm;
+ (void)result;
+ (void)data;
+ (void)skey;
+ (void)flags;
+ fips_signal_error ("using dummy public key function");
+ return GPG_ERR_NOT_IMPLEMENTED;
+}
+
+static gcry_err_code_t
+dummy_sign (int algorithm, gcry_mpi_t *resarr, gcry_mpi_t data,
+ gcry_mpi_t *skey)
+{
+ (void)algorithm;
+ (void)resarr;
+ (void)data;
+ (void)skey;
+ fips_signal_error ("using dummy public key function");
+ return GPG_ERR_NOT_IMPLEMENTED;
+}
+
+static gcry_err_code_t
+dummy_verify (int algorithm, gcry_mpi_t hash, gcry_mpi_t *data,
+ gcry_mpi_t *pkey,
+ int (*cmp) (void *, gcry_mpi_t), void *opaquev)
+{
+ (void)algorithm;
+ (void)hash;
+ (void)data;
+ (void)pkey;
+ (void)cmp;
+ (void)opaquev;
+ fips_signal_error ("using dummy public key function");
+ return GPG_ERR_NOT_IMPLEMENTED;
+}
+
+static unsigned
+dummy_get_nbits (int algorithm, gcry_mpi_t *pkey)
+{
+ (void)algorithm;
+ (void)pkey;
+ fips_signal_error ("using dummy public key function");
+ return 0;
+}
+
+/* Internal function. Register all the pubkeys included in
+ PUBKEY_TABLE. Returns zero on success or an error code. */
+static void
+pk_register_default (void)
+{
+ gcry_err_code_t err = 0;
+ int i;
+
+ for (i = 0; (! err) && pubkey_table[i].pubkey; i++)
+ {
+#define pubkey_use_dummy(func) \
+ if (! pubkey_table[i].pubkey->func) \
+ pubkey_table[i].pubkey->func = dummy_##func;
+
+ pubkey_use_dummy (generate);
+ pubkey_use_dummy (check_secret_key);
+ pubkey_use_dummy (encrypt);
+ pubkey_use_dummy (decrypt);
+ pubkey_use_dummy (sign);
+ pubkey_use_dummy (verify);
+ pubkey_use_dummy (get_nbits);
+#undef pubkey_use_dummy
+
+ err = _gcry_module_add (&pubkeys_registered,
+ pubkey_table[i].algorithm,
+ (void *) pubkey_table[i].pubkey,
+ (void *) pubkey_table[i].extraspec,
+ NULL);
+ }
+
+ if (err)
+ BUG ();
+}
+
+/* Internal callback function. Used via _gcry_module_lookup. */
+static int
+gcry_pk_lookup_func_name (void *spec, void *data)
+{
+ gcry_pk_spec_t *pubkey = (gcry_pk_spec_t *) spec;
+ char *name = (char *) data;
+ const char **aliases = pubkey->aliases;
+ int ret = stricmp (name, pubkey->name);
+
+ while (ret && *aliases)
+ ret = stricmp (name, *aliases++);
+
+ return ! ret;
+}
+
+/* Internal function. Lookup a pubkey entry by it's name. */
+static gcry_module_t
+gcry_pk_lookup_name (const char *name)
+{
+ gcry_module_t pubkey;
+
+ pubkey = _gcry_module_lookup (pubkeys_registered, (void *) name,
+ gcry_pk_lookup_func_name);
+
+ return pubkey;
+}
+
+/* Register a new pubkey module whose specification can be found in
+ PUBKEY. On success, a new algorithm ID is stored in ALGORITHM_ID
+ and a pointer representhing this module is stored in MODULE. */
+gcry_error_t
+_gcry_pk_register (gcry_pk_spec_t *pubkey,
+ pk_extra_spec_t *extraspec,
+ unsigned int *algorithm_id,
+ gcry_module_t *module)
+{
+ gcry_err_code_t err = GPG_ERR_NO_ERROR;
+ gcry_module_t mod;
+
+ /* We do not support module loading in fips mode. */
+ if (fips_mode ())
+ return gpg_error (GPG_ERR_NOT_SUPPORTED);
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ err = _gcry_module_add (&pubkeys_registered, 0,
+ (void *) pubkey,
+ (void *)(extraspec? extraspec : &dummy_extra_spec),
+ &mod);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ if (! err)
+ {
+ *module = mod;
+ *algorithm_id = mod->mod_id;
+ }
+
+ return err;
+}
+
+/* Unregister the pubkey identified by ID, which must have been
+ registered with gcry_pk_register. */
+void
+gcry_pk_unregister (gcry_module_t module)
+{
+ ath_mutex_lock (&pubkeys_registered_lock);
+ _gcry_module_release (module);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+}
+
+static void
+release_mpi_array (gcry_mpi_t *array)
+{
+ for (; *array; array++)
+ {
+ mpi_free(*array);
+ *array = NULL;
+ }
+}
+
+/****************
+ * Map a string to the pubkey algo
+ */
+int
+gcry_pk_map_name (const char *string)
+{
+ gcry_module_t pubkey;
+ int algorithm = 0;
+
+ if (!string)
+ return 0;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ pubkey = gcry_pk_lookup_name (string);
+ if (pubkey)
+ {
+ algorithm = pubkey->mod_id;
+ _gcry_module_release (pubkey);
+ }
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ return algorithm;
+}
+
+
+/* Map the public key algorithm whose ID is contained in ALGORITHM to
+ a string representation of the algorithm name. For unknown
+ algorithm IDs this functions returns "?". */
+const char *
+gcry_pk_algo_name (int algorithm)
+{
+ gcry_module_t pubkey;
+ const char *name;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ pubkey = _gcry_module_lookup_id (pubkeys_registered, algorithm);
+ if (pubkey)
+ {
+ name = ((gcry_pk_spec_t *) pubkey->spec)->name;
+ _gcry_module_release (pubkey);
+ }
+ else
+ name = "?";
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ return name;
+}
+
+
+/* A special version of gcry_pk_algo name to return the first aliased
+ name of the algorithm. This is required to adhere to the spki
+ specs where the algorithm names are lowercase. */
+const char *
+_gcry_pk_aliased_algo_name (int algorithm)
+{
+ const char *name = NULL;
+ gcry_module_t module;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ module = _gcry_module_lookup_id (pubkeys_registered, algorithm);
+ if (module)
+ {
+ gcry_pk_spec_t *pubkey = (gcry_pk_spec_t *) module->spec;
+
+ name = pubkey->aliases? *pubkey->aliases : NULL;
+ if (!name || !*name)
+ name = pubkey->name;
+ _gcry_module_release (module);
+ }
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ return name;
+}
+
+
+static void
+disable_pubkey_algo (int algorithm)
+{
+ gcry_module_t pubkey;
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ pubkey = _gcry_module_lookup_id (pubkeys_registered, algorithm);
+ if (pubkey)
+ {
+ if (! (pubkey-> flags & FLAG_MODULE_DISABLED))
+ pubkey->flags |= FLAG_MODULE_DISABLED;
+ _gcry_module_release (pubkey);
+ }
+ ath_mutex_unlock (&pubkeys_registered_lock);
+}
+
+
+/****************
+ * A USE of 0 means: don't care.
+ */
+static gcry_err_code_t
+check_pubkey_algo (int algorithm, unsigned use)
+{
+ gcry_err_code_t err = GPG_ERR_NO_ERROR;
+ gcry_pk_spec_t *pubkey;
+ gcry_module_t module;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ module = _gcry_module_lookup_id (pubkeys_registered, algorithm);
+ if (module)
+ {
+ pubkey = (gcry_pk_spec_t *) module->spec;
+
+ if (((use & GCRY_PK_USAGE_SIGN)
+ && (! (pubkey->use & GCRY_PK_USAGE_SIGN)))
+ || ((use & GCRY_PK_USAGE_ENCR)
+ && (! (pubkey->use & GCRY_PK_USAGE_ENCR))))
+ err = GPG_ERR_WRONG_PUBKEY_ALGO;
+ else if (module->flags & FLAG_MODULE_DISABLED)
+ err = GPG_ERR_PUBKEY_ALGO;
+ _gcry_module_release (module);
+ }
+ else
+ err = GPG_ERR_PUBKEY_ALGO;
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ return err;
+}
+
+
+/****************
+ * Return the number of public key material numbers
+ */
+static int
+pubkey_get_npkey (int algorithm)
+{
+ gcry_module_t pubkey;
+ int npkey = 0;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ pubkey = _gcry_module_lookup_id (pubkeys_registered, algorithm);
+ if (pubkey)
+ {
+ npkey = strlen (((gcry_pk_spec_t *) pubkey->spec)->elements_pkey);
+ _gcry_module_release (pubkey);
+ }
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ return npkey;
+}
+
+/****************
+ * Return the number of secret key material numbers
+ */
+static int
+pubkey_get_nskey (int algorithm)
+{
+ gcry_module_t pubkey;
+ int nskey = 0;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ pubkey = _gcry_module_lookup_id (pubkeys_registered, algorithm);
+ if (pubkey)
+ {
+ nskey = strlen (((gcry_pk_spec_t *) pubkey->spec)->elements_skey);
+ _gcry_module_release (pubkey);
+ }
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ return nskey;
+}
+
+/****************
+ * Return the number of signature material numbers
+ */
+static int
+pubkey_get_nsig (int algorithm)
+{
+ gcry_module_t pubkey;
+ int nsig = 0;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ pubkey = _gcry_module_lookup_id (pubkeys_registered, algorithm);
+ if (pubkey)
+ {
+ nsig = strlen (((gcry_pk_spec_t *) pubkey->spec)->elements_sig);
+ _gcry_module_release (pubkey);
+ }
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ return nsig;
+}
+
+/****************
+ * Return the number of encryption material numbers
+ */
+static int
+pubkey_get_nenc (int algorithm)
+{
+ gcry_module_t pubkey;
+ int nenc = 0;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ pubkey = _gcry_module_lookup_id (pubkeys_registered, algorithm);
+ if (pubkey)
+ {
+ nenc = strlen (((gcry_pk_spec_t *) pubkey->spec)->elements_enc);
+ _gcry_module_release (pubkey);
+ }
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ return nenc;
+}
+
+
+/* Generate a new public key with algorithm ALGORITHM of size NBITS
+ and return it at SKEY. USE_E depends on the ALGORITHM. GENPARMS
+ is passed to the algorithm module if it features an extended
+ generation function. RETFACTOR is used by some algorithms to
+ return certain additional information which are in general not
+ required.
+
+ The function returns the error code number or 0 on success. */
+static gcry_err_code_t
+pubkey_generate (int algorithm,
+ unsigned int nbits,
+ unsigned long use_e,
+ gcry_sexp_t genparms,
+ gcry_mpi_t *skey, gcry_mpi_t **retfactors,
+ gcry_sexp_t *r_extrainfo)
+{
+ gcry_err_code_t ec = GPG_ERR_PUBKEY_ALGO;
+ gcry_module_t pubkey;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ pubkey = _gcry_module_lookup_id (pubkeys_registered, algorithm);
+ if (pubkey)
+ {
+ pk_extra_spec_t *extraspec = pubkey->extraspec;
+
+ if (extraspec && extraspec->ext_generate)
+ {
+ /* Use the extended generate function. */
+ ec = extraspec->ext_generate
+ (algorithm, nbits, use_e, genparms, skey, retfactors, r_extrainfo);
+ }
+ else
+ {
+ /* Use the standard generate function. */
+ ec = ((gcry_pk_spec_t *) pubkey->spec)->generate
+ (algorithm, nbits, use_e, skey, retfactors);
+ }
+ _gcry_module_release (pubkey);
+ }
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ return ec;
+}
+
+
+static gcry_err_code_t
+pubkey_check_secret_key (int algorithm, gcry_mpi_t *skey)
+{
+ gcry_err_code_t err = GPG_ERR_PUBKEY_ALGO;
+ gcry_module_t pubkey;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ pubkey = _gcry_module_lookup_id (pubkeys_registered, algorithm);
+ if (pubkey)
+ {
+ err = ((gcry_pk_spec_t *) pubkey->spec)->check_secret_key
+ (algorithm, skey);
+ _gcry_module_release (pubkey);
+ }
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ return err;
+}
+
+
+/****************
+ * This is the interface to the public key encryption. Encrypt DATA
+ * with PKEY and put it into RESARR which should be an array of MPIs
+ * of size PUBKEY_MAX_NENC (or less if the algorithm allows this -
+ * check with pubkey_get_nenc() )
+ */
+static gcry_err_code_t
+pubkey_encrypt (int algorithm, gcry_mpi_t *resarr, gcry_mpi_t data,
+ gcry_mpi_t *pkey, int flags)
+{
+ gcry_pk_spec_t *pubkey;
+ gcry_module_t module;
+ gcry_err_code_t rc;
+ int i;
+
+ /* Note: In fips mode DBG_CIPHER will enver evaluate to true but as
+ an extra failsafe protection we explicitly test for fips mode
+ here. */
+ if (DBG_CIPHER && !fips_mode ())
+ {
+ log_debug ("pubkey_encrypt: algo=%d\n", algorithm);
+ for(i = 0; i < pubkey_get_npkey (algorithm); i++)
+ log_mpidump (" pkey:", pkey[i]);
+ log_mpidump (" data:", data);
+ }
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ module = _gcry_module_lookup_id (pubkeys_registered, algorithm);
+ if (module)
+ {
+ pubkey = (gcry_pk_spec_t *) module->spec;
+ rc = pubkey->encrypt (algorithm, resarr, data, pkey, flags);
+ _gcry_module_release (module);
+ goto ready;
+ }
+ rc = GPG_ERR_PUBKEY_ALGO;
+
+ ready:
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ if (!rc && DBG_CIPHER && !fips_mode ())
+ {
+ for(i = 0; i < pubkey_get_nenc (algorithm); i++)
+ log_mpidump(" encr:", resarr[i] );
+ }
+ return rc;
+}
+
+
+/****************
+ * This is the interface to the public key decryption.
+ * ALGO gives the algorithm to use and this implicitly determines
+ * the size of the arrays.
+ * result is a pointer to a mpi variable which will receive a
+ * newly allocated mpi or NULL in case of an error.
+ */
+static gcry_err_code_t
+pubkey_decrypt (int algorithm, gcry_mpi_t *result, gcry_mpi_t *data,
+ gcry_mpi_t *skey, int flags)
+{
+ gcry_pk_spec_t *pubkey;
+ gcry_module_t module;
+ gcry_err_code_t rc;
+ int i;
+
+ *result = NULL; /* so the caller can always do a mpi_free */
+ if (DBG_CIPHER && !fips_mode ())
+ {
+ log_debug ("pubkey_decrypt: algo=%d\n", algorithm);
+ for(i = 0; i < pubkey_get_nskey (algorithm); i++)
+ log_mpidump (" skey:", skey[i]);
+ for(i = 0; i < pubkey_get_nenc (algorithm); i++)
+ log_mpidump (" data:", data[i]);
+ }
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ module = _gcry_module_lookup_id (pubkeys_registered, algorithm);
+ if (module)
+ {
+ pubkey = (gcry_pk_spec_t *) module->spec;
+ rc = pubkey->decrypt (algorithm, result, data, skey, flags);
+ _gcry_module_release (module);
+ goto ready;
+ }
+
+ rc = GPG_ERR_PUBKEY_ALGO;
+
+ ready:
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ if (!rc && DBG_CIPHER && !fips_mode ())
+ log_mpidump (" plain:", *result);
+
+ return rc;
+}
+
+
+/****************
+ * This is the interface to the public key signing.
+ * Sign data with skey and put the result into resarr which
+ * should be an array of MPIs of size PUBKEY_MAX_NSIG (or less if the
+ * algorithm allows this - check with pubkey_get_nsig() )
+ */
+static gcry_err_code_t
+pubkey_sign (int algorithm, gcry_mpi_t *resarr, gcry_mpi_t data,
+ gcry_mpi_t *skey)
+{
+ gcry_pk_spec_t *pubkey;
+ gcry_module_t module;
+ gcry_err_code_t rc;
+ int i;
+
+ if (DBG_CIPHER && !fips_mode ())
+ {
+ log_debug ("pubkey_sign: algo=%d\n", algorithm);
+ for(i = 0; i < pubkey_get_nskey (algorithm); i++)
+ log_mpidump (" skey:", skey[i]);
+ log_mpidump(" data:", data );
+ }
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ module = _gcry_module_lookup_id (pubkeys_registered, algorithm);
+ if (module)
+ {
+ pubkey = (gcry_pk_spec_t *) module->spec;
+ rc = pubkey->sign (algorithm, resarr, data, skey);
+ _gcry_module_release (module);
+ goto ready;
+ }
+
+ rc = GPG_ERR_PUBKEY_ALGO;
+
+ ready:
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ if (!rc && DBG_CIPHER && !fips_mode ())
+ for (i = 0; i < pubkey_get_nsig (algorithm); i++)
+ log_mpidump (" sig:", resarr[i]);
+
+ return rc;
+}
+
+/****************
+ * Verify a public key signature.
+ * Return 0 if the signature is good
+ */
+static gcry_err_code_t
+pubkey_verify (int algorithm, gcry_mpi_t hash, gcry_mpi_t *data,
+ gcry_mpi_t *pkey,
+ int (*cmp)(void *, gcry_mpi_t), void *opaquev)
+{
+ gcry_pk_spec_t *pubkey;
+ gcry_module_t module;
+ gcry_err_code_t rc;
+ int i;
+
+ if (DBG_CIPHER && !fips_mode ())
+ {
+ log_debug ("pubkey_verify: algo=%d\n", algorithm);
+ for (i = 0; i < pubkey_get_npkey (algorithm); i++)
+ log_mpidump (" pkey", pkey[i]);
+ for (i = 0; i < pubkey_get_nsig (algorithm); i++)
+ log_mpidump (" sig", data[i]);
+ log_mpidump (" hash", hash);
+ }
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ module = _gcry_module_lookup_id (pubkeys_registered, algorithm);
+ if (module)
+ {
+ pubkey = (gcry_pk_spec_t *) module->spec;
+ rc = pubkey->verify (algorithm, hash, data, pkey, cmp, opaquev);
+ _gcry_module_release (module);
+ goto ready;
+ }
+
+ rc = GPG_ERR_PUBKEY_ALGO;
+
+ ready:
+ ath_mutex_unlock (&pubkeys_registered_lock);
+ return rc;
+}
+
+
+/* Turn VALUE into an octet string and store it in an allocated buffer
+ at R_FRAME or - if R_RAME is NULL - copy it into the caller
+ provided buffer SPACE; either SPACE or R_FRAME may be used. If
+ SPACE if not NULL, the caller must provide a buffer of at least
+ NBYTES. If the resulting octet string is shorter than NBYTES pad
+ it to the left with zeroes. If VALUE does not fit into NBYTES
+ return an error code. */
+static gpg_err_code_t
+octet_string_from_mpi (unsigned char **r_frame, void *space,
+ gcry_mpi_t value, size_t nbytes)
+{
+ gpg_err_code_t rc;
+ size_t nframe, noff, n;
+ unsigned char *frame;
+
+ if (!r_frame == !space)
+ return GPG_ERR_INV_ARG; /* Only one may be used. */
+
+ if (r_frame)
+ *r_frame = NULL;
+
+ rc = gcry_err_code (gcry_mpi_print (GCRYMPI_FMT_USG,
+ NULL, 0, &nframe, value));
+ if (rc)
+ return rc;
+ if (nframe > nbytes)
+ return GPG_ERR_TOO_LARGE; /* Value too long to fit into NBYTES. */
+
+ noff = (nframe < nbytes)? nbytes - nframe : 0;
+ n = nframe + noff;
+ if (space)
+ frame = space;
+ else
+ {
+ frame = mpi_is_secure (value)? gcry_malloc_secure (n) : gcry_malloc (n);
+ if (!frame)
+ {
+ rc = gpg_err_code_from_syserror ();
+ return rc;
+ }
+ }
+ if (noff)
+ memset (frame, 0, noff);
+ nframe += noff;
+ rc = gcry_err_code (gcry_mpi_print (GCRYMPI_FMT_USG,
+ frame+noff, nframe-noff, NULL, value));
+ if (rc)
+ {
+ gcry_free (frame);
+ return rc;
+ }
+
+ if (r_frame)
+ *r_frame = frame;
+ return 0;
+}
+
+
+/* Encode {VALUE,VALUELEN} for an NBITS keys using the pkcs#1 block
+ type 2 padding. On sucess the result is stored as a new MPI at
+ R_RESULT. On error the value at R_RESULT is undefined.
+
+ If {RANDOM_OVERRIDE, RANDOM_OVERRIDE_LEN} is given it is used as
+ the seed instead of using a random string for it. This feature is
+ only useful for regression tests. Note that this value may not
+ contain zero bytes.
+
+ We encode the value in this way:
+
+ 0 2 RND(n bytes) 0 VALUE
+
+ 0 is a marker we unfortunately can't encode because we return an
+ MPI which strips all leading zeroes.
+ 2 is the block type.
+ RND are non-zero random bytes.
+
+ (Note that OpenPGP includes the cipher algorithm and a checksum in
+ VALUE; the caller needs to prepare the value accordingly.)
+ */
+static gcry_err_code_t
+pkcs1_encode_for_encryption (gcry_mpi_t *r_result, unsigned int nbits,
+ const unsigned char *value, size_t valuelen,
+ const unsigned char *random_override,
+ size_t random_override_len)
+{
+ gcry_err_code_t rc = 0;
+ gcry_error_t err;
+ unsigned char *frame = NULL;
+ size_t nframe = (nbits+7) / 8;
+ int i;
+ size_t n;
+ unsigned char *p;
+
+ if (valuelen + 7 > nframe || !nframe)
+ {
+ /* Can't encode a VALUELEN value in a NFRAME bytes frame. */
+ return GPG_ERR_TOO_SHORT; /* The key is too short. */
+ }
+
+ if ( !(frame = gcry_malloc_secure (nframe)))
+ return gpg_err_code_from_syserror ();
+
+ n = 0;
+ frame[n++] = 0;
+ frame[n++] = 2; /* block type */
+ i = nframe - 3 - valuelen;
+ gcry_assert (i > 0);
+
+ if (random_override)
+ {
+ int j;
+
+ if (random_override_len != i)
+ {
+ gcry_free (frame);
+ return GPG_ERR_INV_ARG;
+ }
+ /* Check that random does not include a zero byte. */
+ for (j=0; j < random_override_len; j++)
+ if (!random_override[j])
+ {
+ gcry_free (frame);
+ return GPG_ERR_INV_ARG;
+ }
+ memcpy (frame + n, random_override, random_override_len);
+ n += random_override_len;
+ }
+ else
+ {
+ p = gcry_random_bytes_secure (i, GCRY_STRONG_RANDOM);
+ /* Replace zero bytes by new values. */
+ for (;;)
+ {
+ int j, k;
+ unsigned char *pp;
+
+ /* Count the zero bytes. */
+ for (j=k=0; j < i; j++)
+ {
+ if (!p[j])
+ k++;
+ }
+ if (!k)
+ break; /* Okay: no (more) zero bytes. */
+
+ k += k/128 + 3; /* Better get some more. */
+ pp = gcry_random_bytes_secure (k, GCRY_STRONG_RANDOM);
+ for (j=0; j < i && k; )
+ {
+ if (!p[j])
+ p[j] = pp[--k];
+ if (p[j])
+ j++;
+ }
+ gcry_free (pp);
+ }
+ memcpy (frame+n, p, i);
+ n += i;
+ gcry_free (p);
+ }
+
+ frame[n++] = 0;
+ memcpy (frame+n, value, valuelen);
+ n += valuelen;
+ gcry_assert (n == nframe);
+
+ err = gcry_mpi_scan (r_result, GCRYMPI_FMT_USG, frame, n, &nframe);
+ if (err)
+ rc = gcry_err_code (err);
+ else if (DBG_CIPHER)
+ log_mpidump ("PKCS#1 block type 2 encoded data", *r_result);
+ gcry_free (frame);
+
+ return rc;
+}
+
+
+/* Decode a plaintext in VALUE assuming pkcs#1 block type 2 padding.
+ NBITS is the size of the secret key. On success the result is
+ stored as a newly allocated buffer at R_RESULT and its valid length at
+ R_RESULTLEN. On error NULL is stored at R_RESULT. */
+static gcry_err_code_t
+pkcs1_decode_for_encryption (unsigned char **r_result, size_t *r_resultlen,
+ unsigned int nbits, gcry_mpi_t value)
+{
+ gcry_error_t err;
+ unsigned char *frame = NULL;
+ size_t nframe = (nbits+7) / 8;
+ size_t n;
+
+ *r_result = NULL;
+
+ if ( !(frame = gcry_malloc_secure (nframe)))
+ return gpg_err_code_from_syserror ();
+
+ err = gcry_mpi_print (GCRYMPI_FMT_USG, frame, nframe, &n, value);
+ if (err)
+ {
+ gcry_free (frame);
+ return gcry_err_code (err);
+ }
+
+ nframe = n; /* Set NFRAME to the actual length. */
+
+ /* FRAME = 0x00 || 0x02 || PS || 0x00 || M
+
+ pkcs#1 requires that the first byte is zero. Our MPIs usually
+ strip leading zero bytes; thus we are not able to detect them.
+ However due to the way gcry_mpi_print is implemented we may see
+ leading zero bytes nevertheless. We handle this by making the
+ first zero byte optional. */
+ if (nframe < 4)
+ {
+ gcry_free (frame);
+ return GPG_ERR_ENCODING_PROBLEM; /* Too short. */
+ }
+ n = 0;
+ if (!frame[0])
+ n++;
+ if (frame[n++] != 0x02)
+ {
+ gcry_free (frame);
+ return GPG_ERR_ENCODING_PROBLEM; /* Wrong block type. */
+ }
+
+ /* Skip the non-zero random bytes and the terminating zero byte. */
+ for (; n < nframe && frame[n] != 0x00; n++)
+ ;
+ if (n+1 >= nframe)
+ {
+ gcry_free (frame);
+ return GPG_ERR_ENCODING_PROBLEM; /* No zero byte. */
+ }
+ n++; /* Skip the zero byte. */
+
+ /* To avoid an extra allocation we reuse the frame buffer. The only
+ caller of this function will anyway free the result soon. */
+ memmove (frame, frame + n, nframe - n);
+ *r_result = frame;
+ *r_resultlen = nframe - n;
+
+ if (DBG_CIPHER)
+ log_printhex ("value extracted from PKCS#1 block type 2 encoded data:",
+ *r_result, *r_resultlen);
+
+ return 0;
+}
+
+
+/* Encode {VALUE,VALUELEN} for an NBITS keys and hash algorith ALGO
+ using the pkcs#1 block type 1 padding. On success the result is
+ stored as a new MPI at R_RESULT. On error the value at R_RESULT is
+ undefined.
+
+ We encode the value in this way:
+
+ 0 1 PAD(n bytes) 0 ASN(asnlen bytes) VALUE(valuelen bytes)
+
+ 0 is a marker we unfortunately can't encode because we return an
+ MPI which strips all leading zeroes.
+ 1 is the block type.
+ PAD consists of 0xff bytes.
+ 0 marks the end of the padding.
+ ASN is the DER encoding of the hash algorithm; along with the VALUE
+ it yields a valid DER encoding.
+
+ (Note that PGP prior to version 2.3 encoded the message digest as:
+ 0 1 MD(16 bytes) 0 PAD(n bytes) 1
+ The MD is always 16 bytes here because it's always MD5. GnuPG
+ does not not support pre-v2.3 signatures, but I'm including this
+ comment so the information is easily found if needed.)
+*/
+static gcry_err_code_t
+pkcs1_encode_for_signature (gcry_mpi_t *r_result, unsigned int nbits,
+ const unsigned char *value, size_t valuelen,
+ int algo)
+{
+ gcry_err_code_t rc = 0;
+ gcry_error_t err;
+ byte asn[100];
+ byte *frame = NULL;
+ size_t nframe = (nbits+7) / 8;
+ int i;
+ size_t n;
+ size_t asnlen, dlen;
+
+ asnlen = DIM(asn);
+ dlen = gcry_md_get_algo_dlen (algo);
+
+ if (gcry_md_algo_info (algo, GCRYCTL_GET_ASNOID, asn, &asnlen))
+ {
+ /* We don't have yet all of the above algorithms. */
+ return GPG_ERR_NOT_IMPLEMENTED;
+ }
+
+ if ( valuelen != dlen )
+ {
+ /* Hash value does not match the length of digest for
+ the given algorithm. */
+ return GPG_ERR_CONFLICT;
+ }
+
+ if ( !dlen || dlen + asnlen + 4 > nframe)
+ {
+ /* Can't encode an DLEN byte digest MD into an NFRAME byte
+ frame. */
+ return GPG_ERR_TOO_SHORT;
+ }
+
+ if ( !(frame = gcry_malloc (nframe)) )
+ return gpg_err_code_from_syserror ();
+
+ /* Assemble the pkcs#1 block type 1. */
+ n = 0;
+ frame[n++] = 0;
+ frame[n++] = 1; /* block type */
+ i = nframe - valuelen - asnlen - 3 ;
+ gcry_assert (i > 1);
+ memset (frame+n, 0xff, i );
+ n += i;
+ frame[n++] = 0;
+ memcpy (frame+n, asn, asnlen);
+ n += asnlen;
+ memcpy (frame+n, value, valuelen );
+ n += valuelen;
+ gcry_assert (n == nframe);
+
+ /* Convert it into an MPI. */
+ err = gcry_mpi_scan (r_result, GCRYMPI_FMT_USG, frame, n, &nframe);
+ if (err)
+ rc = gcry_err_code (err);
+ else if (DBG_CIPHER)
+ log_mpidump ("PKCS#1 block type 1 encoded data", *r_result);
+ gcry_free (frame);
+
+ return rc;
+}
+
+
+/* Mask generation function for OAEP. See RFC-3447 B.2.1. */
+static gcry_err_code_t
+mgf1 (unsigned char *output, size_t outlen, unsigned char *seed, size_t seedlen,
+ int algo)
+{
+ size_t dlen, nbytes, n;
+ int idx;
+ gcry_md_hd_t hd;
+ gcry_error_t err;
+
+ err = gcry_md_open (&hd, algo, 0);
+ if (err)
+ return gpg_err_code (err);
+
+ dlen = gcry_md_get_algo_dlen (algo);
+
+ /* We skip step 1 which would be assert(OUTLEN <= 2^32). The loop
+ in step 3 is merged with step 4 by concatenating no more octets
+ than what would fit into OUTPUT. The ceiling for the counter IDX
+ is implemented indirectly. */
+ nbytes = 0; /* Step 2. */
+ idx = 0;
+ while ( nbytes < outlen )
+ {
+ unsigned char c[4], *digest;
+
+ if (idx)
+ gcry_md_reset (hd);
+
+ c[0] = (idx >> 24) & 0xFF;
+ c[1] = (idx >> 16) & 0xFF;
+ c[2] = (idx >> 8) & 0xFF;
+ c[3] = idx & 0xFF;
+ idx++;
+
+ gcry_md_write (hd, seed, seedlen);
+ gcry_md_write (hd, c, 4);
+ digest = gcry_md_read (hd, 0);
+
+ n = (outlen - nbytes < dlen)? (outlen - nbytes) : dlen;
+ memcpy (output+nbytes, digest, n);
+ nbytes += n;
+ }
+
+ gcry_md_close (hd);
+ return GPG_ERR_NO_ERROR;
+}
+
+
+/* RFC-3447 (pkcs#1 v2.1) OAEP encoding. NBITS is the length of the
+ key measured in bits. ALGO is the hash function; it must be a
+ valid and usable algorithm. {VALUE,VALUELEN} is the message to
+ encrypt. {LABEL,LABELLEN} is the optional label to be associated
+ with the message, if LABEL is NULL the default is to use the empty
+ string as label. On success the encoded ciphertext is returned at
+ R_RESULT.
+
+ If {RANDOM_OVERRIDE, RANDOM_OVERRIDE_LEN} is given it is used as
+ the seed instead of using a random string for it. This feature is
+ only useful for regression tests.
+
+ Here is figure 1 from the RFC depicting the process:
+
+ +----------+---------+-------+
+ DB = | lHash | PS | M |
+ +----------+---------+-------+
+ |
+ +----------+ V
+ | seed |--> MGF ---> xor
+ +----------+ |
+ | |
+ +--+ V |
+ |00| xor <----- MGF <-----|
+ +--+ | |
+ | | |
+ V V V
+ +--+----------+----------------------------+
+ EM = |00|maskedSeed| maskedDB |
+ +--+----------+----------------------------+
+ */
+static gcry_err_code_t
+oaep_encode (gcry_mpi_t *r_result, unsigned int nbits, int algo,
+ const unsigned char *value, size_t valuelen,
+ const unsigned char *label, size_t labellen,
+ const void *random_override, size_t random_override_len)
+{
+ gcry_err_code_t rc = 0;
+ gcry_error_t err;
+ unsigned char *frame = NULL;
+ size_t nframe = (nbits+7) / 8;
+ unsigned char *p;
+ size_t hlen;
+ size_t n;
+
+ *r_result = NULL;
+
+ /* Set defaults for LABEL. */
+ if (!label || !labellen)
+ {
+ label = (const unsigned char*)"";
+ labellen = 0;
+ }
+
+ hlen = gcry_md_get_algo_dlen (algo);
+
+ /* We skip step 1a which would be to check that LABELLEN is not
+ greater than 2^61-1. See rfc-3447 7.1.1. */
+
+ /* Step 1b. Note that the obsolete rfc-2437 uses the check:
+ valuelen > nframe - 2 * hlen - 1 . */
+ if (valuelen > nframe - 2 * hlen - 2 || !nframe)
+ {
+ /* Can't encode a VALUELEN value in a NFRAME bytes frame. */
+ return GPG_ERR_TOO_SHORT; /* The key is too short. */
+ }
+
+ /* Allocate the frame. */
+ frame = gcry_calloc_secure (1, nframe);
+ if (!frame)
+ return gpg_err_code_from_syserror ();
+
+ /* Step 2a: Compute the hash of the label. We store it in the frame
+ where later the maskedDB will commence. */
+ gcry_md_hash_buffer (algo, frame + 1 + hlen, label, labellen);
+
+ /* Step 2b: Set octet string to zero. */
+ /* This has already been done while allocating FRAME. */
+
+ /* Step 2c: Create DB by concatenating lHash, PS, 0x01 and M. */
+ n = nframe - valuelen - 1;
+ frame[n] = 0x01;
+ memcpy (frame + n + 1, value, valuelen);
+
+ /* Step 3d: Generate seed. We store it where the maskedSeed will go
+ later. */
+ if (random_override)
+ {
+ if (random_override_len != hlen)
+ {
+ gcry_free (frame);
+ return GPG_ERR_INV_ARG;
+ }
+ memcpy (frame + 1, random_override, hlen);
+ }
+ else
+ gcry_randomize (frame + 1, hlen, GCRY_STRONG_RANDOM);
+
+ /* Step 2e and 2f: Create maskedDB. */
+ {
+ unsigned char *dmask;
+
+ dmask = gcry_malloc_secure (nframe - hlen - 1);
+ if (!dmask)
+ {
+ rc = gpg_err_code_from_syserror ();
+ gcry_free (frame);
+ return rc;
+ }
+ rc = mgf1 (dmask, nframe - hlen - 1, frame+1, hlen, algo);
+ if (rc)
+ {
+ gcry_free (dmask);
+ gcry_free (frame);
+ return rc;
+ }
+ for (n = 1 + hlen, p = dmask; n < nframe; n++)
+ frame[n] ^= *p++;
+ gcry_free (dmask);
+ }
+
+ /* Step 2g and 2h: Create maskedSeed. */
+ {
+ unsigned char *smask;
+
+ smask = gcry_malloc_secure (hlen);
+ if (!smask)
+ {
+ rc = gpg_err_code_from_syserror ();
+ gcry_free (frame);
+ return rc;
+ }
+ rc = mgf1 (smask, hlen, frame + 1 + hlen, nframe - hlen - 1, algo);
+ if (rc)
+ {
+ gcry_free (smask);
+ gcry_free (frame);
+ return rc;
+ }
+ for (n = 1, p = smask; n < 1 + hlen; n++)
+ frame[n] ^= *p++;
+ gcry_free (smask);
+ }
+
+ /* Step 2i: Concatenate 0x00, maskedSeed and maskedDB. */
+ /* This has already been done by using in-place operations. */
+
+ /* Convert the stuff into an MPI as expected by the caller. */
+ err = gcry_mpi_scan (r_result, GCRYMPI_FMT_USG, frame, nframe, NULL);
+ if (err)
+ rc = gcry_err_code (err);
+ else if (DBG_CIPHER)
+ log_mpidump ("OAEP encoded data", *r_result);
+ gcry_free (frame);
+
+ return rc;
+}
+
+
+/* RFC-3447 (pkcs#1 v2.1) OAEP decoding. NBITS is the length of the
+ key measured in bits. ALGO is the hash function; it must be a
+ valid and usable algorithm. VALUE is the raw decrypted message
+ {LABEL,LABELLEN} is the optional label to be associated with the
+ message, if LABEL is NULL the default is to use the empty string as
+ label. On success the plaintext is returned as a newly allocated
+ buffer at R_RESULT; its valid length is stored at R_RESULTLEN. On
+ error NULL is stored at R_RESULT. */
+static gcry_err_code_t
+oaep_decode (unsigned char **r_result, size_t *r_resultlen,
+ unsigned int nbits, int algo,
+ gcry_mpi_t value, const unsigned char *label, size_t labellen)
+{
+ gcry_err_code_t rc;
+ unsigned char *frame = NULL; /* Encoded messages (EM). */
+ unsigned char *masked_seed; /* Points into FRAME. */
+ unsigned char *masked_db; /* Points into FRAME. */
+ unsigned char *seed = NULL; /* Allocated space for the seed and DB. */
+ unsigned char *db; /* Points into SEED. */
+ unsigned char *lhash = NULL; /* Hash of the label. */
+ size_t nframe; /* Length of the ciphertext (EM). */
+ size_t hlen; /* Length of the hash digest. */
+ size_t db_len; /* Length of DB and masked_db. */
+ size_t nkey = (nbits+7)/8; /* Length of the key in bytes. */
+ int failed = 0; /* Error indicator. */
+ size_t n;
+
+ *r_result = NULL;
+
+ /* This code is implemented as described by rfc-3447 7.1.2. */
+
+ /* Set defaults for LABEL. */
+ if (!label || !labellen)
+ {
+ label = (const unsigned char*)"";
+ labellen = 0;
+ }
+
+ /* Get the length of the digest. */
+ hlen = gcry_md_get_algo_dlen (algo);
+
+ /* Hash the label right away. */
+ lhash = gcry_malloc (hlen);
+ if (!lhash)
+ return gpg_err_code_from_syserror ();
+ gcry_md_hash_buffer (algo, lhash, label, labellen);
+
+ /* Turn the MPI into an octet string. If the octet string is
+ shorter than the key we pad it to the left with zeroes. This may
+ happen due to the leading zero in OAEP frames and due to the
+ following random octets (seed^mask) which may have leading zero
+ bytes. This all is needed to cope with our leading zeroes
+ suppressing MPI implementation. The code implictly implements
+ Step 1b (bail out if NFRAME != N). */
+ rc = octet_string_from_mpi (&frame, NULL, value, nkey);
+ if (rc)
+ {
+ gcry_free (lhash);
+ return GPG_ERR_ENCODING_PROBLEM;
+ }
+ nframe = nkey;
+
+ /* Step 1c: Check that the key is long enough. */
+ if ( nframe < 2 * hlen + 2 )
+ {
+ gcry_free (frame);
+ gcry_free (lhash);
+ return GPG_ERR_ENCODING_PROBLEM;
+ }
+
+ /* Step 2 has already been done by the caller and the
+ gcry_mpi_aprint above. */
+
+ /* Allocate space for SEED and DB. */
+ seed = gcry_malloc_secure (nframe - 1);
+ if (!seed)
+ {
+ rc = gpg_err_code_from_syserror ();
+ gcry_free (frame);
+ gcry_free (lhash);
+ return rc;
+ }
+ db = seed + hlen;
+
+ /* To avoid choosen ciphertext attacks from now on we make sure to
+ run all code even in the error case; this avoids possible timing
+ attacks as described by Manger. */
+
+ /* Step 3a: Hash the label. */
+ /* This has already been done. */
+
+ /* Step 3b: Separate the encoded message. */
+ masked_seed = frame + 1;
+ masked_db = frame + 1 + hlen;
+ db_len = nframe - 1 - hlen;
+
+ /* Step 3c and 3d: seed = maskedSeed ^ mgf(maskedDB, hlen). */
+ if (mgf1 (seed, hlen, masked_db, db_len, algo))
+ failed = 1;
+ for (n = 0; n < hlen; n++)
+ seed[n] ^= masked_seed[n];
+
+ /* Step 3e and 3f: db = maskedDB ^ mgf(seed, db_len). */
+ if (mgf1 (db, db_len, seed, hlen, algo))
+ failed = 1;
+ for (n = 0; n < db_len; n++)
+ db[n] ^= masked_db[n];
+
+ /* Step 3g: Check lhash, an possible empty padding string terminated
+ by 0x01 and the first byte of EM being 0. */
+ if (memcmp (lhash, db, hlen))
+ failed = 1;
+ for (n = hlen; n < db_len; n++)
+ if (db[n] == 0x01)
+ break;
+ if (n == db_len)
+ failed = 1;
+ if (frame[0])
+ failed = 1;
+
+ gcry_free (lhash);
+ gcry_free (frame);
+ if (failed)
+ {
+ gcry_free (seed);
+ return GPG_ERR_ENCODING_PROBLEM;
+ }
+
+ /* Step 4: Output M. */
+ /* To avoid an extra allocation we reuse the seed buffer. The only
+ caller of this function will anyway free the result soon. */
+ n++;
+ memmove (seed, db + n, db_len - n);
+ *r_result = seed;
+ *r_resultlen = db_len - n;
+ seed = NULL;
+
+ if (DBG_CIPHER)
+ log_printhex ("value extracted from OAEP encoded data:",
+ *r_result, *r_resultlen);
+
+ return 0;
+}
+
+
+/* RFC-3447 (pkcs#1 v2.1) PSS encoding. Encode {VALUE,VALUELEN} for
+ an NBITS key. Note that VALUE is already the mHash from the
+ picture below. ALGO is a valid hash algorithm and SALTLEN is the
+ length of salt to be used. On success the result is stored as a
+ new MPI at R_RESULT. On error the value at R_RESULT is undefined.
+
+ If {RANDOM_OVERRIDE, RANDOM_OVERRIDE_LEN} is given it is used as
+ the salt instead of using a random string for the salt. This
+ feature is only useful for regression tests.
+
+ Here is figure 2 from the RFC (errata 595 applied) depicting the
+ process:
+
+ +-----------+
+ | M |
+ +-----------+
+ |
+ V
+ Hash
+ |
+ V
+ +--------+----------+----------+
+ M' = |Padding1| mHash | salt |
+ +--------+----------+----------+
+ |
+ +--------+----------+ V
+ DB = |Padding2| salt | Hash
+ +--------+----------+ |
+ | |
+ V | +----+
+ xor <--- MGF <---| |0xbc|
+ | | +----+
+ | | |
+ V V V
+ +-------------------+----------+----+
+ EM = | maskedDB | H |0xbc|
+ +-------------------+----------+----+
+
+ */
+static gcry_err_code_t
+pss_encode (gcry_mpi_t *r_result, unsigned int nbits, int algo,
+ const unsigned char *value, size_t valuelen, int saltlen,
+ const void *random_override, size_t random_override_len)
+{
+ gcry_err_code_t rc = 0;
+ gcry_error_t err;
+ size_t hlen; /* Length of the hash digest. */
+ unsigned char *em = NULL; /* Encoded message. */
+ size_t emlen = (nbits+7)/8; /* Length in bytes of EM. */
+ unsigned char *h; /* Points into EM. */
+ unsigned char *buf = NULL; /* Help buffer. */
+ size_t buflen; /* Length of BUF. */
+ unsigned char *mhash; /* Points into BUF. */
+ unsigned char *salt; /* Points into BUF. */
+ unsigned char *dbmask; /* Points into BUF. */
+ unsigned char *p;
+ size_t n;
+
+ /* This code is implemented as described by rfc-3447 9.1.1. */
+
+ /* Get the length of the digest. */
+ hlen = gcry_md_get_algo_dlen (algo);
+ gcry_assert (hlen); /* We expect a valid ALGO here. */
+
+ /* Allocate a help buffer and setup some pointers. */
+ buflen = 8 + hlen + saltlen + (emlen - hlen - 1);
+ buf = gcry_malloc (buflen);
+ if (!buf)
+ {
+ rc = gpg_err_code_from_syserror ();
+ goto leave;
+ }
+ mhash = buf + 8;
+ salt = mhash + hlen;
+ dbmask= salt + saltlen;
+
+ /* Step 2: That would be: mHash = Hash(M) but our input is already
+ mHash thus we do only a consistency check and copy to MHASH. */
+ if (valuelen != hlen)
+ {
+ rc = GPG_ERR_INV_LENGTH;
+ goto leave;
+ }
+ memcpy (mhash, value, hlen);
+
+ /* Step 3: Check length constraints. */
+ if (emlen < hlen + saltlen + 2)
+ {
+ rc = GPG_ERR_TOO_SHORT;
+ goto leave;
+ }
+
+ /* Allocate space for EM. */
+ em = gcry_malloc (emlen);
+ if (!em)
+ {
+ rc = gpg_err_code_from_syserror ();
+ goto leave;
+ }
+ h = em + emlen - 1 - hlen;
+
+ /* Step 4: Create a salt. */
+ if (saltlen)
+ {
+ if (random_override)
+ {
+ if (random_override_len != saltlen)
+ {
+ rc = GPG_ERR_INV_ARG;
+ goto leave;
+ }
+ memcpy (salt, random_override, saltlen);
+ }
+ else
+ gcry_randomize (salt, saltlen, GCRY_STRONG_RANDOM);
+ }
+
+ /* Step 5 and 6: M' = Hash(Padding1 || mHash || salt). */
+ memset (buf, 0, 8); /* Padding. */
+ gcry_md_hash_buffer (algo, h, buf, 8 + hlen + saltlen);
+
+ /* Step 7 and 8: DB = PS || 0x01 || salt. */
+ /* Note that we use EM to store DB and later Xor in-place. */
+ p = em + emlen - 1 - hlen - saltlen - 1;
+ memset (em, 0, p - em);
+ *p++ = 0x01;
+ memcpy (p, salt, saltlen);
+
+ /* Step 9: dbmask = MGF(H, emlen - hlen - 1). */
+ mgf1 (dbmask, emlen - hlen - 1, h, hlen, algo);
+
+ /* Step 10: maskedDB = DB ^ dbMask */
+ for (n = 0, p = dbmask; n < emlen - hlen - 1; n++, p++)
+ em[n] ^= *p;
+
+ /* Step 11: Set the leftmost bits to zero. */
+ em[0] &= 0xFF >> (8 * emlen - nbits);
+
+ /* Step 12: EM = maskedDB || H || 0xbc. */
+ em[emlen-1] = 0xbc;
+
+ /* Convert EM into an MPI. */
+ err = gcry_mpi_scan (r_result, GCRYMPI_FMT_USG, em, emlen, NULL);
+ if (err)
+ rc = gcry_err_code (err);
+ else if (DBG_CIPHER)
+ log_mpidump ("PSS encoded data", *r_result);
+
+ leave:
+ if (em)
+ {
+ wipememory (em, emlen);
+ gcry_free (em);
+ }
+ if (buf)
+ {
+ wipememory (buf, buflen);
+ gcry_free (buf);
+ }
+ return rc;
+}
+
+
+/* Verify a signature assuming PSS padding. VALUE is the hash of the
+ message (mHash) encoded as an MPI; its length must match the digest
+ length of ALGO. ENCODED is the output of the RSA public key
+ function (EM). NBITS is the size of the public key. ALGO is the
+ hash algorithm and SALTLEN is the length of the used salt. The
+ function returns 0 on success or on error code. */
+static gcry_err_code_t
+pss_verify (gcry_mpi_t value, gcry_mpi_t encoded, unsigned int nbits, int algo,
+ size_t saltlen)
+{
+ gcry_err_code_t rc = 0;
+ size_t hlen; /* Length of the hash digest. */
+ unsigned char *em = NULL; /* Encoded message. */
+ size_t emlen = (nbits+7)/8; /* Length in bytes of EM. */
+ unsigned char *salt; /* Points into EM. */
+ unsigned char *h; /* Points into EM. */
+ unsigned char *buf = NULL; /* Help buffer. */
+ size_t buflen; /* Length of BUF. */
+ unsigned char *dbmask; /* Points into BUF. */
+ unsigned char *mhash; /* Points into BUF. */
+ unsigned char *p;
+ size_t n;
+
+ /* This code is implemented as described by rfc-3447 9.1.2. */
+
+ /* Get the length of the digest. */
+ hlen = gcry_md_get_algo_dlen (algo);
+ gcry_assert (hlen); /* We expect a valid ALGO here. */
+
+ /* Allocate a help buffer and setup some pointers.
+ This buffer is used for two purposes:
+ +------------------------------+-------+
+ 1. | dbmask | mHash |
+ +------------------------------+-------+
+ emlen - hlen - 1 hlen
+
+ +----------+-------+---------+-+-------+
+ 2. | padding1 | mHash | salt | | mHash |
+ +----------+-------+---------+-+-------+
+ 8 hlen saltlen hlen
+ */
+ buflen = 8 + hlen + saltlen;
+ if (buflen < emlen - hlen - 1)
+ buflen = emlen - hlen - 1;
+ buflen += hlen;
+ buf = gcry_malloc (buflen);
+ if (!buf)
+ {
+ rc = gpg_err_code_from_syserror ();
+ goto leave;
+ }
+ dbmask = buf;
+ mhash = buf + buflen - hlen;
+
+ /* Step 2: That would be: mHash = Hash(M) but our input is already
+ mHash thus we only need to convert VALUE into MHASH. */
+ rc = octet_string_from_mpi (NULL, mhash, value, hlen);
+ if (rc)
+ goto leave;
+
+ /* Convert the signature into an octet string. */
+ rc = octet_string_from_mpi (&em, NULL, encoded, emlen);
+ if (rc)
+ goto leave;
+
+ /* Step 3: Check length of EM. Because we internally use MPI
+ functions we can't do this properly; EMLEN is always the length
+ of the key because octet_string_from_mpi needs to left pad the
+ result with zero to cope with the fact that our MPIs suppress all
+ leading zeroes. Thus what we test here are merely the digest and
+ salt lengths to the key. */
+ if (emlen < hlen + saltlen + 2)
+ {
+ rc = GPG_ERR_TOO_SHORT; /* For the hash and saltlen. */
+ goto leave;
+ }
+
+ /* Step 4: Check last octet. */
+ if (em[emlen - 1] != 0xbc)
+ {
+ rc = GPG_ERR_BAD_SIGNATURE;
+ goto leave;
+ }
+
+ /* Step 5: Split EM. */
+ h = em + emlen - 1 - hlen;
+
+ /* Step 6: Check the leftmost bits. */
+ if ((em[0] & ~(0xFF >> (8 * emlen - nbits))))
+ {
+ rc = GPG_ERR_BAD_SIGNATURE;
+ goto leave;
+ }
+
+ /* Step 7: dbmask = MGF(H, emlen - hlen - 1). */
+ mgf1 (dbmask, emlen - hlen - 1, h, hlen, algo);
+
+ /* Step 8: maskedDB = DB ^ dbMask. */
+ for (n = 0, p = dbmask; n < emlen - hlen - 1; n++, p++)
+ em[n] ^= *p;
+
+ /* Step 9: Set leftmost bits in DB to zero. */
+ em[0] &= 0xFF >> (8 * emlen - nbits);
+
+ /* Step 10: Check the padding of DB. */
+ for (n = 0; n < emlen - hlen - saltlen - 2 && !em[n]; n++)
+ ;
+ if (n != emlen - hlen - saltlen - 2 || em[n++] != 1)
+ {
+ rc = GPG_ERR_BAD_SIGNATURE;
+ goto leave;
+ }
+
+ /* Step 11: Extract salt from DB. */
+ salt = em + n;
+
+ /* Step 12: M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt */
+ memset (buf, 0, 8);
+ memcpy (buf+8, mhash, hlen);
+ memcpy (buf+8+hlen, salt, saltlen);
+
+ /* Step 13: H' = Hash(M'). */
+ gcry_md_hash_buffer (algo, buf, buf, 8 + hlen + saltlen);
+
+ /* Step 14: Check H == H'. */
+ rc = memcmp (h, buf, hlen) ? GPG_ERR_BAD_SIGNATURE : GPG_ERR_NO_ERROR;
+
+ leave:
+ if (em)
+ {
+ wipememory (em, emlen);
+ gcry_free (em);
+ }
+ if (buf)
+ {
+ wipememory (buf, buflen);
+ gcry_free (buf);
+ }
+ return rc;
+}
+
+
+/* Callback for the pubkey algorithm code to verify PSS signatures.
+ OPAQUE is the data provided by the actual caller. The meaning of
+ TMP depends on the actual algorithm (but there is only RSA); now
+ for RSA it is the output of running the public key function on the
+ input. */
+static int
+pss_verify_cmp (void *opaque, gcry_mpi_t tmp)
+{
+ struct pk_encoding_ctx *ctx = opaque;
+ gcry_mpi_t hash = ctx->verify_arg;
+
+ return pss_verify (hash, tmp, ctx->nbits - 1, ctx->hash_algo, ctx->saltlen);
+}
+
+
+/* Internal function. */
+static gcry_err_code_t
+sexp_elements_extract (gcry_sexp_t key_sexp, const char *element_names,
+ gcry_mpi_t *elements, const char *algo_name)
+{
+ gcry_err_code_t err = 0;
+ int i, idx;
+ const char *name;
+ gcry_sexp_t list;
+
+ for (name = element_names, idx = 0; *name && !err; name++, idx++)
+ {
+ list = gcry_sexp_find_token (key_sexp, name, 1);
+ if (!list)
+ elements[idx] = NULL;
+ else
+ {
+ elements[idx] = gcry_sexp_nth_mpi (list, 1, GCRYMPI_FMT_USG);
+ gcry_sexp_release (list);
+ if (!elements[idx])
+ err = GPG_ERR_INV_OBJ;
+ }
+ }
+
+ if (!err)
+ {
+ /* Check that all elements are available. */
+ for (name = element_names, idx = 0; *name; name++, idx++)
+ if (!elements[idx])
+ break;
+ if (*name)
+ {
+ err = GPG_ERR_NO_OBJ;
+ /* Some are missing. Before bailing out we test for
+ optional parameters. */
+ if (algo_name && !strcmp (algo_name, "RSA")
+ && !strcmp (element_names, "nedpqu") )
+ {
+ /* This is RSA. Test whether we got N, E and D and that
+ the optional P, Q and U are all missing. */
+ if (elements[0] && elements[1] && elements[2]
+ && !elements[3] && !elements[4] && !elements[5])
+ err = 0;
+ }
+ }
+ }
+
+
+ if (err)
+ {
+ for (i = 0; i < idx; i++)
+ if (elements[i])
+ gcry_free (elements[i]);
+ }
+ return err;
+}
+
+
+/* Internal function used for ecc. Note, that this function makes use
+ of its intimate knowledge about the ECC parameters from ecc.c. */
+static gcry_err_code_t
+sexp_elements_extract_ecc (gcry_sexp_t key_sexp, const char *element_names,
+ gcry_mpi_t *elements, pk_extra_spec_t *extraspec)
+
+{
+ gcry_err_code_t err = 0;
+ int idx;
+ const char *name;
+ gcry_sexp_t list;
+
+ /* Clear the array for easier error cleanup. */
+ for (name = element_names, idx = 0; *name; name++, idx++)
+ elements[idx] = NULL;
+ gcry_assert (idx >= 5); /* We know that ECC has at least 5 elements
+ (params only) or 6 (full public key). */
+ if (idx == 5)
+ elements[5] = NULL; /* Extra clear for the params only case. */
+
+
+ /* Init the array with the available curve parameters. */
+ for (name = element_names, idx = 0; *name && !err; name++, idx++)
+ {
+ list = gcry_sexp_find_token (key_sexp, name, 1);
+ if (!list)
+ elements[idx] = NULL;
+ else
+ {
+ elements[idx] = gcry_sexp_nth_mpi (list, 1, GCRYMPI_FMT_USG);
+ gcry_sexp_release (list);
+ if (!elements[idx])
+ {
+ err = GPG_ERR_INV_OBJ;
+ goto leave;
+ }
+ }
+ }
+
+ /* Check whether a curve parameter has been given and then fill any
+ missing elements. */
+ list = gcry_sexp_find_token (key_sexp, "curve", 5);
+ if (list)
+ {
+ if (extraspec->get_param)
+ {
+ char *curve;
+ gcry_mpi_t params[6];
+
+ for (idx = 0; idx < DIM(params); idx++)
+ params[idx] = NULL;
+
+ curve = _gcry_sexp_nth_string (list, 1);
+ gcry_sexp_release (list);
+ if (!curve)
+ {
+ /* No curve name given (or out of core). */
+ err = GPG_ERR_INV_OBJ;
+ goto leave;
+ }
+ err = extraspec->get_param (curve, params);
+ gcry_free (curve);
+ if (err)
+ goto leave;
+
+ for (idx = 0; idx < DIM(params); idx++)
+ {
+ if (!elements[idx])
+ elements[idx] = params[idx];
+ else
+ mpi_free (params[idx]);
+ }
+ }
+ else
+ {
+ gcry_sexp_release (list);
+ err = GPG_ERR_INV_OBJ; /* "curve" given but ECC not supported. */
+ goto leave;
+ }
+ }
+
+ /* Check that all parameters are known. */
+ for (name = element_names, idx = 0; *name; name++, idx++)
+ if (!elements[idx])
+ {
+ err = GPG_ERR_NO_OBJ;
+ goto leave;
+ }
+
+ leave:
+ if (err)
+ {
+ for (name = element_names, idx = 0; *name; name++, idx++)
+ if (elements[idx])
+ gcry_free (elements[idx]);
+ }
+ return err;
+}
+
+
+
+/****************
+ * Convert a S-Exp with either a private or a public key to our
+ * internal format. Currently we do only support the following
+ * algorithms:
+ * dsa
+ * rsa
+ * openpgp-dsa
+ * openpgp-rsa
+ * openpgp-elg
+ * openpgp-elg-sig
+ * ecdsa
+ * ecdh
+ * Provide a SE with the first element be either "private-key" or
+ * or "public-key". It is followed by a list with its first element
+ * be one of the above algorithm identifiers and the remaning
+ * elements are pairs with parameter-id and value.
+ * NOTE: we look through the list to find a list beginning with
+ * "private-key" or "public-key" - the first one found is used.
+ *
+ * If OVERRIDE_ELEMS is not NULL those elems override the parameter
+ * specification taken from the module. This ise used by
+ * gcry_pk_get_curve.
+ *
+ * Returns: A pointer to an allocated array of MPIs if the return value is
+ * zero; the caller has to release this array.
+ *
+ * Example of a DSA public key:
+ * (private-key
+ * (dsa
+ * (p <mpi>)
+ * (g <mpi>)
+ * (y <mpi>)
+ * (x <mpi>)
+ * )
+ * )
+ * The <mpi> are expected to be in GCRYMPI_FMT_USG
+ */
+static gcry_err_code_t
+sexp_to_key (gcry_sexp_t sexp, int want_private, const char *override_elems,
+ gcry_mpi_t **retarray, gcry_module_t *retalgo)
+{
+ gcry_err_code_t err = 0;
+ gcry_sexp_t list, l2;
+ char *name;
+ const char *elems;
+ gcry_mpi_t *array;
+ gcry_module_t module;
+ gcry_pk_spec_t *pubkey;
+ pk_extra_spec_t *extraspec;
+ int is_ecc;
+
+ /* Check that the first element is valid. */
+ list = gcry_sexp_find_token (sexp,
+ want_private? "private-key":"public-key", 0);
+ if (!list)
+ return GPG_ERR_INV_OBJ; /* Does not contain a key object. */
+
+ l2 = gcry_sexp_cadr( list );
+ gcry_sexp_release ( list );
+ list = l2;
+ name = _gcry_sexp_nth_string (list, 0);
+ if (!name)
+ {
+ gcry_sexp_release ( list );
+ return GPG_ERR_INV_OBJ; /* Invalid structure of object. */
+ }
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ module = gcry_pk_lookup_name (name);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ /* Fixme: We should make sure that an ECC key is always named "ecc"
+ and not "ecdsa". "ecdsa" should be used for the signature
+ itself. We need a function to test whether an algorithm given
+ with a key is compatible with an application of the key (signing,
+ encryption). For RSA this is easy, but ECC is the first
+ algorithm which has many flavours. */
+ is_ecc = ( !strcmp (name, "ecdsa")
+ || !strcmp (name, "ecdh")
+ || !strcmp (name, "ecc") );
+ gcry_free (name);
+
+ if (!module)
+ {
+ gcry_sexp_release (list);
+ return GPG_ERR_PUBKEY_ALGO; /* Unknown algorithm. */
+ }
+ else
+ {
+ pubkey = (gcry_pk_spec_t *) module->spec;
+ extraspec = module->extraspec;
+ }
+
+ if (override_elems)
+ elems = override_elems;
+ else if (want_private)
+ elems = pubkey->elements_skey;
+ else
+ elems = pubkey->elements_pkey;
+ array = gcry_calloc (strlen (elems) + 1, sizeof (*array));
+ if (!array)
+ err = gpg_err_code_from_syserror ();
+ if (!err)
+ {
+ if (is_ecc)
+ err = sexp_elements_extract_ecc (list, elems, array, extraspec);
+ else
+ err = sexp_elements_extract (list, elems, array, pubkey->name);
+ }
+
+ gcry_sexp_release (list);
+
+ if (err)
+ {
+ gcry_free (array);
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ _gcry_module_release (module);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+ }
+ else
+ {
+ *retarray = array;
+ *retalgo = module;
+ }
+
+ return err;
+}
+
+
+static gcry_err_code_t
+sexp_to_sig (gcry_sexp_t sexp, gcry_mpi_t **retarray,
+ gcry_module_t *retalgo)
+{
+ gcry_err_code_t err = 0;
+ gcry_sexp_t list, l2;
+ char *name;
+ const char *elems;
+ gcry_mpi_t *array;
+ gcry_module_t module;
+ gcry_pk_spec_t *pubkey;
+
+ /* Check that the first element is valid. */
+ list = gcry_sexp_find_token( sexp, "sig-val" , 0 );
+ if (!list)
+ return GPG_ERR_INV_OBJ; /* Does not contain a signature value object. */
+
+ l2 = gcry_sexp_nth (list, 1);
+ if (!l2)
+ {
+ gcry_sexp_release (list);
+ return GPG_ERR_NO_OBJ; /* No cadr for the sig object. */
+ }
+ name = _gcry_sexp_nth_string (l2, 0);
+ if (!name)
+ {
+ gcry_sexp_release (list);
+ gcry_sexp_release (l2);
+ return GPG_ERR_INV_OBJ; /* Invalid structure of object. */
+ }
+ else if (!strcmp (name, "flags"))
+ {
+ /* Skip flags, since they are not used but here just for the
+ sake of consistent S-expressions. */
+ gcry_free (name);
+ gcry_sexp_release (l2);
+ l2 = gcry_sexp_nth (list, 2);
+ if (!l2)
+ {
+ gcry_sexp_release (list);
+ return GPG_ERR_INV_OBJ;
+ }
+ name = _gcry_sexp_nth_string (l2, 0);
+ }
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ module = gcry_pk_lookup_name (name);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+ gcry_free (name);
+ name = NULL;
+
+ if (!module)
+ {
+ gcry_sexp_release (l2);
+ gcry_sexp_release (list);
+ return GPG_ERR_PUBKEY_ALGO; /* Unknown algorithm. */
+ }
+ else
+ pubkey = (gcry_pk_spec_t *) module->spec;
+
+ elems = pubkey->elements_sig;
+ array = gcry_calloc (strlen (elems) + 1 , sizeof *array );
+ if (!array)
+ err = gpg_err_code_from_syserror ();
+
+ if (!err)
+ err = sexp_elements_extract (list, elems, array, NULL);
+
+ gcry_sexp_release (l2);
+ gcry_sexp_release (list);
+
+ if (err)
+ {
+ ath_mutex_lock (&pubkeys_registered_lock);
+ _gcry_module_release (module);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ gcry_free (array);
+ }
+ else
+ {
+ *retarray = array;
+ *retalgo = module;
+ }
+
+ return err;
+}
+
+static inline int
+get_hash_algo (const char *s, size_t n)
+{
+ static const struct { const char *name; int algo; } hashnames[] = {
+ { "sha1", GCRY_MD_SHA1 },
+ { "md5", GCRY_MD_MD5 },
+ { "sha256", GCRY_MD_SHA256 },
+ { "ripemd160", GCRY_MD_RMD160 },
+ { "rmd160", GCRY_MD_RMD160 },
+ { "sha384", GCRY_MD_SHA384 },
+ { "sha512", GCRY_MD_SHA512 },
+ { "sha224", GCRY_MD_SHA224 },
+ { "md2", GCRY_MD_MD2 },
+ { "md4", GCRY_MD_MD4 },
+ { "tiger", GCRY_MD_TIGER },
+ { "haval", GCRY_MD_HAVAL },
+ { NULL, 0 }
+ };
+ int algo;
+ int i;
+
+ for (i=0; hashnames[i].name; i++)
+ {
+ if ( strlen (hashnames[i].name) == n
+ && !memcmp (hashnames[i].name, s, n))
+ break;
+ }
+ if (hashnames[i].name)
+ algo = hashnames[i].algo;
+ else
+ {
+ /* In case of not listed or dynamically allocated hash
+ algorithm we fall back to this somewhat slower
+ method. Further, it also allows to use OIDs as
+ algorithm names. */
+ char *tmpname;
+
+ tmpname = gcry_malloc (n+1);
+ if (!tmpname)
+ algo = 0; /* Out of core - silently give up. */
+ else
+ {
+ memcpy (tmpname, s, n);
+ tmpname[n] = 0;
+ algo = gcry_md_map_name (tmpname);
+ gcry_free (tmpname);
+ }
+ }
+ return algo;
+}
+
+
+/****************
+ * Take sexp and return an array of MPI as used for our internal decrypt
+ * function.
+ * s_data = (enc-val
+ * [(flags [raw, pkcs1, oaep, no-blinding])]
+ * [(hash-algo <algo>)]
+ * [(label <label>)]
+ * (<algo>
+ * (<param_name1> <mpi>)
+ * ...
+ * (<param_namen> <mpi>)
+ * ))
+ * HASH-ALGO and LABEL are specific to OAEP.
+ * RET_MODERN is set to true when at least an empty flags list has been found.
+ * CTX is used to return encoding information; it may be NULL in which
+ * case raw encoding is used.
+ */
+static gcry_err_code_t
+sexp_to_enc (gcry_sexp_t sexp, gcry_mpi_t **retarray, gcry_module_t *retalgo,
+ int *ret_modern, int *flags, struct pk_encoding_ctx *ctx)
+{
+ gcry_err_code_t err = 0;
+ gcry_sexp_t list = NULL, l2 = NULL;
+ gcry_pk_spec_t *pubkey = NULL;
+ gcry_module_t module = NULL;
+ char *name = NULL;
+ size_t n;
+ int parsed_flags = 0;
+ const char *elems;
+ gcry_mpi_t *array = NULL;
+
+ *ret_modern = 0;
+
+ /* Check that the first element is valid. */
+ list = gcry_sexp_find_token (sexp, "enc-val" , 0);
+ if (!list)
+ {
+ err = GPG_ERR_INV_OBJ; /* Does not contain an encrypted value object. */
+ goto leave;
+ }
+
+ l2 = gcry_sexp_nth (list, 1);
+ if (!l2)
+ {
+ err = GPG_ERR_NO_OBJ; /* No cdr for the data object. */
+ goto leave;
+ }
+
+ /* Extract identifier of sublist. */
+ name = _gcry_sexp_nth_string (l2, 0);
+ if (!name)
+ {
+ err = GPG_ERR_INV_OBJ; /* Invalid structure of object. */
+ goto leave;
+ }
+
+ if (!strcmp (name, "flags"))
+ {
+ /* There is a flags element - process it. */
+ const char *s;
+ int i;
+
+ *ret_modern = 1;
+ for (i = gcry_sexp_length (l2) - 1; i > 0; i--)
+ {
+ s = gcry_sexp_nth_data (l2, i, &n);
+ if (! s)
+ ; /* Not a data element - ignore. */
+ else if (n == 3 && !memcmp (s, "raw", 3)
+ && ctx->encoding == PUBKEY_ENC_UNKNOWN)
+ ctx->encoding = PUBKEY_ENC_RAW;
+ else if (n == 5 && !memcmp (s, "pkcs1", 5)
+ && ctx->encoding == PUBKEY_ENC_UNKNOWN)
+ ctx->encoding = PUBKEY_ENC_PKCS1;
+ else if (n == 4 && !memcmp (s, "oaep", 4)
+ && ctx->encoding == PUBKEY_ENC_UNKNOWN)
+ ctx->encoding = PUBKEY_ENC_OAEP;
+ else if (n == 3 && !memcmp (s, "pss", 3)
+ && ctx->encoding == PUBKEY_ENC_UNKNOWN)
+ {
+ err = GPG_ERR_CONFLICT;
+ goto leave;
+ }
+ else if (n == 11 && ! memcmp (s, "no-blinding", 11))
+ parsed_flags |= PUBKEY_FLAG_NO_BLINDING;
+ else
+ {
+ err = GPG_ERR_INV_FLAG;
+ goto leave;
+ }
+ }
+ gcry_sexp_release (l2);
+
+ /* Get the OAEP parameters HASH-ALGO and LABEL, if any. */
+ if (ctx->encoding == PUBKEY_ENC_OAEP)
+ {
+ /* Get HASH-ALGO. */
+ l2 = gcry_sexp_find_token (list, "hash-algo", 0);
+ if (l2)
+ {
+ s = gcry_sexp_nth_data (l2, 1, &n);
+ if (!s)
+ err = GPG_ERR_NO_OBJ;
+ else
+ {
+ ctx->hash_algo = get_hash_algo (s, n);
+ if (!ctx->hash_algo)
+ err = GPG_ERR_DIGEST_ALGO;
+ }
+ gcry_sexp_release (l2);
+ if (err)
+ goto leave;
+ }
+
+ /* Get LABEL. */
+ l2 = gcry_sexp_find_token (list, "label", 0);
+ if (l2)
+ {
+ s = gcry_sexp_nth_data (l2, 1, &n);
+ if (!s)
+ err = GPG_ERR_NO_OBJ;
+ else if (n > 0)
+ {
+ ctx->label = gcry_malloc (n);
+ if (!ctx->label)
+ err = gpg_err_code_from_syserror ();
+ else
+ {
+ memcpy (ctx->label, s, n);
+ ctx->labellen = n;
+ }
+ }
+ gcry_sexp_release (l2);
+ if (err)
+ goto leave;
+ }
+ }
+
+ /* Get the next which has the actual data - skip HASH-ALGO and LABEL. */
+ for (i = 2; (l2 = gcry_sexp_nth (list, i)) != NULL; i++)
+ {
+ s = gcry_sexp_nth_data (l2, 0, &n);
+ if (!(n == 9 && !memcmp (s, "hash-algo", 9))
+ && !(n == 5 && !memcmp (s, "label", 5))
+ && !(n == 15 && !memcmp (s, "random-override", 15)))
+ break;
+ gcry_sexp_release (l2);
+ }
+
+ if (!l2)
+ {
+ err = GPG_ERR_NO_OBJ; /* No cdr for the data object. */
+ goto leave;
+ }
+
+ /* Extract sublist identifier. */
+ gcry_free (name);
+ name = _gcry_sexp_nth_string (l2, 0);
+ if (!name)
+ {
+ err = GPG_ERR_INV_OBJ; /* Invalid structure of object. */
+ goto leave;
+ }
+
+ gcry_sexp_release (list);
+ list = l2;
+ l2 = NULL;
+ }
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ module = gcry_pk_lookup_name (name);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ if (!module)
+ {
+ err = GPG_ERR_PUBKEY_ALGO; /* Unknown algorithm. */
+ goto leave;
+ }
+ pubkey = (gcry_pk_spec_t *) module->spec;
+
+ elems = pubkey->elements_enc;
+ array = gcry_calloc (strlen (elems) + 1, sizeof (*array));
+ if (!array)
+ {
+ err = gpg_err_code_from_syserror ();
+ goto leave;
+ }
+
+ err = sexp_elements_extract (list, elems, array, NULL);
+
+ leave:
+ gcry_sexp_release (list);
+ gcry_sexp_release (l2);
+ gcry_free (name);
+
+ if (err)
+ {
+ ath_mutex_lock (&pubkeys_registered_lock);
+ _gcry_module_release (module);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+ gcry_free (array);
+ gcry_free (ctx->label);
+ ctx->label = NULL;
+ }
+ else
+ {
+ *retarray = array;
+ *retalgo = module;
+ *flags = parsed_flags;
+ }
+
+ return err;
+}
+
+/* Take the hash value and convert into an MPI, suitable for
+ passing to the low level functions. We currently support the
+ old style way of passing just a MPI and the modern interface which
+ allows to pass flags so that we can choose between raw and pkcs1
+ padding - may be more padding options later.
+
+ (<mpi>)
+ or
+ (data
+ [(flags [raw, pkcs1, oaep, pss, no-blinding])]
+ [(hash <algo> <value>)]
+ [(value <text>)]
+ [(hash-algo <algo>)]
+ [(label <label>)]
+ [(salt-length <length>)]
+ [(random-override <data>)]
+ )
+
+ Either the VALUE or the HASH element must be present for use
+ with signatures. VALUE is used for encryption.
+
+ HASH-ALGO and LABEL are specific to OAEP.
+
+ SALT-LENGTH is for PSS.
+
+ RANDOM-OVERRIDE is used to replace random nonces for regression
+ testing. */
+static gcry_err_code_t
+sexp_data_to_mpi (gcry_sexp_t input, gcry_mpi_t *ret_mpi,
+ struct pk_encoding_ctx *ctx)
+{
+ gcry_err_code_t rc = 0;
+ gcry_sexp_t ldata, lhash, lvalue;
+ int i;
+ size_t n;
+ const char *s;
+ int unknown_flag=0;
+ int parsed_flags = 0;
+
+ *ret_mpi = NULL;
+ ldata = gcry_sexp_find_token (input, "data", 0);
+ if (!ldata)
+ { /* assume old style */
+ *ret_mpi = gcry_sexp_nth_mpi (input, 0, 0);
+ return *ret_mpi ? GPG_ERR_NO_ERROR : GPG_ERR_INV_OBJ;
+ }
+
+ /* see whether there is a flags object */
+ {
+ gcry_sexp_t lflags = gcry_sexp_find_token (ldata, "flags", 0);
+ if (lflags)
+ { /* parse the flags list. */
+ for (i=gcry_sexp_length (lflags)-1; i > 0; i--)
+ {
+ s = gcry_sexp_nth_data (lflags, i, &n);
+ if (!s)
+ ; /* not a data element*/
+ else if ( n == 3 && !memcmp (s, "raw", 3)
+ && ctx->encoding == PUBKEY_ENC_UNKNOWN)
+ ctx->encoding = PUBKEY_ENC_RAW;
+ else if ( n == 5 && !memcmp (s, "pkcs1", 5)
+ && ctx->encoding == PUBKEY_ENC_UNKNOWN)
+ ctx->encoding = PUBKEY_ENC_PKCS1;
+ else if ( n == 4 && !memcmp (s, "oaep", 4)
+ && ctx->encoding == PUBKEY_ENC_UNKNOWN)
+ ctx->encoding = PUBKEY_ENC_OAEP;
+ else if ( n == 3 && !memcmp (s, "pss", 3)
+ && ctx->encoding == PUBKEY_ENC_UNKNOWN)
+ ctx->encoding = PUBKEY_ENC_PSS;
+ else if (n == 11 && ! memcmp (s, "no-blinding", 11))
+ parsed_flags |= PUBKEY_FLAG_NO_BLINDING;
+ else
+ unknown_flag = 1;
+ }
+ gcry_sexp_release (lflags);
+ }
+ }
+
+ if (ctx->encoding == PUBKEY_ENC_UNKNOWN)
+ ctx->encoding = PUBKEY_ENC_RAW; /* default to raw */
+
+ /* Get HASH or MPI */
+ lhash = gcry_sexp_find_token (ldata, "hash", 0);
+ lvalue = lhash? NULL : gcry_sexp_find_token (ldata, "value", 0);
+
+ if (!(!lhash ^ !lvalue))
+ rc = GPG_ERR_INV_OBJ; /* none or both given */
+ else if (unknown_flag)
+ rc = GPG_ERR_INV_FLAG;
+ else if (ctx->encoding == PUBKEY_ENC_RAW && lvalue)
+ {
+ *ret_mpi = gcry_sexp_nth_mpi (lvalue, 1, GCRYMPI_FMT_USG);
+ if (!*ret_mpi)
+ rc = GPG_ERR_INV_OBJ;
+ }
+ else if (ctx->encoding == PUBKEY_ENC_PKCS1 && lvalue
+ && ctx->op == PUBKEY_OP_ENCRYPT)
+ {
+ const void * value;
+ size_t valuelen;
+ gcry_sexp_t list;
+ void *random_override = NULL;
+ size_t random_override_len = 0;
+
+ if ( !(value=gcry_sexp_nth_data (lvalue, 1, &valuelen)) || !valuelen )
+ rc = GPG_ERR_INV_OBJ;
+ else
+ {
+ /* Get optional RANDOM-OVERRIDE. */
+ list = gcry_sexp_find_token (ldata, "random-override", 0);
+ if (list)
+ {
+ s = gcry_sexp_nth_data (list, 1, &n);
+ if (!s)
+ rc = GPG_ERR_NO_OBJ;
+ else if (n > 0)
+ {
+ random_override = gcry_malloc (n);
+ if (!random_override)
+ rc = gpg_err_code_from_syserror ();
+ else
+ {
+ memcpy (random_override, s, n);
+ random_override_len = n;
+ }
+ }
+ gcry_sexp_release (list);
+ if (rc)
+ goto leave;
+ }
+
+ rc = pkcs1_encode_for_encryption (ret_mpi, ctx->nbits,
+ value, valuelen,
+ random_override,
+ random_override_len);
+ gcry_free (random_override);
+ }
+ }
+ else if (ctx->encoding == PUBKEY_ENC_PKCS1 && lhash
+ && (ctx->op == PUBKEY_OP_SIGN || ctx->op == PUBKEY_OP_VERIFY))
+ {
+ if (gcry_sexp_length (lhash) != 3)
+ rc = GPG_ERR_INV_OBJ;
+ else if ( !(s=gcry_sexp_nth_data (lhash, 1, &n)) || !n )
+ rc = GPG_ERR_INV_OBJ;
+ else
+ {
+ const void * value;
+ size_t valuelen;
+
+ ctx->hash_algo = get_hash_algo (s, n);
+
+ if (!ctx->hash_algo)
+ rc = GPG_ERR_DIGEST_ALGO;
+ else if ( !(value=gcry_sexp_nth_data (lhash, 2, &valuelen))
+ || !valuelen )
+ rc = GPG_ERR_INV_OBJ;
+ else
+ rc = pkcs1_encode_for_signature (ret_mpi, ctx->nbits,
+ value, valuelen,
+ ctx->hash_algo);
+ }
+ }
+ else if (ctx->encoding == PUBKEY_ENC_OAEP && lvalue
+ && ctx->op == PUBKEY_OP_ENCRYPT)
+ {
+ const void * value;
+ size_t valuelen;
+
+ if ( !(value=gcry_sexp_nth_data (lvalue, 1, &valuelen)) || !valuelen )
+ rc = GPG_ERR_INV_OBJ;
+ else
+ {
+ gcry_sexp_t list;
+ void *random_override = NULL;
+ size_t random_override_len = 0;
+
+ /* Get HASH-ALGO. */
+ list = gcry_sexp_find_token (ldata, "hash-algo", 0);
+ if (list)
+ {
+ s = gcry_sexp_nth_data (list, 1, &n);
+ if (!s)
+ rc = GPG_ERR_NO_OBJ;
+ else
+ {
+ ctx->hash_algo = get_hash_algo (s, n);
+ if (!ctx->hash_algo)
+ rc = GPG_ERR_DIGEST_ALGO;
+ }
+ gcry_sexp_release (list);
+ if (rc)
+ goto leave;
+ }
+
+ /* Get LABEL. */
+ list = gcry_sexp_find_token (ldata, "label", 0);
+ if (list)
+ {
+ s = gcry_sexp_nth_data (list, 1, &n);
+ if (!s)
+ rc = GPG_ERR_NO_OBJ;
+ else if (n > 0)
+ {
+ ctx->label = gcry_malloc (n);
+ if (!ctx->label)
+ rc = gpg_err_code_from_syserror ();
+ else
+ {
+ memcpy (ctx->label, s, n);
+ ctx->labellen = n;
+ }
+ }
+ gcry_sexp_release (list);
+ if (rc)
+ goto leave;
+ }
+ /* Get optional RANDOM-OVERRIDE. */
+ list = gcry_sexp_find_token (ldata, "random-override", 0);
+ if (list)
+ {
+ s = gcry_sexp_nth_data (list, 1, &n);
+ if (!s)
+ rc = GPG_ERR_NO_OBJ;
+ else if (n > 0)
+ {
+ random_override = gcry_malloc (n);
+ if (!random_override)
+ rc = gpg_err_code_from_syserror ();
+ else
+ {
+ memcpy (random_override, s, n);
+ random_override_len = n;
+ }
+ }
+ gcry_sexp_release (list);
+ if (rc)
+ goto leave;
+ }
+
+ rc = oaep_encode (ret_mpi, ctx->nbits, ctx->hash_algo,
+ value, valuelen,
+ ctx->label, ctx->labellen,
+ random_override, random_override_len);
+
+ gcry_free (random_override);
+ }
+ }
+ else if (ctx->encoding == PUBKEY_ENC_PSS && lhash
+ && ctx->op == PUBKEY_OP_SIGN)
+ {
+ if (gcry_sexp_length (lhash) != 3)
+ rc = GPG_ERR_INV_OBJ;
+ else if ( !(s=gcry_sexp_nth_data (lhash, 1, &n)) || !n )
+ rc = GPG_ERR_INV_OBJ;
+ else
+ {
+ const void * value;
+ size_t valuelen;
+ void *random_override = NULL;
+ size_t random_override_len = 0;
+
+ ctx->hash_algo = get_hash_algo (s, n);
+
+ if (!ctx->hash_algo)
+ rc = GPG_ERR_DIGEST_ALGO;
+ else if ( !(value=gcry_sexp_nth_data (lhash, 2, &valuelen))
+ || !valuelen )
+ rc = GPG_ERR_INV_OBJ;
+ else
+ {
+ gcry_sexp_t list;
+
+ /* Get SALT-LENGTH. */
+ list = gcry_sexp_find_token (ldata, "salt-length", 0);
+ if (list)
+ {
+ s = gcry_sexp_nth_data (list, 1, &n);
+ if (!s)
+ {
+ rc = GPG_ERR_NO_OBJ;
+ goto leave;
+ }
+ ctx->saltlen = (unsigned int)strtoul (s, NULL, 10);
+ gcry_sexp_release (list);
+ }
+
+ /* Get optional RANDOM-OVERRIDE. */
+ list = gcry_sexp_find_token (ldata, "random-override", 0);
+ if (list)
+ {
+ s = gcry_sexp_nth_data (list, 1, &n);
+ if (!s)
+ rc = GPG_ERR_NO_OBJ;
+ else if (n > 0)
+ {
+ random_override = gcry_malloc (n);
+ if (!random_override)
+ rc = gpg_err_code_from_syserror ();
+ else
+ {
+ memcpy (random_override, s, n);
+ random_override_len = n;
+ }
+ }
+ gcry_sexp_release (list);
+ if (rc)
+ goto leave;
+ }
+
+ /* Encode the data. (NBITS-1 is due to 8.1.1, step 1.) */
+ rc = pss_encode (ret_mpi, ctx->nbits - 1, ctx->hash_algo,
+ value, valuelen, ctx->saltlen,
+ random_override, random_override_len);
+
+ gcry_free (random_override);
+ }
+ }
+ }
+ else if (ctx->encoding == PUBKEY_ENC_PSS && lhash
+ && ctx->op == PUBKEY_OP_VERIFY)
+ {
+ if (gcry_sexp_length (lhash) != 3)
+ rc = GPG_ERR_INV_OBJ;
+ else if ( !(s=gcry_sexp_nth_data (lhash, 1, &n)) || !n )
+ rc = GPG_ERR_INV_OBJ;
+ else
+ {
+ ctx->hash_algo = get_hash_algo (s, n);
+
+ if (!ctx->hash_algo)
+ rc = GPG_ERR_DIGEST_ALGO;
+ else
+ {
+ *ret_mpi = gcry_sexp_nth_mpi (lhash, 2, GCRYMPI_FMT_USG);
+ if (!*ret_mpi)
+ rc = GPG_ERR_INV_OBJ;
+ ctx->verify_cmp = pss_verify_cmp;
+ ctx->verify_arg = *ret_mpi;
+ }
+ }
+ }
+ else
+ rc = GPG_ERR_CONFLICT;
+
+ leave:
+ gcry_sexp_release (ldata);
+ gcry_sexp_release (lhash);
+ gcry_sexp_release (lvalue);
+
+ if (!rc)
+ ctx->flags = parsed_flags;
+ else
+ {
+ gcry_free (ctx->label);
+ ctx->label = NULL;
+ }
+
+ return rc;
+}
+
+static void
+init_encoding_ctx (struct pk_encoding_ctx *ctx, enum pk_operation op,
+ unsigned int nbits)
+{
+ ctx->op = op;
+ ctx->nbits = nbits;
+ ctx->encoding = PUBKEY_ENC_UNKNOWN;
+ ctx->flags = 0;
+ ctx->hash_algo = GCRY_MD_SHA1;
+ ctx->label = NULL;
+ ctx->labellen = 0;
+ ctx->saltlen = 20;
+ ctx->verify_cmp = NULL;
+ ctx->verify_arg = NULL;
+}
+
+
+/*
+ Do a PK encrypt operation
+
+ Caller has to provide a public key as the SEXP pkey and data as a
+ SEXP with just one MPI in it. Alternatively S_DATA might be a
+ complex S-Expression, similar to the one used for signature
+ verification. This provides a flag which allows to handle PKCS#1
+ block type 2 padding. The function returns a sexp which may be
+ passed to to pk_decrypt.
+
+ Returns: 0 or an errorcode.
+
+ s_data = See comment for sexp_data_to_mpi
+ s_pkey = <key-as-defined-in-sexp_to_key>
+ r_ciph = (enc-val
+ (<algo>
+ (<param_name1> <mpi>)
+ ...
+ (<param_namen> <mpi>)
+ ))
+
+*/
+gcry_error_t
+gcry_pk_encrypt (gcry_sexp_t *r_ciph, gcry_sexp_t s_data, gcry_sexp_t s_pkey)
+{
+ gcry_mpi_t *pkey = NULL, data = NULL, *ciph = NULL;
+ const char *algo_name, *algo_elems;
+ struct pk_encoding_ctx ctx;
+ gcry_err_code_t rc;
+ gcry_pk_spec_t *pubkey = NULL;
+ gcry_module_t module = NULL;
+
+ *r_ciph = NULL;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ /* Get the key. */
+ rc = sexp_to_key (s_pkey, 0, NULL, &pkey, &module);
+ if (rc)
+ goto leave;
+
+ gcry_assert (module);
+ pubkey = (gcry_pk_spec_t *) module->spec;
+
+ /* If aliases for the algorithm name exists, take the first one
+ instead of the regular name to adhere to SPKI conventions. We
+ assume that the first alias name is the lowercase version of the
+ regular one. This change is required for compatibility with
+ 1.1.12 generated S-expressions. */
+ algo_name = pubkey->aliases? *pubkey->aliases : NULL;
+ if (!algo_name || !*algo_name)
+ algo_name = pubkey->name;
+
+ algo_elems = pubkey->elements_enc;
+
+ /* Get the stuff we want to encrypt. */
+ init_encoding_ctx (&ctx, PUBKEY_OP_ENCRYPT, gcry_pk_get_nbits (s_pkey));
+ rc = sexp_data_to_mpi (s_data, &data, &ctx);
+ if (rc)
+ goto leave;
+
+ /* Now we can encrypt DATA to CIPH. */
+ ciph = gcry_calloc (strlen (algo_elems) + 1, sizeof (*ciph));
+ if (!ciph)
+ {
+ rc = gpg_err_code_from_syserror ();
+ goto leave;
+ }
+ rc = pubkey_encrypt (module->mod_id, ciph, data, pkey, ctx.flags);
+ mpi_free (data);
+ data = NULL;
+ if (rc)
+ goto leave;
+
+ /* We did it. Now build the return list */
+ if (ctx.encoding == PUBKEY_ENC_OAEP
+ || ctx.encoding == PUBKEY_ENC_PKCS1)
+ {
+ /* We need to make sure to return the correct length to avoid
+ problems with missing leading zeroes. We know that this
+ encoding does only make sense with RSA thus we don't need to
+ build the S-expression on the fly. */
+ unsigned char *em;
+ size_t emlen = (ctx.nbits+7)/8;
+
+ rc = octet_string_from_mpi (&em, NULL, ciph[0], emlen);
+ if (rc)
+ goto leave;
+ rc = gcry_err_code (gcry_sexp_build (r_ciph, NULL,
+ "(enc-val(%s(a%b)))",
+ algo_name, (int)emlen, em));
+ gcry_free (em);
+ if (rc)
+ goto leave;
+ }
+ else
+ {
+ char *string, *p;
+ int i;
+ size_t nelem = strlen (algo_elems);
+ size_t needed = 19 + strlen (algo_name) + (nelem * 5);
+ void **arg_list;
+
+ /* Build the string. */
+ string = p = gcry_malloc (needed);
+ if (!string)
+ {
+ rc = gpg_err_code_from_syserror ();
+ goto leave;
+ }
+ p = stpcpy ( p, "(enc-val(" );
+ p = stpcpy ( p, algo_name );
+ for (i=0; algo_elems[i]; i++ )
+ {
+ *p++ = '(';
+ *p++ = algo_elems[i];
+ p = stpcpy ( p, "%m)" );
+ }
+ strcpy ( p, "))" );
+
+ /* And now the ugly part: We don't have a function to pass an
+ * array to a format string, so we have to do it this way :-(. */
+ /* FIXME: There is now such a format specifier, so we can
+ change the code to be more clear. */
+ arg_list = calloc (nelem, sizeof *arg_list);
+ if (!arg_list)
+ {
+ rc = gpg_err_code_from_syserror ();
+ goto leave;
+ }
+
+ for (i = 0; i < nelem; i++)
+ arg_list[i] = ciph + i;
+
+ rc = gcry_sexp_build_array (r_ciph, NULL, string, arg_list);
+ free (arg_list);
+ if (rc)
+ BUG ();
+ gcry_free (string);
+ }
+
+ leave:
+ if (pkey)
+ {
+ release_mpi_array (pkey);
+ gcry_free (pkey);
+ }
+
+ if (ciph)
+ {
+ release_mpi_array (ciph);
+ gcry_free (ciph);
+ }
+
+ if (module)
+ {
+ ath_mutex_lock (&pubkeys_registered_lock);
+ _gcry_module_release (module);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+ }
+
+ gcry_free (ctx.label);
+
+ return gcry_error (rc);
+}
+
+/*
+ Do a PK decrypt operation
+
+ Caller has to provide a secret key as the SEXP skey and data in a
+ format as created by gcry_pk_encrypt. For historic reasons the
+ function returns simply an MPI as an S-expression part; this is
+ deprecated and the new method should be used which returns a real
+ S-expressionl this is selected by adding at least an empty flags
+ list to S_DATA.
+
+ Returns: 0 or an errorcode.
+
+ s_data = (enc-val
+ [(flags [raw, pkcs1, oaep])]
+ (<algo>
+ (<param_name1> <mpi>)
+ ...
+ (<param_namen> <mpi>)
+ ))
+ s_skey = <key-as-defined-in-sexp_to_key>
+ r_plain= Either an incomplete S-expression without the parentheses
+ or if the flags list is used (even if empty) a real S-expression:
+ (value PLAIN). In raw mode (or no flags given) the returned value
+ is to be interpreted as a signed MPI, thus it may have an extra
+ leading zero octet even if not included in the original data.
+ With pkcs1 or oaep decoding enabled the returned value is a
+ verbatim octet string.
+ */
+gcry_error_t
+gcry_pk_decrypt (gcry_sexp_t *r_plain, gcry_sexp_t s_data, gcry_sexp_t s_skey)
+{
+ gcry_mpi_t *skey = NULL, *data = NULL, plain = NULL;
+ unsigned char *unpad = NULL;
+ size_t unpadlen = 0;
+ int modern, flags;
+ struct pk_encoding_ctx ctx;
+ gcry_err_code_t rc;
+ gcry_module_t module_enc = NULL, module_key = NULL;
+
+ *r_plain = NULL;
+ ctx.label = NULL;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ rc = sexp_to_key (s_skey, 1, NULL, &skey, &module_key);
+ if (rc)
+ goto leave;
+
+ init_encoding_ctx (&ctx, PUBKEY_OP_DECRYPT, gcry_pk_get_nbits (s_skey));
+ rc = sexp_to_enc (s_data, &data, &module_enc, &modern, &flags, &ctx);
+ if (rc)
+ goto leave;
+
+ if (module_key->mod_id != module_enc->mod_id)
+ {
+ rc = GPG_ERR_CONFLICT; /* Key algo does not match data algo. */
+ goto leave;
+ }
+
+ rc = pubkey_decrypt (module_key->mod_id, &plain, data, skey, flags);
+ if (rc)
+ goto leave;
+
+ /* Do un-padding if necessary. */
+ switch (ctx.encoding)
+ {
+ case PUBKEY_ENC_PKCS1:
+ rc = pkcs1_decode_for_encryption (&unpad, &unpadlen,
+ gcry_pk_get_nbits (s_skey), plain);
+ mpi_free (plain);
+ plain = NULL;
+ if (!rc)
+ rc = gcry_err_code (gcry_sexp_build (r_plain, NULL, "(value %b)",
+ (int)unpadlen, unpad));
+ break;
+
+ case PUBKEY_ENC_OAEP:
+ rc = oaep_decode (&unpad, &unpadlen,
+ gcry_pk_get_nbits (s_skey), ctx.hash_algo,
+ plain, ctx.label, ctx.labellen);
+ mpi_free (plain);
+ plain = NULL;
+ if (!rc)
+ rc = gcry_err_code (gcry_sexp_build (r_plain, NULL, "(value %b)",
+ (int)unpadlen, unpad));
+ break;
+
+ default:
+ /* Raw format. For backward compatibility we need to assume a
+ signed mpi by using the sexp format string "%m". */
+ rc = gcry_err_code (gcry_sexp_build
+ (r_plain, NULL, modern? "(value %m)" : "%m", plain));
+ break;
+ }
+
+ leave:
+ gcry_free (unpad);
+
+ if (skey)
+ {
+ release_mpi_array (skey);
+ gcry_free (skey);
+ }
+
+ mpi_free (plain);
+
+ if (data)
+ {
+ release_mpi_array (data);
+ gcry_free (data);
+ }
+
+ if (module_key || module_enc)
+ {
+ ath_mutex_lock (&pubkeys_registered_lock);
+ if (module_key)
+ _gcry_module_release (module_key);
+ if (module_enc)
+ _gcry_module_release (module_enc);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+ }
+
+ gcry_free (ctx.label);
+
+ return gcry_error (rc);
+}
+
+
+
+/*
+ Create a signature.
+
+ Caller has to provide a secret key as the SEXP skey and data
+ expressed as a SEXP list hash with only one element which should
+ instantly be available as a MPI. Alternatively the structure given
+ below may be used for S_HASH, it provides the abiliy to pass flags
+ to the operation; the flags defined by now are "pkcs1" which does
+ PKCS#1 block type 1 style padding and "pss" for PSS encoding.
+
+ Returns: 0 or an errorcode.
+ In case of 0 the function returns a new SEXP with the
+ signature value; the structure of this signature depends on the
+ other arguments but is always suitable to be passed to
+ gcry_pk_verify
+
+ s_hash = See comment for sexp_data_to_mpi
+
+ s_skey = <key-as-defined-in-sexp_to_key>
+ r_sig = (sig-val
+ (<algo>
+ (<param_name1> <mpi>)
+ ...
+ (<param_namen> <mpi>))
+ [(hash algo)])
+
+ Note that (hash algo) in R_SIG is not used.
+*/
+gcry_error_t
+gcry_pk_sign (gcry_sexp_t *r_sig, gcry_sexp_t s_hash, gcry_sexp_t s_skey)
+{
+ gcry_mpi_t *skey = NULL, hash = NULL, *result = NULL;
+ gcry_pk_spec_t *pubkey = NULL;
+ gcry_module_t module = NULL;
+ const char *algo_name, *algo_elems;
+ struct pk_encoding_ctx ctx;
+ int i;
+ gcry_err_code_t rc;
+
+ *r_sig = NULL;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ rc = sexp_to_key (s_skey, 1, NULL, &skey, &module);
+ if (rc)
+ goto leave;
+
+ gcry_assert (module);
+ pubkey = (gcry_pk_spec_t *) module->spec;
+ algo_name = pubkey->aliases? *pubkey->aliases : NULL;
+ if (!algo_name || !*algo_name)
+ algo_name = pubkey->name;
+
+ algo_elems = pubkey->elements_sig;
+
+ /* Get the stuff we want to sign. Note that pk_get_nbits does also
+ work on a private key. */
+ init_encoding_ctx (&ctx, PUBKEY_OP_SIGN, gcry_pk_get_nbits (s_skey));
+ rc = sexp_data_to_mpi (s_hash, &hash, &ctx);
+ if (rc)
+ goto leave;
+
+ result = gcry_calloc (strlen (algo_elems) + 1, sizeof (*result));
+ if (!result)
+ {
+ rc = gpg_err_code_from_syserror ();
+ goto leave;
+ }
+ rc = pubkey_sign (module->mod_id, result, hash, skey);
+ if (rc)
+ goto leave;
+
+ if (ctx.encoding == PUBKEY_ENC_PSS
+ || ctx.encoding == PUBKEY_ENC_PKCS1)
+ {
+ /* We need to make sure to return the correct length to avoid
+ problems with missing leading zeroes. We know that this
+ encoding does only make sense with RSA thus we don't need to
+ build the S-expression on the fly. */
+ unsigned char *em;
+ size_t emlen = (ctx.nbits+7)/8;
+
+ rc = octet_string_from_mpi (&em, NULL, result[0], emlen);
+ if (rc)
+ goto leave;
+ rc = gcry_err_code (gcry_sexp_build (r_sig, NULL,
+ "(sig-val(%s(s%b)))",
+ algo_name, (int)emlen, em));
+ gcry_free (em);
+ if (rc)
+ goto leave;
+ }
+ else
+ {
+ /* General purpose output encoding. Do it on the fly. */
+ char *string, *p;
+ size_t nelem, needed = strlen (algo_name) + 20;
+ void **arg_list;
+
+ nelem = strlen (algo_elems);
+
+ /* Count elements, so that we can allocate enough space. */
+ needed += 10 * nelem;
+
+ /* Build the string. */
+ string = p = gcry_malloc (needed);
+ if (!string)
+ {
+ rc = gpg_err_code_from_syserror ();
+ goto leave;
+ }
+ p = stpcpy (p, "(sig-val(");
+ p = stpcpy (p, algo_name);
+ for (i = 0; algo_elems[i]; i++)
+ {
+ *p++ = '(';
+ *p++ = algo_elems[i];
+ p = stpcpy (p, "%M)");
+ }
+ strcpy (p, "))");
+
+ arg_list = calloc (nelem, sizeof *arg_list);
+ if (!arg_list)
+ {
+ rc = gpg_err_code_from_syserror ();
+ goto leave;
+ }
+
+ for (i = 0; i < nelem; i++)
+ arg_list[i] = result + i;
+
+ rc = gcry_sexp_build_array (r_sig, NULL, string, arg_list);
+ free (arg_list);
+ if (rc)
+ BUG ();
+ gcry_free (string);
+ }
+
+ leave:
+ if (skey)
+ {
+ release_mpi_array (skey);
+ gcry_free (skey);
+ }
+
+ if (hash)
+ mpi_free (hash);
+
+ if (result)
+ {
+ release_mpi_array (result);
+ gcry_free (result);
+ }
+
+ return gcry_error (rc);
+}
+
+
+/*
+ Verify a signature.
+
+ Caller has to supply the public key pkey, the signature sig and his
+ hashvalue data. Public key has to be a standard public key given
+ as an S-Exp, sig is a S-Exp as returned from gcry_pk_sign and data
+ must be an S-Exp like the one in sign too. */
+gcry_error_t
+gcry_pk_verify (gcry_sexp_t s_sig, gcry_sexp_t s_hash, gcry_sexp_t s_pkey)
+{
+ gcry_module_t module_key = NULL, module_sig = NULL;
+ gcry_mpi_t *pkey = NULL, hash = NULL, *sig = NULL;
+ struct pk_encoding_ctx ctx;
+ gcry_err_code_t rc;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ rc = sexp_to_key (s_pkey, 0, NULL, &pkey, &module_key);
+ if (rc)
+ goto leave;
+
+ rc = sexp_to_sig (s_sig, &sig, &module_sig);
+ if (rc)
+ goto leave;
+
+ /* Fixme: Check that the algorithm of S_SIG is compatible to the one
+ of S_PKEY. */
+
+ if (module_key->mod_id != module_sig->mod_id)
+ {
+ rc = GPG_ERR_CONFLICT;
+ goto leave;
+ }
+
+ /* Get the stuff we want to verify. */
+ init_encoding_ctx (&ctx, PUBKEY_OP_VERIFY, gcry_pk_get_nbits (s_pkey));
+ rc = sexp_data_to_mpi (s_hash, &hash, &ctx);
+ if (rc)
+ goto leave;
+
+ rc = pubkey_verify (module_key->mod_id, hash, sig, pkey,
+ ctx.verify_cmp, &ctx);
+
+ leave:
+ if (pkey)
+ {
+ release_mpi_array (pkey);
+ gcry_free (pkey);
+ }
+ if (sig)
+ {
+ release_mpi_array (sig);
+ gcry_free (sig);
+ }
+ if (hash)
+ mpi_free (hash);
+
+ if (module_key || module_sig)
+ {
+ ath_mutex_lock (&pubkeys_registered_lock);
+ if (module_key)
+ _gcry_module_release (module_key);
+ if (module_sig)
+ _gcry_module_release (module_sig);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+ }
+
+ return gcry_error (rc);
+}
+
+
+/*
+ Test a key.
+
+ This may be used either for a public or a secret key to see whether
+ the internal structure is okay.
+
+ Returns: 0 or an errorcode.
+
+ s_key = <key-as-defined-in-sexp_to_key> */
+gcry_error_t
+gcry_pk_testkey (gcry_sexp_t s_key)
+{
+ gcry_module_t module = NULL;
+ gcry_mpi_t *key = NULL;
+ gcry_err_code_t rc;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ /* Note we currently support only secret key checking. */
+ rc = sexp_to_key (s_key, 1, NULL, &key, &module);
+ if (! rc)
+ {
+ rc = pubkey_check_secret_key (module->mod_id, key);
+ release_mpi_array (key);
+ gcry_free (key);
+ }
+ return gcry_error (rc);
+}
+
+
+/*
+ Create a public key pair and return it in r_key.
+ How the key is created depends on s_parms:
+ (genkey
+ (algo
+ (parameter_name_1 ....)
+ ....
+ (parameter_name_n ....)
+ ))
+ The key is returned in a format depending on the
+ algorithm. Both, private and secret keys are returned
+ and optionally some additional informatin.
+ For elgamal we return this structure:
+ (key-data
+ (public-key
+ (elg
+ (p <mpi>)
+ (g <mpi>)
+ (y <mpi>)
+ )
+ )
+ (private-key
+ (elg
+ (p <mpi>)
+ (g <mpi>)
+ (y <mpi>)
+ (x <mpi>)
+ )
+ )
+ (misc-key-info
+ (pm1-factors n1 n2 ... nn)
+ ))
+ */
+gcry_error_t
+gcry_pk_genkey (gcry_sexp_t *r_key, gcry_sexp_t s_parms)
+{
+ gcry_pk_spec_t *pubkey = NULL;
+ gcry_module_t module = NULL;
+ gcry_sexp_t list = NULL;
+ gcry_sexp_t l2 = NULL;
+ gcry_sexp_t l3 = NULL;
+ char *name = NULL;
+ size_t n;
+ gcry_err_code_t rc = GPG_ERR_NO_ERROR;
+ int i, j;
+ const char *algo_name = NULL;
+ int algo;
+ const char *sec_elems = NULL, *pub_elems = NULL;
+ gcry_mpi_t skey[12];
+ gcry_mpi_t *factors = NULL;
+ gcry_sexp_t extrainfo = NULL;
+ unsigned int nbits = 0;
+ unsigned long use_e = 0;
+
+ skey[0] = NULL;
+ *r_key = NULL;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ list = gcry_sexp_find_token (s_parms, "genkey", 0);
+ if (!list)
+ {
+ rc = GPG_ERR_INV_OBJ; /* Does not contain genkey data. */
+ goto leave;
+ }
+
+ l2 = gcry_sexp_cadr (list);
+ gcry_sexp_release (list);
+ list = l2;
+ l2 = NULL;
+ if (! list)
+ {
+ rc = GPG_ERR_NO_OBJ; /* No cdr for the genkey. */
+ goto leave;
+ }
+
+ name = _gcry_sexp_nth_string (list, 0);
+ if (!name)
+ {
+ rc = GPG_ERR_INV_OBJ; /* Algo string missing. */
+ goto leave;
+ }
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ module = gcry_pk_lookup_name (name);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+ gcry_free (name);
+ name = NULL;
+ if (!module)
+ {
+ rc = GPG_ERR_PUBKEY_ALGO; /* Unknown algorithm. */
+ goto leave;
+ }
+
+ pubkey = (gcry_pk_spec_t *) module->spec;
+ algo = module->mod_id;
+ algo_name = pubkey->aliases? *pubkey->aliases : NULL;
+ if (!algo_name || !*algo_name)
+ algo_name = pubkey->name;
+ pub_elems = pubkey->elements_pkey;
+ sec_elems = pubkey->elements_skey;
+ if (strlen (sec_elems) >= DIM(skey))
+ BUG ();
+
+ /* Handle the optional rsa-use-e element. Actually this belong into
+ the algorithm module but we have this parameter in the public
+ module API, so we need to parse it right here. */
+ l2 = gcry_sexp_find_token (list, "rsa-use-e", 0);
+ if (l2)
+ {
+ char buf[50];
+ const char *s;
+
+ s = gcry_sexp_nth_data (l2, 1, &n);
+ if ( !s || n >= DIM (buf) - 1 )
+ {
+ rc = GPG_ERR_INV_OBJ; /* No value or value too large. */
+ goto leave;
+ }
+ memcpy (buf, s, n);
+ buf[n] = 0;
+ use_e = strtoul (buf, NULL, 0);
+ gcry_sexp_release (l2);
+ l2 = NULL;
+ }
+ else
+ use_e = 65537; /* Not given, use the value generated by old versions. */
+
+
+ /* Get the "nbits" parameter. */
+ l2 = gcry_sexp_find_token (list, "nbits", 0);
+ if (l2)
+ {
+ char buf[50];
+ const char *s;
+
+ s = gcry_sexp_nth_data (l2, 1, &n);
+ if (!s || n >= DIM (buf) - 1 )
+ {
+ rc = GPG_ERR_INV_OBJ; /* NBITS given without a cdr. */
+ goto leave;
+ }
+ memcpy (buf, s, n);
+ buf[n] = 0;
+ nbits = (unsigned int)strtoul (buf, NULL, 0);
+ gcry_sexp_release (l2); l2 = NULL;
+ }
+ else
+ nbits = 0;
+
+ /* Pass control to the algorithm module. */
+ rc = pubkey_generate (module->mod_id, nbits, use_e, list, skey,
+ &factors, &extrainfo);
+ gcry_sexp_release (list); list = NULL;
+ if (rc)
+ goto leave;
+
+ /* Key generation succeeded: Build an S-expression. */
+ {
+ char *string, *p;
+ size_t nelem=0, nelem_cp = 0, needed=0;
+ gcry_mpi_t mpis[30];
+ int percent_s_idx = -1;
+
+ /* Estimate size of format string. */
+ nelem = strlen (pub_elems) + strlen (sec_elems);
+ if (factors)
+ {
+ for (i = 0; factors[i]; i++)
+ nelem++;
+ }
+ nelem_cp = nelem;
+
+ needed += nelem * 10;
+ /* (+5 is for EXTRAINFO ("%S")). */
+ needed += 2 * strlen (algo_name) + 300 + 5;
+ if (nelem > DIM (mpis))
+ BUG ();
+
+ /* Build the string. */
+ nelem = 0;
+ string = p = gcry_malloc (needed);
+ if (!string)
+ {
+ rc = gpg_err_code_from_syserror ();
+ goto leave;
+ }
+ p = stpcpy (p, "(key-data");
+ p = stpcpy (p, "(public-key(");
+ p = stpcpy (p, algo_name);
+ for(i = 0; pub_elems[i]; i++)
+ {
+ *p++ = '(';
+ *p++ = pub_elems[i];
+ p = stpcpy (p, "%m)");
+ mpis[nelem++] = skey[i];
+ }
+ if (extrainfo && (algo == GCRY_PK_ECDSA || algo == GCRY_PK_ECDH))
+ {
+ /* Very ugly hack to insert the used curve parameter into the
+ list of public key parameters. */
+ percent_s_idx = nelem;
+ p = stpcpy (p, "%S");
+ }
+ p = stpcpy (p, "))");
+ p = stpcpy (p, "(private-key(");
+ p = stpcpy (p, algo_name);
+ for (i = 0; sec_elems[i]; i++)
+ {
+ *p++ = '(';
+ *p++ = sec_elems[i];
+ p = stpcpy (p, "%m)");
+ mpis[nelem++] = skey[i];
+ }
+ p = stpcpy (p, "))");
+
+ /* Hack to make release_mpi_array() work. */
+ skey[i] = NULL;
+
+ if (extrainfo && percent_s_idx == -1)
+ {
+ /* If we have extrainfo we should not have any factors. */
+ p = stpcpy (p, "%S");
+ }
+ else if (factors && factors[0])
+ {
+ p = stpcpy (p, "(misc-key-info(pm1-factors");
+ for(i = 0; factors[i]; i++)
+ {
+ p = stpcpy (p, "%m");
+ mpis[nelem++] = factors[i];
+ }
+ p = stpcpy (p, "))");
+ }
+ strcpy (p, ")");
+ gcry_assert (p - string < needed);
+
+ while (nelem < DIM (mpis))
+ mpis[nelem++] = NULL;
+
+ {
+ int elem_n = strlen (pub_elems) + strlen (sec_elems);
+ void **arg_list;
+
+ /* Allocate one extra for EXTRAINFO ("%S"). */
+ arg_list = gcry_calloc (nelem_cp+1, sizeof *arg_list);
+ if (!arg_list)
+ {
+ rc = gpg_err_code_from_syserror ();
+ goto leave;
+ }
+ for (i = j = 0; i < elem_n; i++)
+ {
+ if (i == percent_s_idx)
+ arg_list[j++] = &extrainfo;
+ arg_list[j++] = mpis + i;
+ }
+ if (extrainfo && percent_s_idx == -1)
+ arg_list[j] = &extrainfo;
+ else if (factors && factors[0])
+ {
+ for (; i < nelem_cp; i++)
+ arg_list[j++] = factors + i - elem_n;
+ }
+ rc = gcry_sexp_build_array (r_key, NULL, string, arg_list);
+ gcry_free (arg_list);
+ if (rc)
+ BUG ();
+ gcry_assert (DIM (mpis) == 30); /* Reminder to make sure that
+ the array gets increased if
+ new parameters are added. */
+ }
+ gcry_free (string);
+ }
+
+ leave:
+ gcry_free (name);
+ gcry_sexp_release (extrainfo);
+ release_mpi_array (skey);
+ /* Don't free SKEY itself, it is an stack allocated array. */
+
+ if (factors)
+ {
+ release_mpi_array ( factors );
+ gcry_free (factors);
+ }
+
+ gcry_sexp_release (l3);
+ gcry_sexp_release (l2);
+ gcry_sexp_release (list);
+
+ if (module)
+ {
+ ath_mutex_lock (&pubkeys_registered_lock);
+ _gcry_module_release (module);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+ }
+
+ return gcry_error (rc);
+}
+
+
+/*
+ Get the number of nbits from the public key.
+
+ Hmmm: Should we have really this function or is it better to have a
+ more general function to retrieve different properties of the key? */
+unsigned int
+gcry_pk_get_nbits (gcry_sexp_t key)
+{
+ gcry_module_t module = NULL;
+ gcry_pk_spec_t *pubkey;
+ gcry_mpi_t *keyarr = NULL;
+ unsigned int nbits = 0;
+ gcry_err_code_t rc;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ rc = sexp_to_key (key, 0, NULL, &keyarr, &module);
+ if (rc == GPG_ERR_INV_OBJ)
+ rc = sexp_to_key (key, 1, NULL, &keyarr, &module);
+ if (rc)
+ return 0; /* Error - 0 is a suitable indication for that. */
+
+ pubkey = (gcry_pk_spec_t *) module->spec;
+ nbits = (*pubkey->get_nbits) (module->mod_id, keyarr);
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ _gcry_module_release (module);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ release_mpi_array (keyarr);
+ gcry_free (keyarr);
+
+ return nbits;
+}
+
+
+/* Return the so called KEYGRIP which is the SHA-1 hash of the public
+ key parameters expressed in a way depending on the algorithm.
+
+ ARRAY must either be 20 bytes long or NULL; in the latter case a
+ newly allocated array of that size is returned, otherwise ARRAY or
+ NULL is returned to indicate an error which is most likely an
+ unknown algorithm. The function accepts public or secret keys. */
+unsigned char *
+gcry_pk_get_keygrip (gcry_sexp_t key, unsigned char *array)
+{
+ gcry_sexp_t list = NULL, l2 = NULL;
+ gcry_pk_spec_t *pubkey = NULL;
+ gcry_module_t module = NULL;
+ pk_extra_spec_t *extraspec;
+ const char *s;
+ char *name = NULL;
+ int idx;
+ const char *elems;
+ gcry_md_hd_t md = NULL;
+ int okay = 0;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ /* Check that the first element is valid. */
+ list = gcry_sexp_find_token (key, "public-key", 0);
+ if (! list)
+ list = gcry_sexp_find_token (key, "private-key", 0);
+ if (! list)
+ list = gcry_sexp_find_token (key, "protected-private-key", 0);
+ if (! list)
+ list = gcry_sexp_find_token (key, "shadowed-private-key", 0);
+ if (! list)
+ return NULL; /* No public- or private-key object. */
+
+ l2 = gcry_sexp_cadr (list);
+ gcry_sexp_release (list);
+ list = l2;
+ l2 = NULL;
+
+ name = _gcry_sexp_nth_string (list, 0);
+ if (!name)
+ goto fail; /* Invalid structure of object. */
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ module = gcry_pk_lookup_name (name);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ if (!module)
+ goto fail; /* Unknown algorithm. */
+
+ pubkey = (gcry_pk_spec_t *) module->spec;
+ extraspec = module->extraspec;
+
+ elems = pubkey->elements_grip;
+ if (!elems)
+ goto fail; /* No grip parameter. */
+
+ if (gcry_md_open (&md, GCRY_MD_SHA1, 0))
+ goto fail;
+
+ if (extraspec && extraspec->comp_keygrip)
+ {
+ /* Module specific method to compute a keygrip. */
+ if (extraspec->comp_keygrip (md, list))
+ goto fail;
+ }
+ else
+ {
+ /* Generic method to compute a keygrip. */
+ for (idx = 0, s = elems; *s; s++, idx++)
+ {
+ const char *data;
+ size_t datalen;
+ char buf[30];
+
+ l2 = gcry_sexp_find_token (list, s, 1);
+ if (! l2)
+ goto fail;
+ data = gcry_sexp_nth_data (l2, 1, &datalen);
+ if (! data)
+ goto fail;
+
+ snprintf (buf, sizeof buf, "(1:%c%u:", *s, (unsigned int)datalen);
+ gcry_md_write (md, buf, strlen (buf));
+ gcry_md_write (md, data, datalen);
+ gcry_sexp_release (l2);
+ l2 = NULL;
+ gcry_md_write (md, ")", 1);
+ }
+ }
+
+ if (!array)
+ {
+ array = gcry_malloc (20);
+ if (! array)
+ goto fail;
+ }
+
+ memcpy (array, gcry_md_read (md, GCRY_MD_SHA1), 20);
+ okay = 1;
+
+ fail:
+ gcry_free (name);
+ gcry_sexp_release (l2);
+ gcry_md_close (md);
+ gcry_sexp_release (list);
+ return okay? array : NULL;
+}
+
+
+
+const char *
+gcry_pk_get_curve (gcry_sexp_t key, int iterator, unsigned int *r_nbits)
+{
+ gcry_mpi_t *pkey = NULL;
+ gcry_sexp_t list = NULL;
+ gcry_sexp_t l2;
+ gcry_module_t module = NULL;
+ pk_extra_spec_t *extraspec;
+ char *name = NULL;
+ const char *result = NULL;
+ int want_private = 1;
+
+ if (r_nbits)
+ *r_nbits = 0;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ if (key)
+ {
+ iterator = 0;
+
+ /* Check that the first element is valid. */
+ list = gcry_sexp_find_token (key, "public-key", 0);
+ if (list)
+ want_private = 0;
+ if (!list)
+ list = gcry_sexp_find_token (key, "private-key", 0);
+ if (!list)
+ return NULL; /* No public- or private-key object. */
+
+ l2 = gcry_sexp_cadr (list);
+ gcry_sexp_release (list);
+ list = l2;
+ l2 = NULL;
+
+ name = _gcry_sexp_nth_string (list, 0);
+ if (!name)
+ goto leave; /* Invalid structure of object. */
+
+ /* Get the key. We pass the names of the parameters for
+ override_elems; this allows to call this function without the
+ actual public key parameter. */
+ if (sexp_to_key (key, want_private, "pabgn", &pkey, &module))
+ goto leave;
+ }
+ else
+ {
+ ath_mutex_lock (&pubkeys_registered_lock);
+ module = gcry_pk_lookup_name ("ecc");
+ ath_mutex_unlock (&pubkeys_registered_lock);
+ if (!module)
+ goto leave;
+ }
+
+ extraspec = module->extraspec;
+ if (!extraspec || !extraspec->get_curve)
+ goto leave;
+
+ result = extraspec->get_curve (pkey, iterator, r_nbits);
+
+ leave:
+ if (pkey)
+ {
+ release_mpi_array (pkey);
+ gcry_free (pkey);
+ }
+ if (module)
+ {
+ ath_mutex_lock (&pubkeys_registered_lock);
+ _gcry_module_release (module);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+ }
+ gcry_free (name);
+ gcry_sexp_release (list);
+ return result;
+}
+
+
+
+gcry_sexp_t
+gcry_pk_get_param (int algo, const char *name)
+{
+ gcry_module_t module = NULL;
+ pk_extra_spec_t *extraspec;
+ gcry_sexp_t result = NULL;
+
+ if (algo != GCRY_PK_ECDSA && algo != GCRY_PK_ECDH)
+ return NULL;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ module = gcry_pk_lookup_name ("ecc");
+ ath_mutex_unlock (&pubkeys_registered_lock);
+ if (module)
+ {
+ extraspec = module->extraspec;
+ if (extraspec && extraspec->get_curve_param)
+ result = extraspec->get_curve_param (name);
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ _gcry_module_release (module);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+ }
+ return result;
+}
+
+
+
+gcry_error_t
+gcry_pk_ctl (int cmd, void *buffer, size_t buflen)
+{
+ gcry_err_code_t err = GPG_ERR_NO_ERROR;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ switch (cmd)
+ {
+ case GCRYCTL_DISABLE_ALGO:
+ /* This one expects a buffer pointing to an integer with the
+ algo number. */
+ if ((! buffer) || (buflen != sizeof (int)))
+ err = GPG_ERR_INV_ARG;
+ else
+ disable_pubkey_algo (*((int *) buffer));
+ break;
+
+ default:
+ err = GPG_ERR_INV_OP;
+ }
+
+ return gcry_error (err);
+}
+
+
+/* Return information about the given algorithm
+
+ WHAT selects the kind of information returned:
+
+ GCRYCTL_TEST_ALGO:
+ Returns 0 when the specified algorithm is available for use.
+ Buffer must be NULL, nbytes may have the address of a variable
+ with the required usage of the algorithm. It may be 0 for don't
+ care or a combination of the GCRY_PK_USAGE_xxx flags;
+
+ GCRYCTL_GET_ALGO_USAGE:
+ Return the usage flags for the given algo. An invalid algo
+ returns 0. Disabled algos are ignored here because we
+ only want to know whether the algo is at all capable of
+ the usage.
+
+ Note: Because this function is in most cases used to return an
+ integer value, we can make it easier for the caller to just look at
+ the return value. The caller will in all cases consult the value
+ and thereby detecting whether a error occurred or not (i.e. while
+ checking the block size) */
+gcry_error_t
+gcry_pk_algo_info (int algorithm, int what, void *buffer, size_t *nbytes)
+{
+ gcry_err_code_t err = GPG_ERR_NO_ERROR;
+
+ switch (what)
+ {
+ case GCRYCTL_TEST_ALGO:
+ {
+ int use = nbytes ? *nbytes : 0;
+ if (buffer)
+ err = GPG_ERR_INV_ARG;
+ else if (check_pubkey_algo (algorithm, use))
+ err = GPG_ERR_PUBKEY_ALGO;
+ break;
+ }
+
+ case GCRYCTL_GET_ALGO_USAGE:
+ {
+ gcry_module_t pubkey;
+ int use = 0;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ pubkey = _gcry_module_lookup_id (pubkeys_registered, algorithm);
+ if (pubkey)
+ {
+ use = ((gcry_pk_spec_t *) pubkey->spec)->use;
+ _gcry_module_release (pubkey);
+ }
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ /* FIXME? */
+ *nbytes = use;
+
+ break;
+ }
+
+ case GCRYCTL_GET_ALGO_NPKEY:
+ {
+ /* FIXME? */
+ int npkey = pubkey_get_npkey (algorithm);
+ *nbytes = npkey;
+ break;
+ }
+ case GCRYCTL_GET_ALGO_NSKEY:
+ {
+ /* FIXME? */
+ int nskey = pubkey_get_nskey (algorithm);
+ *nbytes = nskey;
+ break;
+ }
+ case GCRYCTL_GET_ALGO_NSIGN:
+ {
+ /* FIXME? */
+ int nsign = pubkey_get_nsig (algorithm);
+ *nbytes = nsign;
+ break;
+ }
+ case GCRYCTL_GET_ALGO_NENCR:
+ {
+ /* FIXME? */
+ int nencr = pubkey_get_nenc (algorithm);
+ *nbytes = nencr;
+ break;
+ }
+
+ default:
+ err = GPG_ERR_INV_OP;
+ }
+
+ return gcry_error (err);
+}
+
+
+/* Explicitly initialize this module. */
+gcry_err_code_t
+_gcry_pk_init (void)
+{
+ gcry_err_code_t err = GPG_ERR_NO_ERROR;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ return err;
+}
+
+
+gcry_err_code_t
+_gcry_pk_module_lookup (int algorithm, gcry_module_t *module)
+{
+ gcry_err_code_t err = GPG_ERR_NO_ERROR;
+ gcry_module_t pubkey;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ pubkey = _gcry_module_lookup_id (pubkeys_registered, algorithm);
+ if (pubkey)
+ *module = pubkey;
+ else
+ err = GPG_ERR_PUBKEY_ALGO;
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ return err;
+}
+
+
+void
+_gcry_pk_module_release (gcry_module_t module)
+{
+ ath_mutex_lock (&pubkeys_registered_lock);
+ _gcry_module_release (module);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+}
+
+/* Get a list consisting of the IDs of the loaded pubkey modules. If
+ LIST is zero, write the number of loaded pubkey modules to
+ LIST_LENGTH and return. If LIST is non-zero, the first
+ *LIST_LENGTH algorithm IDs are stored in LIST, which must be of
+ according size. In case there are less pubkey modules than
+ *LIST_LENGTH, *LIST_LENGTH is updated to the correct number. */
+gcry_error_t
+gcry_pk_list (int *list, int *list_length)
+{
+ gcry_err_code_t err = GPG_ERR_NO_ERROR;
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ err = _gcry_module_list (pubkeys_registered, list, list_length);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+
+ return err;
+}
+
+
+/* Run the selftests for pubkey algorithm ALGO with optional reporting
+ function REPORT. */
+gpg_error_t
+_gcry_pk_selftest (int algo, int extended, selftest_report_func_t report)
+{
+ gcry_module_t module = NULL;
+ pk_extra_spec_t *extraspec = NULL;
+ gcry_err_code_t ec = 0;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ ath_mutex_lock (&pubkeys_registered_lock);
+ module = _gcry_module_lookup_id (pubkeys_registered, algo);
+ if (module && !(module->flags & FLAG_MODULE_DISABLED))
+ extraspec = module->extraspec;
+ ath_mutex_unlock (&pubkeys_registered_lock);
+ if (extraspec && extraspec->selftest)
+ ec = extraspec->selftest (algo, extended, report);
+ else
+ {
+ ec = GPG_ERR_PUBKEY_ALGO;
+ if (report)
+ report ("pubkey", algo, "module",
+ module && !(module->flags & FLAG_MODULE_DISABLED)?
+ "no selftest available" :
+ module? "algorithm disabled" : "algorithm not found");
+ }
+
+ if (module)
+ {
+ ath_mutex_lock (&pubkeys_registered_lock);
+ _gcry_module_release (module);
+ ath_mutex_unlock (&pubkeys_registered_lock);
+ }
+ return gpg_error (ec);
+}
+
+
+/* This function is only used by ac.c! */
+gcry_err_code_t
+_gcry_pk_get_elements (int algo, char **enc, char **sig)
+{
+ gcry_module_t pubkey;
+ gcry_pk_spec_t *spec;
+ gcry_err_code_t err;
+ char *enc_cp;
+ char *sig_cp;
+
+ REGISTER_DEFAULT_PUBKEYS;
+
+ enc_cp = NULL;
+ sig_cp = NULL;
+ spec = NULL;
+
+ pubkey = _gcry_module_lookup_id (pubkeys_registered, algo);
+ if (! pubkey)
+ {
+ err = GPG_ERR_INTERNAL;
+ goto out;
+ }
+ spec = pubkey->spec;
+
+ if (enc)
+ {
+ enc_cp = strdup (spec->elements_enc);
+ if (! enc_cp)
+ {
+ err = gpg_err_code_from_syserror ();
+ goto out;
+ }
+ }
+
+ if (sig)
+ {
+ sig_cp = strdup (spec->elements_sig);
+ if (! sig_cp)
+ {
+ err = gpg_err_code_from_syserror ();
+ goto out;
+ }
+ }
+
+ if (enc)
+ *enc = enc_cp;
+ if (sig)
+ *sig = sig_cp;
+ err = 0;
+
+ out:
+
+ _gcry_module_release (pubkey);
+ if (err)
+ {
+ free (enc_cp);
+ free (sig_cp);
+ }
+
+ return err;
+}