summaryrefslogtreecommitdiffstats
path: root/debian/grub-extras/disabled/gpxe/src/drivers/net/etherfabric.c
blob: c4296b9c380a3eb32d1daa048ac6504b6990aefa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
/**************************************************************************
 *
 * Etherboot driver for Level 5 Etherfabric network cards
 *
 * Written by Michael Brown <mbrown@fensystems.co.uk>
 *
 * Copyright Fen Systems Ltd. 2005
 * Copyright Level 5 Networks Inc. 2005
 *
 * This software may be used and distributed according to the terms of
 * the GNU General Public License (GPL), incorporated herein by
 * reference.  Drivers based on or derived from this code fall under
 * the GPL and must retain the authorship, copyright and license
 * notice.
 *
 **************************************************************************
 */

FILE_LICENCE ( GPL_ANY );

#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <assert.h>
#include <byteswap.h>
#include <console.h>
#include <gpxe/io.h>
#include <gpxe/pci.h>
#include <gpxe/malloc.h>
#include <gpxe/ethernet.h>
#include <gpxe/iobuf.h>
#include <gpxe/netdevice.h>
#include <gpxe/timer.h>
#include <mii.h>
#include "etherfabric.h"
#include "etherfabric_nic.h"

/**************************************************************************
 *
 * Constants and macros
 *
 **************************************************************************
 */

#define EFAB_REGDUMP(...)
#define EFAB_TRACE(...) DBGP(__VA_ARGS__)

// printf() is not allowed within drivers.  Use DBG() instead.
#define EFAB_LOG(...) DBG(__VA_ARGS__)
#define EFAB_ERR(...) DBG(__VA_ARGS__)

#define FALCON_USE_IO_BAR 0

#define HZ 100
#define EFAB_BYTE 1

/**************************************************************************
 *
 * Hardware data structures and sizing
 *
 **************************************************************************
 */
extern int __invalid_queue_size;
#define FQS(_prefix, _x)					\
	( ( (_x) == 512 ) ? _prefix ## _SIZE_512 :		\
	  ( ( (_x) == 1024 ) ? _prefix ## _SIZE_1K :		\
	    ( ( (_x) == 2048 ) ? _prefix ## _SIZE_2K :		\
	      ( ( (_x) == 4096) ? _prefix ## _SIZE_4K :		\
		__invalid_queue_size ) ) ) )


#define EFAB_MAX_FRAME_LEN(mtu)				\
	( ( ( ( mtu ) + 4/* FCS */ ) + 7 ) & ~7 )

/**************************************************************************
 *
 * GMII routines
 *
 **************************************************************************
 */

static void falcon_mdio_write (struct efab_nic *efab, int device,
			       int location, int value );
static int falcon_mdio_read ( struct efab_nic *efab, int device, int location );

/* GMII registers */
#define GMII_PSSR		0x11	/* PHY-specific status register */

/* Pseudo extensions to the link partner ability register */
#define LPA_EF_1000FULL		0x00020000
#define LPA_EF_1000HALF		0x00010000
#define LPA_EF_10000FULL		0x00040000
#define LPA_EF_10000HALF		0x00080000

#define LPA_100			(LPA_100FULL | LPA_100HALF | LPA_100BASE4)
#define LPA_EF_1000		( LPA_EF_1000FULL | LPA_EF_1000HALF )
#define LPA_EF_10000               ( LPA_EF_10000FULL | LPA_EF_10000HALF )
#define LPA_EF_DUPLEX		( LPA_10FULL | LPA_100FULL | LPA_EF_1000FULL | \
				  LPA_EF_10000FULL )

/* Mask of bits not associated with speed or duplexity. */
#define LPA_OTHER		~( LPA_10FULL | LPA_10HALF | LPA_100FULL | \
				   LPA_100HALF | LPA_EF_1000FULL | LPA_EF_1000HALF )

/* PHY-specific status register */
#define PSSR_LSTATUS		0x0400	/* Bit 10 - link status */

/**
 * Retrieve GMII autonegotiation advertised abilities
 *
 */
static unsigned int
gmii_autoneg_advertised ( struct efab_nic *efab )
{
	unsigned int mii_advertise;
	unsigned int gmii_advertise;

	/* Extended bits are in bits 8 and 9 of MII_CTRL1000 */
	mii_advertise = falcon_mdio_read ( efab, 0, MII_ADVERTISE );
	gmii_advertise = ( ( falcon_mdio_read ( efab, 0, MII_CTRL1000 ) >> 8 )
			   & 0x03 );
	return ( ( gmii_advertise << 16 ) | mii_advertise );
}

/**
 * Retrieve GMII autonegotiation link partner abilities
 *
 */
static unsigned int
gmii_autoneg_lpa ( struct efab_nic *efab )
{
	unsigned int mii_lpa;
	unsigned int gmii_lpa;

	/* Extended bits are in bits 10 and 11 of MII_STAT1000 */
	mii_lpa = falcon_mdio_read ( efab, 0, MII_LPA );
	gmii_lpa = ( falcon_mdio_read ( efab, 0, MII_STAT1000 ) >> 10 ) & 0x03;
	return ( ( gmii_lpa << 16 ) | mii_lpa );
}

/**
 * Calculate GMII autonegotiated link technology
 *
 */
static unsigned int
gmii_nway_result ( unsigned int negotiated )
{
	unsigned int other_bits;

	/* Mask out the speed and duplexity bits */
	other_bits = negotiated & LPA_OTHER;

	if ( negotiated & LPA_EF_1000FULL )
		return ( other_bits | LPA_EF_1000FULL );
	else if ( negotiated & LPA_EF_1000HALF )
		return ( other_bits | LPA_EF_1000HALF );
	else if ( negotiated & LPA_100FULL )
		return ( other_bits | LPA_100FULL );
	else if ( negotiated & LPA_100BASE4 )
		return ( other_bits | LPA_100BASE4 );
	else if ( negotiated & LPA_100HALF )
		return ( other_bits | LPA_100HALF );
	else if ( negotiated & LPA_10FULL )
		return ( other_bits | LPA_10FULL );
	else return ( other_bits | LPA_10HALF );
}

/**
 * Check GMII PHY link status
 *
 */
static int
gmii_link_ok ( struct efab_nic *efab )
{
	int status;
	int phy_status;

	/* BMSR is latching - it returns "link down" if the link has
	 * been down at any point since the last read.  To get a
	 * real-time status, we therefore read the register twice and
	 * use the result of the second read.
	 */
	(void) falcon_mdio_read ( efab, 0, MII_BMSR );
	status = falcon_mdio_read ( efab, 0, MII_BMSR );

	/* Read the PHY-specific Status Register.  This is
	 * non-latching, so we need do only a single read.
	 */
	phy_status = falcon_mdio_read ( efab, 0, GMII_PSSR );

	return ( ( status & BMSR_LSTATUS ) && ( phy_status & PSSR_LSTATUS ) );
}

/**************************************************************************
 *
 * MDIO routines
 *
 **************************************************************************
 */

/* Numbering of the MDIO Manageable Devices (MMDs) */
/* Physical Medium Attachment/ Physical Medium Dependent sublayer */
#define MDIO_MMD_PMAPMD	(1)
/* WAN Interface Sublayer */
#define MDIO_MMD_WIS	(2)
/* Physical Coding Sublayer */
#define MDIO_MMD_PCS	(3)
/* PHY Extender Sublayer */
#define MDIO_MMD_PHYXS	(4)
/* Extender Sublayer */
#define MDIO_MMD_DTEXS	(5)
/* Transmission convergence */
#define MDIO_MMD_TC	(6)
/* Auto negotiation */
#define MDIO_MMD_AN	(7)

/* Generic register locations */
#define MDIO_MMDREG_CTRL1	(0)
#define MDIO_MMDREG_STAT1	(1)
#define MDIO_MMDREG_DEVS0	(5)
#define MDIO_MMDREG_STAT2	(8)

/* Bits in MMDREG_CTRL1 */
/* Reset */
#define MDIO_MMDREG_CTRL1_RESET_LBN	(15)
#define MDIO_MMDREG_CTRL1_RESET_WIDTH	(1)

/* Bits in MMDREG_STAT1 */
#define MDIO_MMDREG_STAT1_FAULT_LBN	(7)
#define MDIO_MMDREG_STAT1_FAULT_WIDTH	(1)

/* Link state */
#define MDIO_MMDREG_STAT1_LINK_LBN	(2)
#define MDIO_MMDREG_STAT1_LINK_WIDTH	(1)

/* Bits in MMDREG_DEVS0. */
#define DEV_PRESENT_BIT(_b) (1 << _b)

#define MDIO_MMDREG_DEVS0_DTEXS	 DEV_PRESENT_BIT(MDIO_MMD_DTEXS)
#define MDIO_MMDREG_DEVS0_PHYXS	 DEV_PRESENT_BIT(MDIO_MMD_PHYXS)
#define MDIO_MMDREG_DEVS0_PCS	 DEV_PRESENT_BIT(MDIO_MMD_PCS)
#define MDIO_MMDREG_DEVS0_WIS	 DEV_PRESENT_BIT(MDIO_MMD_WIS)
#define MDIO_MMDREG_DEVS0_PMAPMD DEV_PRESENT_BIT(MDIO_MMD_PMAPMD)

#define MDIO_MMDREG_DEVS0_AN     DEV_PRESENT_BIT(MDIO_MMD_AN)

/* Bits in MMDREG_STAT2 */
#define MDIO_MMDREG_STAT2_PRESENT_VAL	(2)
#define MDIO_MMDREG_STAT2_PRESENT_LBN	(14)
#define MDIO_MMDREG_STAT2_PRESENT_WIDTH (2)

/* PHY XGXS lane state */
#define MDIO_PHYXS_LANE_STATE		(0x18) 
#define MDIO_PHYXS_LANE_ALIGNED_LBN	(12)
#define MDIO_PHYXS_LANE_SYNC0_LBN	(0)
#define MDIO_PHYXS_LANE_SYNC1_LBN	(1)
#define MDIO_PHYXS_LANE_SYNC2_LBN	(2)
#define MDIO_PHYXS_LANE_SYNC3_LBN	(3)

/* This ought to be ridiculous overkill. We expect it to fail rarely */
#define MDIO45_RESET_TRIES      100
#define MDIO45_RESET_SPINTIME   10

static int
mdio_clause45_wait_reset_mmds ( struct efab_nic* efab )
{
	int tries = MDIO45_RESET_TRIES;
	int in_reset;

	while(tries) {
		int mask = efab->phy_op->mmds;
		int mmd = 0;
		in_reset = 0;
		while(mask) {
			if (mask & 1) {
				int stat = falcon_mdio_read ( efab,  mmd,
							      MDIO_MMDREG_CTRL1 );
				if (stat < 0) {
					EFAB_ERR("Failed to read status of MMD %d\n",
						 mmd );
					in_reset = 1;
					break;
				}
				if (stat & (1 << MDIO_MMDREG_CTRL1_RESET_LBN))
					in_reset |= (1 << mmd);
			}
			mask = mask >> 1;
			mmd++;
		}
		if (!in_reset)
			break;
		tries--;
		mdelay ( MDIO45_RESET_SPINTIME );
	}
	if (in_reset != 0) {
		EFAB_ERR("Not all MMDs came out of reset in time. MMDs "
			 "still in reset: %x\n", in_reset);
		return -ETIMEDOUT;
	}
	return 0;
}

static int
mdio_clause45_reset_mmd ( struct efab_nic *efab, int mmd )
{
	int tries = MDIO45_RESET_TRIES;
	int ctrl;

	falcon_mdio_write ( efab, mmd, MDIO_MMDREG_CTRL1,
			    ( 1 << MDIO_MMDREG_CTRL1_RESET_LBN ) );

	/* Wait for the reset bit to clear. */
	do {
		mdelay ( MDIO45_RESET_SPINTIME );

		ctrl = falcon_mdio_read ( efab, mmd, MDIO_MMDREG_CTRL1 );
		if ( ~ctrl & ( 1 << MDIO_MMDREG_CTRL1_RESET_LBN ) )
			return 0;
	} while ( --tries );

	EFAB_ERR ( "Failed to reset mmd %d\n", mmd );

	return -ETIMEDOUT;
}

static int
mdio_clause45_links_ok(struct efab_nic *efab )
{
	int status, good;
	int ok = 1;
	int mmd = 0;
	int mmd_mask = efab->phy_op->mmds;

	while (mmd_mask) {
		if (mmd_mask & 1) {
			/* Double reads because link state is latched, and a
			 * read	moves the current state into the register */
			status = falcon_mdio_read ( efab, mmd,
						    MDIO_MMDREG_STAT1 );
			status = falcon_mdio_read ( efab, mmd,
						    MDIO_MMDREG_STAT1 );

			good = status & (1 << MDIO_MMDREG_STAT1_LINK_LBN);
			ok = ok && good;
		}
		mmd_mask = (mmd_mask >> 1);
		mmd++;
	}
	return ok;
}

static int
mdio_clause45_check_mmds ( struct efab_nic *efab )
{
	int mmd = 0;
	int devices = falcon_mdio_read ( efab, MDIO_MMD_PHYXS,
					 MDIO_MMDREG_DEVS0 );
	int mmd_mask = efab->phy_op->mmds;

	/* Check all the expected MMDs are present */
	if ( devices < 0 ) {
		EFAB_ERR ( "Failed to read devices present\n" );
		return -EIO;
	}
	if ( ( devices & mmd_mask ) != mmd_mask ) {
		EFAB_ERR ( "required MMDs not present: got %x, wanted %x\n",
			   devices, mmd_mask );
		return -EIO;
	}

	/* Check all required MMDs are responding and happy. */
	while ( mmd_mask ) {
		if ( mmd_mask & 1 ) {
			efab_dword_t reg;
			int status;
			reg.opaque = falcon_mdio_read ( efab, mmd,
							MDIO_MMDREG_STAT2 );
			status = EFAB_DWORD_FIELD ( reg,
						    MDIO_MMDREG_STAT2_PRESENT );
			if ( status != MDIO_MMDREG_STAT2_PRESENT_VAL ) {


				return -EIO;
			}
		}
		mmd_mask >>= 1;
		mmd++;
	}

	return 0;
}

/* I/O BAR address register */
#define FCN_IOM_IND_ADR_REG 0x0

/* I/O BAR data register */
#define FCN_IOM_IND_DAT_REG 0x4

/* Address region register */
#define FCN_ADR_REGION_REG_KER	0x00
#define FCN_ADR_REGION0_LBN	0
#define FCN_ADR_REGION0_WIDTH	18
#define FCN_ADR_REGION1_LBN	32
#define FCN_ADR_REGION1_WIDTH	18
#define FCN_ADR_REGION2_LBN	64
#define FCN_ADR_REGION2_WIDTH	18
#define FCN_ADR_REGION3_LBN	96
#define FCN_ADR_REGION3_WIDTH	18

/* Interrupt enable register */
#define FCN_INT_EN_REG_KER 0x0010
#define FCN_MEM_PERR_INT_EN_KER_LBN 5
#define FCN_MEM_PERR_INT_EN_KER_WIDTH 1
#define FCN_KER_INT_CHAR_LBN 4
#define FCN_KER_INT_CHAR_WIDTH 1
#define FCN_KER_INT_KER_LBN 3
#define FCN_KER_INT_KER_WIDTH 1
#define FCN_ILL_ADR_ERR_INT_EN_KER_LBN 2
#define FCN_ILL_ADR_ERR_INT_EN_KER_WIDTH 1
#define FCN_SRM_PERR_INT_EN_KER_LBN 1
#define FCN_SRM_PERR_INT_EN_KER_WIDTH 1
#define FCN_DRV_INT_EN_KER_LBN 0
#define FCN_DRV_INT_EN_KER_WIDTH 1

/* Interrupt status register */
#define FCN_INT_ADR_REG_KER	0x0030
#define FCN_INT_ADR_KER_LBN 0
#define FCN_INT_ADR_KER_WIDTH EFAB_DMA_TYPE_WIDTH ( 64 )

/* Interrupt status register (B0 only) */
#define INT_ISR0_B0 0x90
#define INT_ISR1_B0 0xA0

/* Interrupt acknowledge register (A0/A1 only) */
#define FCN_INT_ACK_KER_REG_A1 0x0050
#define INT_ACK_DUMMY_DATA_LBN 0
#define INT_ACK_DUMMY_DATA_WIDTH 32

/* Interrupt acknowledge work-around register (A0/A1 only )*/
#define WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1 0x0070

/* Hardware initialisation register */
#define FCN_HW_INIT_REG_KER 0x00c0
#define FCN_BCSR_TARGET_MASK_LBN 101
#define FCN_BCSR_TARGET_MASK_WIDTH 4

/* SPI host command register */
#define FCN_EE_SPI_HCMD_REG 0x0100
#define FCN_EE_SPI_HCMD_CMD_EN_LBN 31
#define FCN_EE_SPI_HCMD_CMD_EN_WIDTH 1
#define FCN_EE_WR_TIMER_ACTIVE_LBN 28
#define FCN_EE_WR_TIMER_ACTIVE_WIDTH 1
#define FCN_EE_SPI_HCMD_SF_SEL_LBN 24
#define FCN_EE_SPI_HCMD_SF_SEL_WIDTH 1
#define FCN_EE_SPI_EEPROM 0
#define FCN_EE_SPI_FLASH 1
#define FCN_EE_SPI_HCMD_DABCNT_LBN 16
#define FCN_EE_SPI_HCMD_DABCNT_WIDTH 5
#define FCN_EE_SPI_HCMD_READ_LBN 15
#define FCN_EE_SPI_HCMD_READ_WIDTH 1
#define FCN_EE_SPI_READ 1
#define FCN_EE_SPI_WRITE 0
#define FCN_EE_SPI_HCMD_DUBCNT_LBN 12
#define FCN_EE_SPI_HCMD_DUBCNT_WIDTH 2
#define FCN_EE_SPI_HCMD_ADBCNT_LBN 8
#define FCN_EE_SPI_HCMD_ADBCNT_WIDTH 2
#define FCN_EE_SPI_HCMD_ENC_LBN 0
#define FCN_EE_SPI_HCMD_ENC_WIDTH 8

/* SPI host address register */
#define FCN_EE_SPI_HADR_REG 0x0110
#define FCN_EE_SPI_HADR_DUBYTE_LBN 24
#define FCN_EE_SPI_HADR_DUBYTE_WIDTH 8
#define FCN_EE_SPI_HADR_ADR_LBN 0
#define FCN_EE_SPI_HADR_ADR_WIDTH 24

/* SPI host data register */
#define FCN_EE_SPI_HDATA_REG 0x0120
#define FCN_EE_SPI_HDATA3_LBN 96
#define FCN_EE_SPI_HDATA3_WIDTH 32
#define FCN_EE_SPI_HDATA2_LBN 64
#define FCN_EE_SPI_HDATA2_WIDTH 32
#define FCN_EE_SPI_HDATA1_LBN 32
#define FCN_EE_SPI_HDATA1_WIDTH 32
#define FCN_EE_SPI_HDATA0_LBN 0
#define FCN_EE_SPI_HDATA0_WIDTH 32

/* VPD Config 0 Register register */
#define FCN_EE_VPD_CFG_REG 0x0140
#define FCN_EE_VPD_EN_LBN 0
#define FCN_EE_VPD_EN_WIDTH 1
#define FCN_EE_VPD_EN_AD9_MODE_LBN 1
#define FCN_EE_VPD_EN_AD9_MODE_WIDTH 1
#define FCN_EE_EE_CLOCK_DIV_LBN 112
#define FCN_EE_EE_CLOCK_DIV_WIDTH 7
#define FCN_EE_SF_CLOCK_DIV_LBN 120
#define FCN_EE_SF_CLOCK_DIV_WIDTH 7


/* NIC status register */
#define FCN_NIC_STAT_REG 0x0200
#define FCN_ONCHIP_SRAM_LBN 16
#define FCN_ONCHIP_SRAM_WIDTH 1
#define FCN_SF_PRST_LBN 9
#define FCN_SF_PRST_WIDTH 1
#define FCN_EE_PRST_LBN 8
#define FCN_EE_PRST_WIDTH 1
#define FCN_EE_STRAP_LBN 7
#define FCN_EE_STRAP_WIDTH 1
#define FCN_PCI_PCIX_MODE_LBN 4
#define FCN_PCI_PCIX_MODE_WIDTH 3
#define FCN_PCI_PCIX_MODE_PCI33_DECODE 0
#define FCN_PCI_PCIX_MODE_PCI66_DECODE 1
#define FCN_PCI_PCIX_MODE_PCIX66_DECODE 5
#define FCN_PCI_PCIX_MODE_PCIX100_DECODE 6
#define FCN_PCI_PCIX_MODE_PCIX133_DECODE 7
#define FCN_STRAP_ISCSI_EN_LBN 3
#define FCN_STRAP_ISCSI_EN_WIDTH 1
#define FCN_STRAP_PINS_LBN 0
#define FCN_STRAP_PINS_WIDTH 3
#define FCN_STRAP_10G_LBN 2
#define FCN_STRAP_10G_WIDTH 1
#define FCN_STRAP_DUAL_PORT_LBN 1
#define FCN_STRAP_DUAL_PORT_WIDTH 1
#define FCN_STRAP_PCIE_LBN 0
#define FCN_STRAP_PCIE_WIDTH 1

/* Falcon revisions */
#define FALCON_REV_A0 0
#define FALCON_REV_A1 1
#define FALCON_REV_B0 2

/* GPIO control register */
#define FCN_GPIO_CTL_REG_KER 0x0210
#define FCN_GPIO_CTL_REG_KER 0x0210

#define FCN_GPIO3_OEN_LBN 27
#define FCN_GPIO3_OEN_WIDTH 1
#define FCN_GPIO2_OEN_LBN 26
#define FCN_GPIO2_OEN_WIDTH 1
#define FCN_GPIO1_OEN_LBN 25
#define FCN_GPIO1_OEN_WIDTH 1
#define FCN_GPIO0_OEN_LBN 24
#define FCN_GPIO0_OEN_WIDTH 1

#define FCN_GPIO3_OUT_LBN 19
#define FCN_GPIO3_OUT_WIDTH 1
#define FCN_GPIO2_OUT_LBN 18
#define FCN_GPIO2_OUT_WIDTH 1
#define FCN_GPIO1_OUT_LBN 17
#define FCN_GPIO1_OUT_WIDTH 1
#define FCN_GPIO0_OUT_LBN 16
#define FCN_GPIO0_OUT_WIDTH 1

#define FCN_GPIO3_IN_LBN 11
#define FCN_GPIO3_IN_WIDTH 1
#define FCN_GPIO2_IN_LBN 10
#define FCN_GPIO2_IN_WIDTH 1
#define FCN_GPIO1_IN_LBN 9
#define FCN_GPIO1_IN_WIDTH 1
#define FCN_GPIO0_IN_LBN 8
#define FCN_GPIO0_IN_WIDTH 1

#define FCN_FLASH_PRESENT_LBN 7
#define FCN_FLASH_PRESENT_WIDTH 1
#define FCN_EEPROM_PRESENT_LBN 6
#define FCN_EEPROM_PRESENT_WIDTH 1
#define FCN_BOOTED_USING_NVDEVICE_LBN 3
#define FCN_BOOTED_USING_NVDEVICE_WIDTH 1

/* Defines for extra non-volatile storage */
#define FCN_NV_MAGIC_NUMBER 0xFA1C

/* Global control register */
#define FCN_GLB_CTL_REG_KER	0x0220
#define FCN_EXT_PHY_RST_CTL_LBN 63
#define FCN_EXT_PHY_RST_CTL_WIDTH 1
#define FCN_PCIE_SD_RST_CTL_LBN 61
#define FCN_PCIE_SD_RST_CTL_WIDTH 1
#define FCN_PCIE_STCK_RST_CTL_LBN 59
#define FCN_PCIE_STCK_RST_CTL_WIDTH 1
#define FCN_PCIE_NSTCK_RST_CTL_LBN 58
#define FCN_PCIE_NSTCK_RST_CTL_WIDTH 1
#define FCN_PCIE_CORE_RST_CTL_LBN 57
#define FCN_PCIE_CORE_RST_CTL_WIDTH 1
#define FCN_EE_RST_CTL_LBN 49
#define FCN_EE_RST_CTL_WIDTH 1
#define FCN_RST_EXT_PHY_LBN 31
#define FCN_RST_EXT_PHY_WIDTH 1
#define FCN_EXT_PHY_RST_DUR_LBN 1
#define FCN_EXT_PHY_RST_DUR_WIDTH 3
#define FCN_SWRST_LBN 0
#define FCN_SWRST_WIDTH 1
#define INCLUDE_IN_RESET 0
#define EXCLUDE_FROM_RESET 1

/* FPGA build version */
#define FCN_ALTERA_BUILD_REG_KER 0x0300
#define FCN_VER_MAJOR_LBN 24
#define FCN_VER_MAJOR_WIDTH 8
#define FCN_VER_MINOR_LBN 16
#define FCN_VER_MINOR_WIDTH 8
#define FCN_VER_BUILD_LBN 0
#define FCN_VER_BUILD_WIDTH 16
#define FCN_VER_ALL_LBN 0
#define FCN_VER_ALL_WIDTH 32

/* Spare EEPROM bits register (flash 0x390) */
#define FCN_SPARE_REG_KER 0x310
#define FCN_MEM_PERR_EN_TX_DATA_LBN 72
#define FCN_MEM_PERR_EN_TX_DATA_WIDTH 2

/* Timer table for kernel access */
#define FCN_TIMER_CMD_REG_KER 0x420
#define FCN_TIMER_MODE_LBN 12
#define FCN_TIMER_MODE_WIDTH 2
#define FCN_TIMER_MODE_DIS 0
#define FCN_TIMER_MODE_INT_HLDOFF 1
#define FCN_TIMER_VAL_LBN 0
#define FCN_TIMER_VAL_WIDTH 12

/* Receive configuration register */
#define FCN_RX_CFG_REG_KER 0x800
#define FCN_RX_XOFF_EN_LBN 0
#define FCN_RX_XOFF_EN_WIDTH 1

/* SRAM receive descriptor cache configuration register */
#define FCN_SRM_RX_DC_CFG_REG_KER 0x610
#define FCN_SRM_RX_DC_BASE_ADR_LBN 0
#define FCN_SRM_RX_DC_BASE_ADR_WIDTH 21

/* SRAM transmit descriptor cache configuration register */
#define FCN_SRM_TX_DC_CFG_REG_KER 0x620
#define FCN_SRM_TX_DC_BASE_ADR_LBN 0
#define FCN_SRM_TX_DC_BASE_ADR_WIDTH 21

/* SRAM configuration register */
#define FCN_SRM_CFG_REG_KER 0x630
#define FCN_SRAM_OOB_ADR_INTEN_LBN 5
#define FCN_SRAM_OOB_ADR_INTEN_WIDTH 1
#define FCN_SRAM_OOB_BUF_INTEN_LBN 4
#define FCN_SRAM_OOB_BUF_INTEN_WIDTH 1
#define FCN_SRAM_OOB_BT_INIT_EN_LBN 3
#define FCN_SRAM_OOB_BT_INIT_EN_WIDTH 1
#define FCN_SRM_NUM_BANK_LBN 2
#define FCN_SRM_NUM_BANK_WIDTH 1
#define FCN_SRM_BANK_SIZE_LBN 0
#define FCN_SRM_BANK_SIZE_WIDTH 2
#define FCN_SRM_NUM_BANKS_AND_BANK_SIZE_LBN 0
#define FCN_SRM_NUM_BANKS_AND_BANK_SIZE_WIDTH 3

#define FCN_RX_CFG_REG_KER 0x800
#define FCN_RX_INGR_EN_B0_LBN 47
#define FCN_RX_INGR_EN_B0_WIDTH 1
#define FCN_RX_USR_BUF_SIZE_B0_LBN 19
#define FCN_RX_USR_BUF_SIZE_B0_WIDTH 9
#define FCN_RX_XON_MAC_TH_B0_LBN 10
#define FCN_RX_XON_MAC_TH_B0_WIDTH 9
#define FCN_RX_XOFF_MAC_TH_B0_LBN 1
#define FCN_RX_XOFF_MAC_TH_B0_WIDTH 9
#define FCN_RX_XOFF_MAC_EN_B0_LBN 0
#define FCN_RX_XOFF_MAC_EN_B0_WIDTH 1
#define FCN_RX_USR_BUF_SIZE_A1_LBN 11
#define FCN_RX_USR_BUF_SIZE_A1_WIDTH 9
#define FCN_RX_XON_MAC_TH_A1_LBN 6
#define FCN_RX_XON_MAC_TH_A1_WIDTH 5
#define FCN_RX_XOFF_MAC_TH_A1_LBN 1
#define FCN_RX_XOFF_MAC_TH_A1_WIDTH 5
#define FCN_RX_XOFF_MAC_EN_A1_LBN 0
#define FCN_RX_XOFF_MAC_EN_A1_WIDTH 1

#define FCN_RX_USR_BUF_SIZE_A1_LBN 11
#define FCN_RX_USR_BUF_SIZE_A1_WIDTH 9
#define FCN_RX_XOFF_MAC_EN_A1_LBN 0
#define FCN_RX_XOFF_MAC_EN_A1_WIDTH 1

/* Receive filter control register */
#define FCN_RX_FILTER_CTL_REG_KER 0x810
#define FCN_UDP_FULL_SRCH_LIMIT_LBN 32
#define FCN_UDP_FULL_SRCH_LIMIT_WIDTH 8
#define FCN_NUM_KER_LBN 24
#define FCN_NUM_KER_WIDTH 2
#define FCN_UDP_WILD_SRCH_LIMIT_LBN 16
#define FCN_UDP_WILD_SRCH_LIMIT_WIDTH 8
#define FCN_TCP_WILD_SRCH_LIMIT_LBN 8
#define FCN_TCP_WILD_SRCH_LIMIT_WIDTH 8
#define FCN_TCP_FULL_SRCH_LIMIT_LBN 0
#define FCN_TCP_FULL_SRCH_LIMIT_WIDTH 8

/* RX queue flush register */
#define FCN_RX_FLUSH_DESCQ_REG_KER 0x0820
#define FCN_RX_FLUSH_DESCQ_CMD_LBN 24
#define FCN_RX_FLUSH_DESCQ_CMD_WIDTH 1
#define FCN_RX_FLUSH_DESCQ_LBN 0
#define FCN_RX_FLUSH_DESCQ_WIDTH 12

/* Receive descriptor update register */
#define FCN_RX_DESC_UPD_REG_KER 0x0830
#define FCN_RX_DESC_WPTR_LBN 96
#define FCN_RX_DESC_WPTR_WIDTH 12
#define FCN_RX_DESC_UPD_REG_KER_DWORD ( FCN_RX_DESC_UPD_REG_KER + 12 )
#define FCN_RX_DESC_WPTR_DWORD_LBN 0
#define FCN_RX_DESC_WPTR_DWORD_WIDTH 12

/* Receive descriptor cache configuration register */
#define FCN_RX_DC_CFG_REG_KER 0x840
#define FCN_RX_DC_SIZE_LBN 0
#define FCN_RX_DC_SIZE_WIDTH 2

#define FCN_RX_SELF_RST_REG_KER 0x890
#define FCN_RX_ISCSI_DIS_LBN 17
#define FCN_RX_ISCSI_DIS_WIDTH 1
#define FCN_RX_NODESC_WAIT_DIS_LBN 9
#define FCN_RX_NODESC_WAIT_DIS_WIDTH 1
#define FCN_RX_RECOVERY_EN_LBN 8
#define FCN_RX_RECOVERY_EN_WIDTH 1

/* TX queue flush register */
#define FCN_TX_FLUSH_DESCQ_REG_KER 0x0a00
#define FCN_TX_FLUSH_DESCQ_CMD_LBN 12
#define FCN_TX_FLUSH_DESCQ_CMD_WIDTH 1
#define FCN_TX_FLUSH_DESCQ_LBN 0
#define FCN_TX_FLUSH_DESCQ_WIDTH 12

/* Transmit configuration register 2 */
#define FCN_TX_CFG2_REG_KER 0xa80
#define FCN_TX_DIS_NON_IP_EV_LBN 17
#define FCN_TX_DIS_NON_IP_EV_WIDTH 1

/* Transmit descriptor update register */
#define FCN_TX_DESC_UPD_REG_KER 0x0a10
#define FCN_TX_DESC_WPTR_LBN 96
#define FCN_TX_DESC_WPTR_WIDTH 12
#define FCN_TX_DESC_UPD_REG_KER_DWORD ( FCN_TX_DESC_UPD_REG_KER + 12 )
#define FCN_TX_DESC_WPTR_DWORD_LBN 0
#define FCN_TX_DESC_WPTR_DWORD_WIDTH 12

/* Transmit descriptor cache configuration register */
#define FCN_TX_DC_CFG_REG_KER 0xa20
#define FCN_TX_DC_SIZE_LBN 0
#define FCN_TX_DC_SIZE_WIDTH 2

/* PHY management transmit data register */
#define FCN_MD_TXD_REG_KER 0xc00
#define FCN_MD_TXD_LBN 0
#define FCN_MD_TXD_WIDTH 16

/* PHY management receive data register */
#define FCN_MD_RXD_REG_KER 0xc10
#define FCN_MD_RXD_LBN 0
#define FCN_MD_RXD_WIDTH 16

/* PHY management configuration & status register */
#define FCN_MD_CS_REG_KER 0xc20
#define FCN_MD_GC_LBN 4
#define FCN_MD_GC_WIDTH 1
#define FCN_MD_RIC_LBN 2
#define FCN_MD_RIC_WIDTH 1
#define FCN_MD_RDC_LBN 1
#define FCN_MD_RDC_WIDTH 1
#define FCN_MD_WRC_LBN 0
#define FCN_MD_WRC_WIDTH 1

/* PHY management PHY address register */
#define FCN_MD_PHY_ADR_REG_KER 0xc30
#define FCN_MD_PHY_ADR_LBN 0
#define FCN_MD_PHY_ADR_WIDTH 16

/* PHY management ID register */
#define FCN_MD_ID_REG_KER 0xc40
#define FCN_MD_PRT_ADR_LBN 11
#define FCN_MD_PRT_ADR_WIDTH 5
#define FCN_MD_DEV_ADR_LBN 6
#define FCN_MD_DEV_ADR_WIDTH 5

/* PHY management status & mask register */
#define FCN_MD_STAT_REG_KER 0xc50
#define FCN_MD_PINT_LBN 4
#define FCN_MD_PINT_WIDTH 1
#define FCN_MD_DONE_LBN 3
#define FCN_MD_DONE_WIDTH 1
#define FCN_MD_BSERR_LBN 2
#define FCN_MD_BSERR_WIDTH 1
#define FCN_MD_LNFL_LBN 1
#define FCN_MD_LNFL_WIDTH 1
#define FCN_MD_BSY_LBN 0
#define FCN_MD_BSY_WIDTH 1

/* Port 0 and 1 MAC control registers */
#define FCN_MAC0_CTRL_REG_KER 0xc80
#define FCN_MAC1_CTRL_REG_KER 0xc90
#define FCN_MAC_XOFF_VAL_LBN 16
#define FCN_MAC_XOFF_VAL_WIDTH 16
#define FCN_MAC_BCAD_ACPT_LBN 4
#define FCN_MAC_BCAD_ACPT_WIDTH 1
#define FCN_MAC_UC_PROM_LBN 3
#define FCN_MAC_UC_PROM_WIDTH 1
#define FCN_MAC_LINK_STATUS_LBN 2
#define FCN_MAC_LINK_STATUS_WIDTH 1
#define FCN_MAC_SPEED_LBN 0
#define FCN_MAC_SPEED_WIDTH 2

/* 10Gig Xaui XGXS Default Values  */
#define XX_TXDRV_DEQ_DEFAULT 0xe /* deq=.6 */
#define XX_TXDRV_DTX_DEFAULT 0x5 /* 1.25 */
#define XX_SD_CTL_DRV_DEFAULT 0  /* 20mA */

/* GMAC registers */
#define FALCON_GMAC_REGBANK 0xe00
#define FALCON_GMAC_REGBANK_SIZE 0x200
#define FALCON_GMAC_REG_SIZE 0x10

/* XGMAC registers */
#define FALCON_XMAC_REGBANK 0x1200
#define FALCON_XMAC_REGBANK_SIZE 0x200
#define FALCON_XMAC_REG_SIZE 0x10

/* XGMAC address register low */
#define FCN_XM_ADR_LO_REG_MAC 0x00
#define FCN_XM_ADR_3_LBN 24
#define FCN_XM_ADR_3_WIDTH 8
#define FCN_XM_ADR_2_LBN 16
#define FCN_XM_ADR_2_WIDTH 8
#define FCN_XM_ADR_1_LBN 8
#define FCN_XM_ADR_1_WIDTH 8
#define FCN_XM_ADR_0_LBN 0
#define FCN_XM_ADR_0_WIDTH 8

/* XGMAC address register high */
#define FCN_XM_ADR_HI_REG_MAC 0x01
#define FCN_XM_ADR_5_LBN 8
#define FCN_XM_ADR_5_WIDTH 8
#define FCN_XM_ADR_4_LBN 0
#define FCN_XM_ADR_4_WIDTH 8

/* XGMAC global configuration - port 0*/
#define FCN_XM_GLB_CFG_REG_MAC 0x02
#define FCN_XM_RX_STAT_EN_LBN 11
#define FCN_XM_RX_STAT_EN_WIDTH 1
#define FCN_XM_TX_STAT_EN_LBN 10
#define FCN_XM_TX_STAT_EN_WIDTH 1
#define FCN_XM_RX_JUMBO_MODE_LBN 6
#define FCN_XM_RX_JUMBO_MODE_WIDTH 1
#define FCN_XM_CORE_RST_LBN 0
#define FCN_XM_CORE_RST_WIDTH 1

/* XGMAC transmit configuration - port 0 */
#define FCN_XM_TX_CFG_REG_MAC 0x03
#define FCN_XM_IPG_LBN 16
#define FCN_XM_IPG_WIDTH 4
#define FCN_XM_FCNTL_LBN 10
#define FCN_XM_FCNTL_WIDTH 1
#define FCN_XM_TXCRC_LBN 8
#define FCN_XM_TXCRC_WIDTH 1
#define FCN_XM_AUTO_PAD_LBN 5
#define FCN_XM_AUTO_PAD_WIDTH 1
#define FCN_XM_TX_PRMBL_LBN 2
#define FCN_XM_TX_PRMBL_WIDTH 1
#define FCN_XM_TXEN_LBN 1
#define FCN_XM_TXEN_WIDTH 1

/* XGMAC receive configuration - port 0 */
#define FCN_XM_RX_CFG_REG_MAC 0x04
#define FCN_XM_PASS_CRC_ERR_LBN 25
#define FCN_XM_PASS_CRC_ERR_WIDTH 1
#define FCN_XM_AUTO_DEPAD_LBN 8
#define FCN_XM_AUTO_DEPAD_WIDTH 1
#define FCN_XM_RXEN_LBN 1
#define FCN_XM_RXEN_WIDTH 1

/* XGMAC management interrupt mask register */
#define FCN_XM_MGT_INT_MSK_REG_MAC_B0 0x5
#define FCN_XM_MSK_PRMBLE_ERR_LBN 2
#define FCN_XM_MSK_PRMBLE_ERR_WIDTH 1
#define FCN_XM_MSK_RMTFLT_LBN 1
#define FCN_XM_MSK_RMTFLT_WIDTH 1
#define FCN_XM_MSK_LCLFLT_LBN 0
#define FCN_XM_MSK_LCLFLT_WIDTH 1

/* XGMAC flow control register */
#define FCN_XM_FC_REG_MAC 0x7
#define FCN_XM_PAUSE_TIME_LBN 16
#define FCN_XM_PAUSE_TIME_WIDTH 16
#define FCN_XM_DIS_FCNTL_LBN 0
#define FCN_XM_DIS_FCNTL_WIDTH 1

/* XGMAC transmit parameter register */
#define FCN_XM_TX_PARAM_REG_MAC 0x0d
#define FCN_XM_TX_JUMBO_MODE_LBN 31
#define FCN_XM_TX_JUMBO_MODE_WIDTH 1
#define FCN_XM_MAX_TX_FRM_SIZE_LBN 16
#define FCN_XM_MAX_TX_FRM_SIZE_WIDTH 14
#define FCN_XM_ACPT_ALL_MCAST_LBN 11
#define FCN_XM_ACPT_ALL_MCAST_WIDTH 1

/* XGMAC receive parameter register */
#define FCN_XM_RX_PARAM_REG_MAC 0x0e
#define FCN_XM_MAX_RX_FRM_SIZE_LBN 0
#define FCN_XM_MAX_RX_FRM_SIZE_WIDTH 14

/* XGMAC management interrupt status register */
#define FCN_XM_MGT_INT_REG_MAC_B0 0x0f
#define FCN_XM_PRMBLE_ERR 2
#define FCN_XM_PRMBLE_WIDTH 1
#define FCN_XM_RMTFLT_LBN 1
#define FCN_XM_RMTFLT_WIDTH 1
#define FCN_XM_LCLFLT_LBN 0
#define FCN_XM_LCLFLT_WIDTH 1

/* XAUI XGXS core status register */
#define FCN_XX_ALIGN_DONE_LBN 20
#define FCN_XX_ALIGN_DONE_WIDTH 1
#define FCN_XX_CORE_STAT_REG_MAC 0x16
#define FCN_XX_SYNC_STAT_LBN 16
#define FCN_XX_SYNC_STAT_WIDTH 4
#define FCN_XX_SYNC_STAT_DECODE_SYNCED 0xf
#define FCN_XX_COMMA_DET_LBN 12
#define FCN_XX_COMMA_DET_WIDTH 4
#define FCN_XX_COMMA_DET_RESET 0xf
#define FCN_XX_CHARERR_LBN 4
#define FCN_XX_CHARERR_WIDTH 4
#define FCN_XX_CHARERR_RESET 0xf
#define FCN_XX_DISPERR_LBN 0
#define FCN_XX_DISPERR_WIDTH 4
#define FCN_XX_DISPERR_RESET 0xf

/* XGXS/XAUI powerdown/reset register */
#define FCN_XX_PWR_RST_REG_MAC 0x10
#define FCN_XX_PWRDND_EN_LBN 15
#define FCN_XX_PWRDND_EN_WIDTH 1
#define FCN_XX_PWRDNC_EN_LBN 14
#define FCN_XX_PWRDNC_EN_WIDTH 1
#define FCN_XX_PWRDNB_EN_LBN 13
#define FCN_XX_PWRDNB_EN_WIDTH 1
#define FCN_XX_PWRDNA_EN_LBN 12
#define FCN_XX_PWRDNA_EN_WIDTH 1
#define FCN_XX_RSTPLLCD_EN_LBN 9
#define FCN_XX_RSTPLLCD_EN_WIDTH 1
#define FCN_XX_RSTPLLAB_EN_LBN 8
#define FCN_XX_RSTPLLAB_EN_WIDTH 1
#define FCN_XX_RESETD_EN_LBN 7
#define FCN_XX_RESETD_EN_WIDTH 1
#define FCN_XX_RESETC_EN_LBN 6
#define FCN_XX_RESETC_EN_WIDTH 1
#define FCN_XX_RESETB_EN_LBN 5
#define FCN_XX_RESETB_EN_WIDTH 1
#define FCN_XX_RESETA_EN_LBN 4
#define FCN_XX_RESETA_EN_WIDTH 1
#define FCN_XX_RSTXGXSRX_EN_LBN 2
#define FCN_XX_RSTXGXSRX_EN_WIDTH 1
#define FCN_XX_RSTXGXSTX_EN_LBN 1
#define FCN_XX_RSTXGXSTX_EN_WIDTH 1
#define FCN_XX_RST_XX_EN_LBN 0
#define FCN_XX_RST_XX_EN_WIDTH 1


/* XGXS/XAUI powerdown/reset control register */
#define FCN_XX_SD_CTL_REG_MAC 0x11
#define FCN_XX_TERMADJ1_LBN 17
#define FCN_XX_TERMADJ1_WIDTH 1
#define FCN_XX_TERMADJ0_LBN 16
#define FCN_XX_TERMADJ0_WIDTH 1
#define FCN_XX_HIDRVD_LBN 15
#define FCN_XX_HIDRVD_WIDTH 1
#define FCN_XX_LODRVD_LBN 14
#define FCN_XX_LODRVD_WIDTH 1
#define FCN_XX_HIDRVC_LBN 13
#define FCN_XX_HIDRVC_WIDTH 1
#define FCN_XX_LODRVC_LBN 12
#define FCN_XX_LODRVC_WIDTH 1
#define FCN_XX_HIDRVB_LBN 11
#define FCN_XX_HIDRVB_WIDTH 1
#define FCN_XX_LODRVB_LBN 10
#define FCN_XX_LODRVB_WIDTH 1
#define FCN_XX_HIDRVA_LBN 9
#define FCN_XX_HIDRVA_WIDTH 1
#define FCN_XX_LODRVA_LBN 8
#define FCN_XX_LODRVA_WIDTH 1
#define FCN_XX_LPBKD_LBN 3
#define FCN_XX_LPBKD_WIDTH 1
#define FCN_XX_LPBKC_LBN 2
#define FCN_XX_LPBKC_WIDTH 1
#define FCN_XX_LPBKB_LBN 1
#define FCN_XX_LPBKB_WIDTH 1
#define FCN_XX_LPBKA_LBN 0
#define FCN_XX_LPBKA_WIDTH 1

#define FCN_XX_TXDRV_CTL_REG_MAC 0x12
#define FCN_XX_DEQD_LBN 28
#define FCN_XX_DEQD_WIDTH 4
#define FCN_XX_DEQC_LBN 24
#define FCN_XX_DEQC_WIDTH 4
#define FCN_XX_DEQB_LBN 20
#define FCN_XX_DEQB_WIDTH 4
#define FCN_XX_DEQA_LBN 16
#define FCN_XX_DEQA_WIDTH 4
#define FCN_XX_DTXD_LBN 12
#define FCN_XX_DTXD_WIDTH 4
#define FCN_XX_DTXC_LBN 8
#define FCN_XX_DTXC_WIDTH 4
#define FCN_XX_DTXB_LBN 4
#define FCN_XX_DTXB_WIDTH 4
#define FCN_XX_DTXA_LBN 0
#define FCN_XX_DTXA_WIDTH 4

/* Receive filter table */
#define FCN_RX_FILTER_TBL0 0xF00000 

/* Receive descriptor pointer table */
#define FCN_RX_DESC_PTR_TBL_KER_A1 0x11800
#define FCN_RX_DESC_PTR_TBL_KER_B0 0xF40000
#define FCN_RX_ISCSI_DDIG_EN_LBN 88
#define FCN_RX_ISCSI_DDIG_EN_WIDTH 1
#define FCN_RX_ISCSI_HDIG_EN_LBN 87
#define FCN_RX_ISCSI_HDIG_EN_WIDTH 1
#define FCN_RX_DESCQ_BUF_BASE_ID_LBN 36
#define FCN_RX_DESCQ_BUF_BASE_ID_WIDTH 20
#define FCN_RX_DESCQ_EVQ_ID_LBN 24
#define FCN_RX_DESCQ_EVQ_ID_WIDTH 12
#define FCN_RX_DESCQ_OWNER_ID_LBN 10
#define FCN_RX_DESCQ_OWNER_ID_WIDTH 14
#define FCN_RX_DESCQ_SIZE_LBN 3
#define FCN_RX_DESCQ_SIZE_WIDTH 2
#define FCN_RX_DESCQ_SIZE_4K 3
#define FCN_RX_DESCQ_SIZE_2K 2
#define FCN_RX_DESCQ_SIZE_1K 1
#define FCN_RX_DESCQ_SIZE_512 0
#define FCN_RX_DESCQ_TYPE_LBN 2
#define FCN_RX_DESCQ_TYPE_WIDTH 1
#define FCN_RX_DESCQ_JUMBO_LBN 1
#define FCN_RX_DESCQ_JUMBO_WIDTH 1
#define FCN_RX_DESCQ_EN_LBN 0
#define FCN_RX_DESCQ_EN_WIDTH 1

/* Transmit descriptor pointer table */
#define FCN_TX_DESC_PTR_TBL_KER_A1 0x11900
#define FCN_TX_DESC_PTR_TBL_KER_B0 0xF50000
#define FCN_TX_NON_IP_DROP_DIS_B0_LBN 91
#define FCN_TX_NON_IP_DROP_DIS_B0_WIDTH 1
#define FCN_TX_DESCQ_EN_LBN 88
#define FCN_TX_DESCQ_EN_WIDTH 1
#define FCN_TX_ISCSI_DDIG_EN_LBN 87
#define FCN_TX_ISCSI_DDIG_EN_WIDTH 1
#define FCN_TX_ISCSI_HDIG_EN_LBN 86
#define FCN_TX_ISCSI_HDIG_EN_WIDTH 1
#define FCN_TX_DESCQ_BUF_BASE_ID_LBN 36
#define FCN_TX_DESCQ_BUF_BASE_ID_WIDTH 20
#define FCN_TX_DESCQ_EVQ_ID_LBN 24
#define FCN_TX_DESCQ_EVQ_ID_WIDTH 12
#define FCN_TX_DESCQ_OWNER_ID_LBN 10
#define FCN_TX_DESCQ_OWNER_ID_WIDTH 14
#define FCN_TX_DESCQ_SIZE_LBN 3
#define FCN_TX_DESCQ_SIZE_WIDTH 2
#define FCN_TX_DESCQ_SIZE_4K 3
#define FCN_TX_DESCQ_SIZE_2K 2
#define FCN_TX_DESCQ_SIZE_1K 1
#define FCN_TX_DESCQ_SIZE_512 0
#define FCN_TX_DESCQ_TYPE_LBN 1
#define FCN_TX_DESCQ_TYPE_WIDTH 2
#define FCN_TX_DESCQ_FLUSH_LBN 0
#define FCN_TX_DESCQ_FLUSH_WIDTH 1

/* Event queue pointer */
#define FCN_EVQ_PTR_TBL_KER_A1 0x11a00
#define FCN_EVQ_PTR_TBL_KER_B0 0xf60000
#define FCN_EVQ_EN_LBN 23
#define FCN_EVQ_EN_WIDTH 1
#define FCN_EVQ_SIZE_LBN 20
#define FCN_EVQ_SIZE_WIDTH 3
#define FCN_EVQ_SIZE_32K 6
#define FCN_EVQ_SIZE_16K 5
#define FCN_EVQ_SIZE_8K 4
#define FCN_EVQ_SIZE_4K 3
#define FCN_EVQ_SIZE_2K 2
#define FCN_EVQ_SIZE_1K 1
#define FCN_EVQ_SIZE_512 0
#define FCN_EVQ_BUF_BASE_ID_LBN 0
#define FCN_EVQ_BUF_BASE_ID_WIDTH 20

/* RSS indirection table */
#define FCN_RX_RSS_INDIR_TBL_B0 0xFB0000

/* Event queue read pointer */
#define FCN_EVQ_RPTR_REG_KER_A1 0x11b00
#define FCN_EVQ_RPTR_REG_KER_B0 0xfa0000
#define FCN_EVQ_RPTR_LBN 0
#define FCN_EVQ_RPTR_WIDTH 14
#define FCN_EVQ_RPTR_REG_KER_DWORD_A1 ( FCN_EVQ_RPTR_REG_KER_A1 + 0 )
#define FCN_EVQ_RPTR_REG_KER_DWORD_B0 ( FCN_EVQ_RPTR_REG_KER_B0 + 0 )
#define FCN_EVQ_RPTR_DWORD_LBN 0
#define FCN_EVQ_RPTR_DWORD_WIDTH 14

/* Special buffer descriptors */
#define FCN_BUF_FULL_TBL_KER_A1 0x18000
#define FCN_BUF_FULL_TBL_KER_B0 0x800000
#define FCN_IP_DAT_BUF_SIZE_LBN 50
#define FCN_IP_DAT_BUF_SIZE_WIDTH 1
#define FCN_IP_DAT_BUF_SIZE_8K 1
#define FCN_IP_DAT_BUF_SIZE_4K 0
#define FCN_BUF_ADR_FBUF_LBN 14
#define FCN_BUF_ADR_FBUF_WIDTH 34
#define FCN_BUF_OWNER_ID_FBUF_LBN 0
#define FCN_BUF_OWNER_ID_FBUF_WIDTH 14

/** Offset of a GMAC register within Falcon */
#define FALCON_GMAC_REG( efab, mac_reg )				\
	( FALCON_GMAC_REGBANK +					\
	  ( (mac_reg) * FALCON_GMAC_REG_SIZE ) )

/** Offset of an XMAC register within Falcon */
#define FALCON_XMAC_REG( efab_port, mac_reg )			\
	( FALCON_XMAC_REGBANK +					\
	  ( (mac_reg) * FALCON_XMAC_REG_SIZE ) )

#define FCN_MAC_DATA_LBN 0
#define FCN_MAC_DATA_WIDTH 32

/* Transmit descriptor */
#define FCN_TX_KER_PORT_LBN 63
#define FCN_TX_KER_PORT_WIDTH 1
#define FCN_TX_KER_BYTE_CNT_LBN 48
#define FCN_TX_KER_BYTE_CNT_WIDTH 14
#define FCN_TX_KER_BUF_ADR_LBN 0
#define FCN_TX_KER_BUF_ADR_WIDTH EFAB_DMA_TYPE_WIDTH ( 46 )


/* Receive descriptor */
#define FCN_RX_KER_BUF_SIZE_LBN 48
#define FCN_RX_KER_BUF_SIZE_WIDTH 14
#define FCN_RX_KER_BUF_ADR_LBN 0
#define FCN_RX_KER_BUF_ADR_WIDTH EFAB_DMA_TYPE_WIDTH ( 46 )

/* Event queue entries */
#define FCN_EV_CODE_LBN 60
#define FCN_EV_CODE_WIDTH 4
#define FCN_RX_IP_EV_DECODE 0
#define FCN_TX_IP_EV_DECODE 2
#define FCN_DRIVER_EV_DECODE 5

/* Receive events */
#define FCN_RX_EV_PKT_OK_LBN 56
#define FCN_RX_EV_PKT_OK_WIDTH 1
#define FCN_RX_PORT_LBN 30
#define FCN_RX_PORT_WIDTH 1
#define FCN_RX_EV_BYTE_CNT_LBN 16
#define FCN_RX_EV_BYTE_CNT_WIDTH 14
#define FCN_RX_EV_DESC_PTR_LBN 0
#define FCN_RX_EV_DESC_PTR_WIDTH 12

/* Transmit events */
#define FCN_TX_EV_DESC_PTR_LBN 0
#define FCN_TX_EV_DESC_PTR_WIDTH 12

/*******************************************************************************
 *
 *
 * Low-level hardware access
 *
 *
 *******************************************************************************/ 

#define FCN_REVISION_REG(efab, reg) \
	( ( efab->pci_revision == FALCON_REV_B0 ) ? reg ## _B0 : reg ## _A1 )

#define EFAB_SET_OWORD_FIELD_VER(efab, reg, field, val)			\
	if ( efab->pci_revision == FALCON_REV_B0 )			\
		EFAB_SET_OWORD_FIELD ( reg, field ## _B0, val );	\
	else								\
		EFAB_SET_OWORD_FIELD ( reg, field ## _A1, val );

#if FALCON_USE_IO_BAR

/* Write dword via the I/O BAR */
static inline void _falcon_writel ( struct efab_nic *efab, uint32_t value,
				    unsigned int reg ) {
	outl ( reg, efab->iobase + FCN_IOM_IND_ADR_REG );
	outl ( value, efab->iobase + FCN_IOM_IND_DAT_REG );
}

/* Read dword via the I/O BAR */
static inline uint32_t _falcon_readl ( struct efab_nic *efab,
				       unsigned int reg ) {
	outl ( reg, efab->iobase + FCN_IOM_IND_ADR_REG );
	return inl ( efab->iobase + FCN_IOM_IND_DAT_REG );
}

#else /* FALCON_USE_IO_BAR */

#define _falcon_writel( efab, value, reg ) \
	writel ( (value), (efab)->membase + (reg) )
#define _falcon_readl( efab, reg ) readl ( (efab)->membase + (reg) )

#endif /* FALCON_USE_IO_BAR */

/**
 * Write to a Falcon register
 *
 */
static inline void
falcon_write ( struct efab_nic *efab, efab_oword_t *value, unsigned int reg )
{

	EFAB_REGDUMP ( "Writing register %x with " EFAB_OWORD_FMT "\n",
		       reg, EFAB_OWORD_VAL ( *value ) );

	_falcon_writel ( efab, value->u32[0], reg + 0  );
	_falcon_writel ( efab, value->u32[1], reg + 4  );
	_falcon_writel ( efab, value->u32[2], reg + 8  );
	wmb();
	_falcon_writel ( efab, value->u32[3], reg + 12 );
	wmb();
}

/**
 * Write to Falcon SRAM
 *
 */
static inline void
falcon_write_sram ( struct efab_nic *efab, efab_qword_t *value,
		    unsigned int index )
{
	unsigned int reg = ( FCN_REVISION_REG ( efab, FCN_BUF_FULL_TBL_KER ) +
			     ( index * sizeof ( *value ) ) );

	EFAB_REGDUMP ( "Writing SRAM register %x with " EFAB_QWORD_FMT "\n",
		       reg, EFAB_QWORD_VAL ( *value ) );

	_falcon_writel ( efab, value->u32[0], reg + 0  );
	_falcon_writel ( efab, value->u32[1], reg + 4  );
	wmb();
}

/**
 * Write dword to Falcon register that allows partial writes
 *
 */
static inline void
falcon_writel ( struct efab_nic *efab, efab_dword_t *value, unsigned int reg )
{
	EFAB_REGDUMP ( "Writing partial register %x with " EFAB_DWORD_FMT "\n",
		       reg, EFAB_DWORD_VAL ( *value ) );
	_falcon_writel ( efab, value->u32[0], reg );
}

/**
 * Read from a Falcon register
 *
 */
static inline void
falcon_read ( struct efab_nic *efab, efab_oword_t *value, unsigned int reg )
{
	value->u32[0] = _falcon_readl ( efab, reg + 0  );
	wmb();
	value->u32[1] = _falcon_readl ( efab, reg + 4  );
	value->u32[2] = _falcon_readl ( efab, reg + 8  );
	value->u32[3] = _falcon_readl ( efab, reg + 12 );

	EFAB_REGDUMP ( "Read from register %x, got " EFAB_OWORD_FMT "\n",
		       reg, EFAB_OWORD_VAL ( *value ) );
}

/** 
 * Read from Falcon SRAM
 *
 */
static inline void
falcon_read_sram ( struct efab_nic *efab, efab_qword_t *value,
		   unsigned int index )
{
	unsigned int reg = ( FCN_REVISION_REG ( efab, FCN_BUF_FULL_TBL_KER ) +
			     ( index * sizeof ( *value ) ) );

	value->u32[0] = _falcon_readl ( efab, reg + 0 );
	value->u32[1] = _falcon_readl ( efab, reg + 4 );
	EFAB_REGDUMP ( "Read from SRAM register %x, got " EFAB_QWORD_FMT "\n",
		       reg, EFAB_QWORD_VAL ( *value ) );
}

/**
 * Read dword from a portion of a Falcon register
 *
 */
static inline void
falcon_readl ( struct efab_nic *efab, efab_dword_t *value, unsigned int reg )
{
	value->u32[0] = _falcon_readl ( efab, reg );
	EFAB_REGDUMP ( "Read from register %x, got " EFAB_DWORD_FMT "\n",
		       reg, EFAB_DWORD_VAL ( *value ) );
}

#define FCN_DUMP_REG( efab, _reg ) do {				\
		efab_oword_t reg;				\
		falcon_read ( efab, &reg, _reg );		\
		EFAB_LOG ( #_reg " = " EFAB_OWORD_FMT "\n",	\
			   EFAB_OWORD_VAL ( reg ) );		\
	} while ( 0 );

#define FCN_DUMP_MAC_REG( efab, _mac_reg ) do {				\
		efab_dword_t reg;					\
		efab->mac_op->mac_readl ( efab, &reg, _mac_reg );	\
		EFAB_LOG ( #_mac_reg " = " EFAB_DWORD_FMT "\n",		\
			   EFAB_DWORD_VAL ( reg ) );			\
	} while ( 0 );

/**
 * See if an event is present
 *
 * @v event		Falcon event structure
 * @ret True		An event is pending
 * @ret False		No event is pending
 *
 * We check both the high and low dword of the event for all ones.  We
 * wrote all ones when we cleared the event, and no valid event can
 * have all ones in either its high or low dwords.  This approach is
 * robust against reordering.
 *
 * Note that using a single 64-bit comparison is incorrect; even
 * though the CPU read will be atomic, the DMA write may not be.
 */
static inline int
falcon_event_present ( falcon_event_t* event )
{
	return ( ! ( EFAB_DWORD_IS_ALL_ONES ( event->dword[0] ) |
		     EFAB_DWORD_IS_ALL_ONES ( event->dword[1] ) ) );
}

static void
falcon_eventq_read_ack ( struct efab_nic *efab, struct efab_ev_queue *ev_queue )
{
	efab_dword_t reg;

	EFAB_POPULATE_DWORD_1 ( reg, FCN_EVQ_RPTR_DWORD, ev_queue->read_ptr );
	falcon_writel ( efab, &reg,
			FCN_REVISION_REG ( efab, FCN_EVQ_RPTR_REG_KER_DWORD ) );
}

#if 0
/**
 * Dump register contents (for debugging)
 *
 * Marked as static inline so that it will not be compiled in if not
 * used.
 */
static inline void
falcon_dump_regs ( struct efab_nic *efab )
{
	FCN_DUMP_REG ( efab, FCN_INT_EN_REG_KER );
	FCN_DUMP_REG ( efab, FCN_INT_ADR_REG_KER );
	FCN_DUMP_REG ( efab, FCN_GLB_CTL_REG_KER );
	FCN_DUMP_REG ( efab, FCN_TIMER_CMD_REG_KER );
	FCN_DUMP_REG ( efab, FCN_SRM_RX_DC_CFG_REG_KER );
	FCN_DUMP_REG ( efab, FCN_SRM_TX_DC_CFG_REG_KER );
	FCN_DUMP_REG ( efab, FCN_RX_FILTER_CTL_REG_KER );
	FCN_DUMP_REG ( efab, FCN_RX_DC_CFG_REG_KER );
	FCN_DUMP_REG ( efab, FCN_TX_DC_CFG_REG_KER );
	FCN_DUMP_REG ( efab, FCN_MAC0_CTRL_REG_KER );
	FCN_DUMP_REG ( efab, FCN_MAC1_CTRL_REG_KER );
	FCN_DUMP_REG ( efab, FCN_REVISION_REG ( efab, FCN_RX_DESC_PTR_TBL_KER ) );
	FCN_DUMP_REG ( efab, FCN_REVISION_REG ( efab, FCN_TX_DESC_PTR_TBL_KER ) );
	FCN_DUMP_REG ( efab, FCN_REVISION_REG ( efab, FCN_EVQ_PTR_TBL_KER ) );
	FCN_DUMP_MAC_REG ( efab, GM_CFG1_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GM_CFG2_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GM_MAX_FLEN_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GM_MII_MGMT_CFG_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GM_ADR1_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GM_ADR2_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GMF_CFG0_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GMF_CFG1_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GMF_CFG2_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GMF_CFG3_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GMF_CFG4_REG_MAC );
	FCN_DUMP_MAC_REG ( efab, GMF_CFG5_REG_MAC );
}
#endif

static void
falcon_interrupts ( struct efab_nic *efab, int enabled, int force )
{
	efab_oword_t int_en_reg_ker;

	EFAB_POPULATE_OWORD_2 ( int_en_reg_ker,
				FCN_KER_INT_KER, force,
				FCN_DRV_INT_EN_KER, enabled );
	falcon_write ( efab, &int_en_reg_ker, FCN_INT_EN_REG_KER );	
}

/*******************************************************************************
 *
 *
 * SPI access
 *
 *
 *******************************************************************************/ 


/** Maximum length for a single SPI transaction */
#define FALCON_SPI_MAX_LEN 16

static int
falcon_spi_wait ( struct efab_nic *efab )
{
	efab_oword_t reg;
	int count;

	count = 0;
	do {
		udelay ( 100 );
		falcon_read ( efab, &reg, FCN_EE_SPI_HCMD_REG );
		if ( EFAB_OWORD_FIELD ( reg, FCN_EE_SPI_HCMD_CMD_EN ) == 0 )
			return 0;
	} while ( ++count < 1000 );

	EFAB_ERR ( "Timed out waiting for SPI\n" );
	return -ETIMEDOUT;
}

static int
falcon_spi_rw ( struct spi_bus* bus, struct spi_device *device,
		unsigned int command, int address,
		const void* data_out, void *data_in, size_t len )
{
	struct efab_nic *efab = container_of ( bus, struct efab_nic, spi_bus );
	int address_len, rc, device_id, read_cmd;
	efab_oword_t reg;

	/* falcon_init_spi_device() should have reduced the block size
	 * down so this constraint holds */
	assert ( len <= FALCON_SPI_MAX_LEN );

	/* Is this the FLASH or EEPROM device? */
	if ( device == &efab->spi_flash )
		device_id = FCN_EE_SPI_FLASH;
	else if ( device == &efab->spi_eeprom )
		device_id = FCN_EE_SPI_EEPROM;
	else {
		EFAB_ERR ( "Unknown device %p\n", device );
		return -EINVAL;
	}

	EFAB_TRACE ( "Executing spi command %d on device %d at %d for %zd bytes\n",
		     command, device_id, address, len );

	/* The bus must be idle */
	rc = falcon_spi_wait ( efab );
	if ( rc )
		goto fail1;

	/* Copy data out */
	if ( data_out ) {
		memcpy ( &reg, data_out, len );
		falcon_write ( efab, &reg, FCN_EE_SPI_HDATA_REG );
	}

	/* Program address register */
	if ( address >= 0 ) {
		EFAB_POPULATE_OWORD_1 ( reg, FCN_EE_SPI_HADR_ADR, address );
		falcon_write ( efab, &reg, FCN_EE_SPI_HADR_REG );
	}

	/* Issue command */
	address_len = ( address >= 0 ) ? device->address_len / 8 : 0;
	read_cmd = ( data_in ? FCN_EE_SPI_READ : FCN_EE_SPI_WRITE );
	EFAB_POPULATE_OWORD_7 ( reg,
				FCN_EE_SPI_HCMD_CMD_EN, 1,
				FCN_EE_SPI_HCMD_SF_SEL, device_id,
				FCN_EE_SPI_HCMD_DABCNT, len,
				FCN_EE_SPI_HCMD_READ, read_cmd,
				FCN_EE_SPI_HCMD_DUBCNT, 0,
				FCN_EE_SPI_HCMD_ADBCNT, address_len,
				FCN_EE_SPI_HCMD_ENC, command );
	falcon_write ( efab, &reg, FCN_EE_SPI_HCMD_REG );

	/* Wait for the command to complete */
	rc = falcon_spi_wait ( efab );
	if ( rc )
		goto fail2;

	/* Copy data in */
	if ( data_in ) {
		falcon_read ( efab, &reg, FCN_EE_SPI_HDATA_REG );
		memcpy ( data_in, &reg, len );
	}

	return 0;

fail2:
fail1:
	EFAB_ERR ( "Failed SPI command %d to device %d address 0x%x len 0x%zx\n",
		   command, device_id, address, len );

	return rc;
}

/** Portion of EEPROM available for non-volatile options */
static struct nvo_fragment falcon_nvo_fragments[] = {
	{ 0x100, 0xf0 },
	{ 0, 0 }
};

/*******************************************************************************
 *
 *
 * Falcon bit-bashed I2C interface
 *
 *
 *******************************************************************************/ 

static void
falcon_i2c_bit_write ( struct bit_basher *basher, unsigned int bit_id,
		       unsigned long data )
{
	struct efab_nic *efab = container_of ( basher, struct efab_nic,
					       i2c_bb.basher );
	efab_oword_t reg;

	falcon_read ( efab, &reg, FCN_GPIO_CTL_REG_KER );
	switch ( bit_id ) {
	case I2C_BIT_SCL:
		EFAB_SET_OWORD_FIELD ( reg, FCN_GPIO0_OEN, ( data ? 0 : 1 ) );
		break;
	case I2C_BIT_SDA:
		EFAB_SET_OWORD_FIELD ( reg, FCN_GPIO3_OEN, ( data ? 0 : 1 ) );
		break;
	default:
		EFAB_ERR ( "%s bit=%d\n", __func__, bit_id );
		break;
	}

	falcon_write ( efab, &reg,  FCN_GPIO_CTL_REG_KER );
}

static int
falcon_i2c_bit_read ( struct bit_basher *basher, unsigned int bit_id )
{
	struct efab_nic *efab = container_of ( basher, struct efab_nic,
					       i2c_bb.basher );
	efab_oword_t reg;
	
	falcon_read ( efab, &reg, FCN_GPIO_CTL_REG_KER );
	switch ( bit_id ) {
	case I2C_BIT_SCL:
		return EFAB_OWORD_FIELD ( reg, FCN_GPIO0_IN );
		break;
	case I2C_BIT_SDA:
		return EFAB_OWORD_FIELD ( reg, FCN_GPIO3_IN );
		break;
	default:
		EFAB_ERR ( "%s bit=%d\n", __func__, bit_id );
		break;
	}

	return -1;
}

static struct bit_basher_operations falcon_i2c_bit_ops = {
	.read           = falcon_i2c_bit_read,
	.write          = falcon_i2c_bit_write,
};


/*******************************************************************************
 *
 *
 * MDIO access
 *
 *
 *******************************************************************************/ 

static int
falcon_gmii_wait ( struct efab_nic *efab )
{
	efab_dword_t md_stat;
	int count;

	/* wait upto 10ms */
	for (count = 0; count < 1000; count++) {
		falcon_readl ( efab, &md_stat, FCN_MD_STAT_REG_KER );
		if ( EFAB_DWORD_FIELD ( md_stat, FCN_MD_BSY ) == 0 ) {
			if ( EFAB_DWORD_FIELD ( md_stat, FCN_MD_LNFL ) != 0 ||
			     EFAB_DWORD_FIELD ( md_stat, FCN_MD_BSERR ) != 0 ) {
				EFAB_ERR ( "Error from GMII access "
					   EFAB_DWORD_FMT"\n",
					   EFAB_DWORD_VAL ( md_stat ));
				return -EIO;
			}
			return 0;
		}
		udelay(10);
	}

	EFAB_ERR ( "Timed out waiting for GMII\n" );
	return -ETIMEDOUT;
}

static void
falcon_mdio_write ( struct efab_nic *efab, int device,
		    int location, int value )
{
	efab_oword_t reg;

	EFAB_TRACE ( "Writing GMII %d register %02x with %04x\n",
		     device, location, value );

	/* Check MII not currently being accessed */
	if ( falcon_gmii_wait ( efab ) )
		return;

	/* Write the address/ID register */
	EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_PHY_ADR, location );
	falcon_write ( efab, &reg, FCN_MD_PHY_ADR_REG_KER );

	if ( efab->phy_10g ) {
		/* clause45 */
		EFAB_POPULATE_OWORD_2 ( reg, 
					FCN_MD_PRT_ADR, efab->phy_addr,
					FCN_MD_DEV_ADR, device );
	}
	else {
		/* clause22 */
		assert ( device == 0 );

		EFAB_POPULATE_OWORD_2 ( reg,
					FCN_MD_PRT_ADR, efab->phy_addr,
					FCN_MD_DEV_ADR, location );
	}
	falcon_write ( efab, &reg, FCN_MD_ID_REG_KER );
		

	/* Write data */
	EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_TXD, value );
	falcon_write ( efab, &reg, FCN_MD_TXD_REG_KER );

	EFAB_POPULATE_OWORD_2 ( reg,
				FCN_MD_WRC, 1,
				FCN_MD_GC, ( efab->phy_10g ? 0 : 1 ) );
	falcon_write ( efab, &reg, FCN_MD_CS_REG_KER );
		
	/* Wait for data to be written */
	if ( falcon_gmii_wait ( efab ) ) {
		/* Abort the write operation */
		EFAB_POPULATE_OWORD_2 ( reg,
					FCN_MD_WRC, 0,
					FCN_MD_GC, 1);
		falcon_write ( efab, &reg, FCN_MD_CS_REG_KER );
		udelay(10);
	}
}

static int
falcon_mdio_read ( struct efab_nic *efab, int device, int location )
{
	efab_oword_t reg;
	int value;

	/* Check MII not currently being accessed */
	if ( falcon_gmii_wait ( efab ) ) 
		return -1;

	if ( efab->phy_10g ) {
		/* clause45 */
		EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_PHY_ADR, location );
		falcon_write ( efab, &reg, FCN_MD_PHY_ADR_REG_KER );

		EFAB_POPULATE_OWORD_2 ( reg,
					FCN_MD_PRT_ADR, efab->phy_addr,
					FCN_MD_DEV_ADR, device );
		falcon_write ( efab, &reg, FCN_MD_ID_REG_KER);

		/* request data to be read */
		EFAB_POPULATE_OWORD_2 ( reg,
					FCN_MD_RDC, 1,
					FCN_MD_GC, 0 );
	}
	else {
		/* clause22 */
		assert ( device == 0 );

		EFAB_POPULATE_OWORD_2 ( reg,
					FCN_MD_PRT_ADR, efab->phy_addr,
					FCN_MD_DEV_ADR, location );
		falcon_write ( efab, &reg, FCN_MD_ID_REG_KER );

		/* Request data to be read */
		EFAB_POPULATE_OWORD_2 ( reg,
					FCN_MD_RIC, 1,
					FCN_MD_GC, 1 );
	}

	falcon_write ( efab, &reg, FCN_MD_CS_REG_KER );
		
	/* Wait for data to become available */
	if ( falcon_gmii_wait ( efab ) ) {
		/* Abort the read operation */
		EFAB_POPULATE_OWORD_2 ( reg,
					FCN_MD_RIC, 0,
					FCN_MD_GC, 1 );
		falcon_write ( efab, &reg, FCN_MD_CS_REG_KER );
		udelay ( 10 );
		value = -1;
	}
	else {
		/* Read the data */
		falcon_read ( efab, &reg, FCN_MD_RXD_REG_KER );
		value = EFAB_OWORD_FIELD ( reg, FCN_MD_RXD );
	}

	EFAB_TRACE ( "Read from GMII %d register %02x, got %04x\n",
		     device, location, value );

	return value;
}

/*******************************************************************************
 *
 *
 * MAC wrapper
 *
 *
 *******************************************************************************/

static void
falcon_reconfigure_mac_wrapper ( struct efab_nic *efab )
{
	efab_oword_t reg;
	int link_speed;

	if ( efab->link_options & LPA_EF_10000 ) {
		link_speed = 0x3;
	} else if ( efab->link_options & LPA_EF_1000 ) {
		link_speed = 0x2;
	} else if ( efab->link_options & LPA_100 ) {
		link_speed = 0x1;
	} else {
		link_speed = 0x0;
	}
	EFAB_POPULATE_OWORD_5 ( reg,
				FCN_MAC_XOFF_VAL, 0xffff /* datasheet */,
				FCN_MAC_BCAD_ACPT, 1,
				FCN_MAC_UC_PROM, 0,
				FCN_MAC_LINK_STATUS, 1,
				FCN_MAC_SPEED, link_speed );

	falcon_write ( efab, &reg, FCN_MAC0_CTRL_REG_KER );
}

/*******************************************************************************
 *
 *
 * GMAC handling
 *
 *
 *******************************************************************************/

/* GMAC configuration register 1 */
#define GM_CFG1_REG_MAC 0x00
#define GM_SW_RST_LBN 31
#define GM_SW_RST_WIDTH 1
#define GM_RX_FC_EN_LBN 5
#define GM_RX_FC_EN_WIDTH 1
#define GM_TX_FC_EN_LBN 4
#define GM_TX_FC_EN_WIDTH 1
#define GM_RX_EN_LBN 2
#define GM_RX_EN_WIDTH 1
#define GM_TX_EN_LBN 0
#define GM_TX_EN_WIDTH 1

/* GMAC configuration register 2 */
#define GM_CFG2_REG_MAC 0x01
#define GM_PAMBL_LEN_LBN 12
#define GM_PAMBL_LEN_WIDTH 4
#define GM_IF_MODE_LBN 8
#define GM_IF_MODE_WIDTH 2
#define GM_PAD_CRC_EN_LBN 2
#define GM_PAD_CRC_EN_WIDTH 1
#define GM_FD_LBN 0
#define GM_FD_WIDTH 1

/* GMAC maximum frame length register */
#define GM_MAX_FLEN_REG_MAC 0x04
#define GM_MAX_FLEN_LBN 0
#define GM_MAX_FLEN_WIDTH 16

/* GMAC MII management configuration register */
#define GM_MII_MGMT_CFG_REG_MAC 0x08
#define GM_MGMT_CLK_SEL_LBN 0
#define GM_MGMT_CLK_SEL_WIDTH 3

/* GMAC MII management command register */
#define GM_MII_MGMT_CMD_REG_MAC 0x09
#define GM_MGMT_SCAN_CYC_LBN 1
#define GM_MGMT_SCAN_CYC_WIDTH 1
#define GM_MGMT_RD_CYC_LBN 0
#define GM_MGMT_RD_CYC_WIDTH 1

/* GMAC MII management address register */
#define GM_MII_MGMT_ADR_REG_MAC 0x0a
#define GM_MGMT_PHY_ADDR_LBN 8
#define GM_MGMT_PHY_ADDR_WIDTH 5
#define GM_MGMT_REG_ADDR_LBN 0
#define GM_MGMT_REG_ADDR_WIDTH 5

/* GMAC MII management control register */
#define GM_MII_MGMT_CTL_REG_MAC 0x0b
#define GM_MGMT_CTL_LBN 0
#define GM_MGMT_CTL_WIDTH 16

/* GMAC MII management status register */
#define GM_MII_MGMT_STAT_REG_MAC 0x0c
#define GM_MGMT_STAT_LBN 0
#define GM_MGMT_STAT_WIDTH 16

/* GMAC MII management indicators register */
#define GM_MII_MGMT_IND_REG_MAC 0x0d
#define GM_MGMT_BUSY_LBN 0
#define GM_MGMT_BUSY_WIDTH 1

/* GMAC station address register 1 */
#define GM_ADR1_REG_MAC 0x10
#define GM_HWADDR_5_LBN 24
#define GM_HWADDR_5_WIDTH 8
#define GM_HWADDR_4_LBN 16
#define GM_HWADDR_4_WIDTH 8
#define GM_HWADDR_3_LBN 8
#define GM_HWADDR_3_WIDTH 8
#define GM_HWADDR_2_LBN 0
#define GM_HWADDR_2_WIDTH 8

/* GMAC station address register 2 */
#define GM_ADR2_REG_MAC 0x11
#define GM_HWADDR_1_LBN 24
#define GM_HWADDR_1_WIDTH 8
#define GM_HWADDR_0_LBN 16
#define GM_HWADDR_0_WIDTH 8

/* GMAC FIFO configuration register 0 */
#define GMF_CFG0_REG_MAC 0x12
#define GMF_FTFENREQ_LBN 12
#define GMF_FTFENREQ_WIDTH 1
#define GMF_STFENREQ_LBN 11
#define GMF_STFENREQ_WIDTH 1
#define GMF_FRFENREQ_LBN 10
#define GMF_FRFENREQ_WIDTH 1
#define GMF_SRFENREQ_LBN 9
#define GMF_SRFENREQ_WIDTH 1
#define GMF_WTMENREQ_LBN 8
#define GMF_WTMENREQ_WIDTH 1

/* GMAC FIFO configuration register 1 */
#define GMF_CFG1_REG_MAC 0x13
#define GMF_CFGFRTH_LBN 16
#define GMF_CFGFRTH_WIDTH 5
#define GMF_CFGXOFFRTX_LBN 0
#define GMF_CFGXOFFRTX_WIDTH 16

/* GMAC FIFO configuration register 2 */
#define GMF_CFG2_REG_MAC 0x14
#define GMF_CFGHWM_LBN 16
#define GMF_CFGHWM_WIDTH 6
#define GMF_CFGLWM_LBN 0
#define GMF_CFGLWM_WIDTH 6

/* GMAC FIFO configuration register 3 */
#define GMF_CFG3_REG_MAC 0x15
#define GMF_CFGHWMFT_LBN 16
#define GMF_CFGHWMFT_WIDTH 6
#define GMF_CFGFTTH_LBN 0
#define GMF_CFGFTTH_WIDTH 6

/* GMAC FIFO configuration register 4 */
#define GMF_CFG4_REG_MAC 0x16
#define GMF_HSTFLTRFRM_PAUSE_LBN 12
#define GMF_HSTFLTRFRM_PAUSE_WIDTH 12

/* GMAC FIFO configuration register 5 */
#define GMF_CFG5_REG_MAC 0x17
#define GMF_CFGHDPLX_LBN 22
#define GMF_CFGHDPLX_WIDTH 1
#define GMF_CFGBYTMODE_LBN 19
#define GMF_CFGBYTMODE_WIDTH 1
#define GMF_HSTDRPLT64_LBN 18
#define GMF_HSTDRPLT64_WIDTH 1
#define GMF_HSTFLTRFRMDC_PAUSE_LBN 12
#define GMF_HSTFLTRFRMDC_PAUSE_WIDTH 1

static void
falcon_gmac_writel ( struct efab_nic *efab, efab_dword_t *value,
		     unsigned int mac_reg )
{
	efab_oword_t temp;

	EFAB_POPULATE_OWORD_1 ( temp, FCN_MAC_DATA,
				EFAB_DWORD_FIELD ( *value, FCN_MAC_DATA ) );
	falcon_write ( efab, &temp, FALCON_GMAC_REG ( efab, mac_reg ) );
}

static void
falcon_gmac_readl ( struct efab_nic *efab, efab_dword_t *value,
		    unsigned int mac_reg )
{
	efab_oword_t temp;

	falcon_read ( efab, &temp, FALCON_GMAC_REG ( efab, mac_reg ) );
	EFAB_POPULATE_DWORD_1 ( *value, FCN_MAC_DATA,
				EFAB_OWORD_FIELD ( temp, FCN_MAC_DATA ) );
}

static void
mentormac_reset ( struct efab_nic *efab )
{
	efab_dword_t reg;

	/* Take into reset */
	EFAB_POPULATE_DWORD_1 ( reg, GM_SW_RST, 1 );
	falcon_gmac_writel ( efab, &reg, GM_CFG1_REG_MAC );
	udelay ( 1000 );

	/* Take out of reset */
	EFAB_POPULATE_DWORD_1 ( reg, GM_SW_RST, 0 );
	falcon_gmac_writel ( efab, &reg, GM_CFG1_REG_MAC );
	udelay ( 1000 );

	/* Configure GMII interface so PHY is accessible.  Note that
	 * GMII interface is connected only to port 0, and that on
	 * Falcon this is a no-op.
	 */
	EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_CLK_SEL, 0x4 );
	falcon_gmac_writel ( efab, &reg, GM_MII_MGMT_CFG_REG_MAC );
	udelay ( 10 );
}

static void
mentormac_init ( struct efab_nic *efab )
{
	int pause, if_mode, full_duplex, bytemode, half_duplex;
	efab_dword_t reg;

	/* Configuration register 1 */
	pause = ( efab->link_options & LPA_PAUSE_CAP ) ? 1 : 0;
	if ( ! ( efab->link_options & LPA_EF_DUPLEX ) ) {
		/* Half-duplex operation requires TX flow control */
		pause = 1;
	}
	EFAB_POPULATE_DWORD_4 ( reg,
				GM_TX_EN, 1,
				GM_TX_FC_EN, pause,
				GM_RX_EN, 1,
				GM_RX_FC_EN, 1 );
	falcon_gmac_writel ( efab, &reg, GM_CFG1_REG_MAC );
	udelay ( 10 );

	/* Configuration register 2 */
	if_mode = ( efab->link_options & LPA_EF_1000 ) ? 2 : 1;
	full_duplex = ( efab->link_options & LPA_EF_DUPLEX ) ? 1 : 0;
	EFAB_POPULATE_DWORD_4 ( reg,
				GM_IF_MODE, if_mode,
				GM_PAD_CRC_EN, 1,
				GM_FD, full_duplex,
				GM_PAMBL_LEN, 0x7 /* ? */ );
	falcon_gmac_writel ( efab, &reg, GM_CFG2_REG_MAC );
	udelay ( 10 );

	/* Max frame len register */
	EFAB_POPULATE_DWORD_1 ( reg, GM_MAX_FLEN,
				EFAB_MAX_FRAME_LEN ( ETH_FRAME_LEN ) );
	falcon_gmac_writel ( efab, &reg, GM_MAX_FLEN_REG_MAC );
	udelay ( 10 );

	/* FIFO configuration register 0 */
	EFAB_POPULATE_DWORD_5 ( reg,
				GMF_FTFENREQ, 1,
				GMF_STFENREQ, 1,
				GMF_FRFENREQ, 1,
				GMF_SRFENREQ, 1,
				GMF_WTMENREQ, 1 );
	falcon_gmac_writel ( efab, &reg, GMF_CFG0_REG_MAC );
	udelay ( 10 );

	/* FIFO configuration register 1 */
	EFAB_POPULATE_DWORD_2 ( reg,
				GMF_CFGFRTH, 0x12,
				GMF_CFGXOFFRTX, 0xffff );
	falcon_gmac_writel ( efab, &reg, GMF_CFG1_REG_MAC );
	udelay ( 10 );

	/* FIFO configuration register 2 */
	EFAB_POPULATE_DWORD_2 ( reg,
				GMF_CFGHWM, 0x3f,
				GMF_CFGLWM, 0xa );
	falcon_gmac_writel ( efab, &reg, GMF_CFG2_REG_MAC );
	udelay ( 10 );

	/* FIFO configuration register 3 */
	EFAB_POPULATE_DWORD_2 ( reg,
				GMF_CFGHWMFT, 0x1c,
				GMF_CFGFTTH, 0x08 );
	falcon_gmac_writel ( efab, &reg, GMF_CFG3_REG_MAC );
	udelay ( 10 );

	/* FIFO configuration register 4 */
	EFAB_POPULATE_DWORD_1 ( reg, GMF_HSTFLTRFRM_PAUSE, 1 );
	falcon_gmac_writel ( efab, &reg, GMF_CFG4_REG_MAC );
	udelay ( 10 );
	
	/* FIFO configuration register 5 */
	bytemode = ( efab->link_options & LPA_EF_1000 ) ? 1 : 0;
	half_duplex = ( efab->link_options & LPA_EF_DUPLEX ) ? 0 : 1;
	falcon_gmac_readl ( efab, &reg, GMF_CFG5_REG_MAC );
	EFAB_SET_DWORD_FIELD ( reg, GMF_CFGBYTMODE, bytemode );
	EFAB_SET_DWORD_FIELD ( reg, GMF_CFGHDPLX, half_duplex );
	EFAB_SET_DWORD_FIELD ( reg, GMF_HSTDRPLT64, half_duplex );
	EFAB_SET_DWORD_FIELD ( reg, GMF_HSTFLTRFRMDC_PAUSE, 0 );
	falcon_gmac_writel ( efab, &reg, GMF_CFG5_REG_MAC );
	udelay ( 10 );
	
	/* MAC address */
	EFAB_POPULATE_DWORD_4 ( reg,
				GM_HWADDR_5, efab->mac_addr[5],
				GM_HWADDR_4, efab->mac_addr[4],
				GM_HWADDR_3, efab->mac_addr[3],
				GM_HWADDR_2, efab->mac_addr[2] );
	falcon_gmac_writel ( efab, &reg, GM_ADR1_REG_MAC );
	udelay ( 10 );
	EFAB_POPULATE_DWORD_2 ( reg,
				GM_HWADDR_1, efab->mac_addr[1],
				GM_HWADDR_0, efab->mac_addr[0] );
	falcon_gmac_writel ( efab, &reg, GM_ADR2_REG_MAC );
	udelay ( 10 );
}

static int
falcon_init_gmac ( struct efab_nic *efab )
{
	/* Reset the MAC */
	mentormac_reset ( efab );

	/* Initialise PHY */
	efab->phy_op->init ( efab );

	/* check the link is up */
	if ( !efab->link_up )
		return -EAGAIN;

	/* Initialise MAC */
	mentormac_init ( efab );

	/* reconfigure the MAC wrapper */
	falcon_reconfigure_mac_wrapper ( efab );

	return 0;
}

static struct efab_mac_operations falcon_gmac_operations = {
	.init                   = falcon_init_gmac,
};


/*******************************************************************************
 *
 *
 * XMAC handling
 *
 *
 *******************************************************************************/

/**
 * Write dword to a Falcon XMAC register
 *
 */
static void
falcon_xmac_writel ( struct efab_nic *efab, efab_dword_t *value,
		     unsigned int mac_reg )
{
	efab_oword_t temp;

	EFAB_POPULATE_OWORD_1 ( temp, FCN_MAC_DATA,
				EFAB_DWORD_FIELD ( *value, FCN_MAC_DATA ) );
	falcon_write ( efab, &temp,
		       FALCON_XMAC_REG ( efab, mac_reg ) );
}

/**
 * Read dword from a Falcon XMAC register
 *
 */
static void
falcon_xmac_readl ( struct efab_nic *efab, efab_dword_t *value,
		    unsigned int mac_reg )
{
	efab_oword_t temp;

	falcon_read ( efab, &temp,
		      FALCON_XMAC_REG ( efab, mac_reg ) );
	EFAB_POPULATE_DWORD_1 ( *value, FCN_MAC_DATA,
				EFAB_OWORD_FIELD ( temp, FCN_MAC_DATA ) );
}

/**
 * Configure Falcon XAUI output
 */
static void
falcon_setup_xaui ( struct efab_nic *efab )
{
	efab_dword_t sdctl, txdrv;

	falcon_xmac_readl ( efab, &sdctl, FCN_XX_SD_CTL_REG_MAC );
	EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_HIDRVD, XX_SD_CTL_DRV_DEFAULT );
	EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_LODRVD, XX_SD_CTL_DRV_DEFAULT );
	EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_HIDRVC, XX_SD_CTL_DRV_DEFAULT );
	EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_LODRVC, XX_SD_CTL_DRV_DEFAULT );
	EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_HIDRVB, XX_SD_CTL_DRV_DEFAULT );
	EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_LODRVB, XX_SD_CTL_DRV_DEFAULT );
	EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_HIDRVA, XX_SD_CTL_DRV_DEFAULT );
	EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_LODRVA, XX_SD_CTL_DRV_DEFAULT );
	falcon_xmac_writel ( efab, &sdctl, FCN_XX_SD_CTL_REG_MAC );

	EFAB_POPULATE_DWORD_8 ( txdrv,
				FCN_XX_DEQD, XX_TXDRV_DEQ_DEFAULT,
				FCN_XX_DEQC, XX_TXDRV_DEQ_DEFAULT,
				FCN_XX_DEQB, XX_TXDRV_DEQ_DEFAULT,
				FCN_XX_DEQA, XX_TXDRV_DEQ_DEFAULT,
				FCN_XX_DTXD, XX_TXDRV_DTX_DEFAULT,
				FCN_XX_DTXC, XX_TXDRV_DTX_DEFAULT,
				FCN_XX_DTXB, XX_TXDRV_DTX_DEFAULT,
				FCN_XX_DTXA, XX_TXDRV_DTX_DEFAULT);
	falcon_xmac_writel ( efab, &txdrv, FCN_XX_TXDRV_CTL_REG_MAC);
}

static int
falcon_xgmii_status ( struct efab_nic *efab )
{
	efab_dword_t reg;

	if ( efab->pci_revision  < FALCON_REV_B0 )
		return 1;
	/* The ISR latches, so clear it and re-read */
	falcon_xmac_readl ( efab, &reg, FCN_XM_MGT_INT_REG_MAC_B0 );
	falcon_xmac_readl ( efab, &reg, FCN_XM_MGT_INT_REG_MAC_B0 );

	if ( EFAB_DWORD_FIELD ( reg, FCN_XM_LCLFLT ) ||
	     EFAB_DWORD_FIELD ( reg, FCN_XM_RMTFLT ) ) {
		EFAB_TRACE ( "MGT_INT: "EFAB_DWORD_FMT"\n",
			     EFAB_DWORD_VAL ( reg ) );
		return 0;
	}

	return 1;
}

static void
falcon_mask_status_intr ( struct efab_nic *efab, int enable )
{
	efab_dword_t reg;

	if ( efab->pci_revision  < FALCON_REV_B0 )
		return;

	/* Flush the ISR */
	if ( enable )
		falcon_xmac_readl ( efab, &reg, FCN_XM_MGT_INT_REG_MAC_B0 );

	EFAB_POPULATE_DWORD_2 ( reg,
				FCN_XM_MSK_RMTFLT, !enable,
				FCN_XM_MSK_LCLFLT, !enable);
	falcon_xmac_readl ( efab, &reg, FCN_XM_MGT_INT_MSK_REG_MAC_B0 );
}

/**
 * Reset 10G MAC connected to port
 *
 */
static int
falcon_reset_xmac ( struct efab_nic *efab )
{
	efab_dword_t reg;
	int count;

	EFAB_POPULATE_DWORD_1 ( reg, FCN_XM_CORE_RST, 1 );
	falcon_xmac_writel ( efab, &reg, FCN_XM_GLB_CFG_REG_MAC );

	for ( count = 0 ; count < 1000 ; count++ ) {
		udelay ( 10 );
		falcon_xmac_readl ( efab, &reg,
				    FCN_XM_GLB_CFG_REG_MAC );
		if ( EFAB_DWORD_FIELD ( reg, FCN_XM_CORE_RST ) == 0 )
			return 0;
	}
	return -ETIMEDOUT;
}


static int
falcon_reset_xaui ( struct efab_nic *efab )
{
	efab_dword_t reg;
	int count;

	if (!efab->is_asic)
		return 0;

	EFAB_POPULATE_DWORD_1 ( reg, FCN_XX_RST_XX_EN, 1 );
	falcon_xmac_writel ( efab, &reg, FCN_XX_PWR_RST_REG_MAC );

	/* Give some time for the link to establish */
	for (count = 0; count < 1000; count++) { /* wait upto 10ms */
		falcon_xmac_readl ( efab, &reg, FCN_XX_PWR_RST_REG_MAC );
		if ( EFAB_DWORD_FIELD ( reg, FCN_XX_RST_XX_EN ) == 0 ) {
			falcon_setup_xaui ( efab );
			return 0;
		}
		udelay(10);
	}
	EFAB_ERR ( "timed out waiting for XAUI/XGXS reset\n" );
	return -ETIMEDOUT;
}

static int
falcon_xaui_link_ok ( struct efab_nic *efab )
{
	efab_dword_t reg;
	int align_done, lane_status, sync;
	int has_phyxs;
	int link_ok = 1;

	/* Read Falcon XAUI side */
	if ( efab->is_asic ) {
		/* Read link status */
		falcon_xmac_readl ( efab, &reg, FCN_XX_CORE_STAT_REG_MAC );
		align_done = EFAB_DWORD_FIELD ( reg, FCN_XX_ALIGN_DONE );

		sync = EFAB_DWORD_FIELD ( reg, FCN_XX_SYNC_STAT );
		sync = ( sync == FCN_XX_SYNC_STAT_DECODE_SYNCED );
		
		link_ok = align_done && sync;
	}

	/* Clear link status ready for next read */
	EFAB_SET_DWORD_FIELD ( reg, FCN_XX_COMMA_DET, FCN_XX_COMMA_DET_RESET );
	EFAB_SET_DWORD_FIELD ( reg, FCN_XX_CHARERR, FCN_XX_CHARERR_RESET);
	EFAB_SET_DWORD_FIELD ( reg, FCN_XX_DISPERR, FCN_XX_DISPERR_RESET);
	falcon_xmac_writel ( efab, &reg, FCN_XX_CORE_STAT_REG_MAC );

	has_phyxs = ( efab->phy_op->mmds & ( 1 << MDIO_MMD_PHYXS ) );
	if ( link_ok && has_phyxs ) {
		lane_status = falcon_mdio_read ( efab, MDIO_MMD_PHYXS,
						 MDIO_PHYXS_LANE_STATE );
		link_ok = ( lane_status & ( 1 << MDIO_PHYXS_LANE_ALIGNED_LBN ) );

		if (!link_ok )
			EFAB_LOG ( "XGXS lane status: %x\n", lane_status );
	}

	return link_ok;
}

/**
 * Initialise XMAC
 *
 */
static void
falcon_reconfigure_xmac ( struct efab_nic *efab )
{
	efab_dword_t reg;
	int max_frame_len;

	/* Configure MAC - cut-thru mode is hard wired on */
	EFAB_POPULATE_DWORD_3 ( reg,
				FCN_XM_RX_JUMBO_MODE, 1,
				FCN_XM_TX_STAT_EN, 1,
				FCN_XM_RX_STAT_EN, 1);
	falcon_xmac_writel ( efab, &reg, FCN_XM_GLB_CFG_REG_MAC );

	/* Configure TX */
	EFAB_POPULATE_DWORD_6 ( reg, 
				FCN_XM_TXEN, 1,
				FCN_XM_TX_PRMBL, 1,
				FCN_XM_AUTO_PAD, 1,
				FCN_XM_TXCRC, 1,
				FCN_XM_FCNTL, 1,
				FCN_XM_IPG, 0x3 );
	falcon_xmac_writel ( efab, &reg, FCN_XM_TX_CFG_REG_MAC );

	/* Configure RX */
	EFAB_POPULATE_DWORD_4 ( reg,
				FCN_XM_RXEN, 1,
				FCN_XM_AUTO_DEPAD, 0,
				FCN_XM_ACPT_ALL_MCAST, 1,
				FCN_XM_PASS_CRC_ERR, 1 );
	falcon_xmac_writel ( efab, &reg, FCN_XM_RX_CFG_REG_MAC );

	/* Set frame length */
	max_frame_len = EFAB_MAX_FRAME_LEN ( ETH_FRAME_LEN );
	EFAB_POPULATE_DWORD_1 ( reg,
				FCN_XM_MAX_RX_FRM_SIZE, max_frame_len );
	falcon_xmac_writel ( efab, &reg, FCN_XM_RX_PARAM_REG_MAC );
	EFAB_POPULATE_DWORD_2 ( reg,
				FCN_XM_MAX_TX_FRM_SIZE, max_frame_len,
				FCN_XM_TX_JUMBO_MODE, 1 );
	falcon_xmac_writel ( efab, &reg, FCN_XM_TX_PARAM_REG_MAC );

	/* Enable flow control receipt */
	EFAB_POPULATE_DWORD_2 ( reg,
				FCN_XM_PAUSE_TIME, 0xfffe,
				FCN_XM_DIS_FCNTL, 0 );
	falcon_xmac_writel ( efab, &reg, FCN_XM_FC_REG_MAC );

	/* Set MAC address */
	EFAB_POPULATE_DWORD_4 ( reg,
				FCN_XM_ADR_0, efab->mac_addr[0],
				FCN_XM_ADR_1, efab->mac_addr[1],
				FCN_XM_ADR_2, efab->mac_addr[2],
				FCN_XM_ADR_3, efab->mac_addr[3] );
	falcon_xmac_writel ( efab, &reg, FCN_XM_ADR_LO_REG_MAC );
	EFAB_POPULATE_DWORD_2 ( reg,
				FCN_XM_ADR_4, efab->mac_addr[4],
				FCN_XM_ADR_5, efab->mac_addr[5] );
	falcon_xmac_writel ( efab, &reg, FCN_XM_ADR_HI_REG_MAC );
}

static int
falcon_init_xmac ( struct efab_nic *efab )
{
	int count, rc;

	/* Mask the PHY management interrupt */
	falcon_mask_status_intr ( efab, 0 );

	/* Initialise the PHY to instantiate the clock. */
	rc = efab->phy_op->init ( efab );
	if ( rc ) {
		EFAB_ERR ( "unable to initialise PHY\n" );
		goto fail1;
	}

	falcon_reset_xaui ( efab );

	/* Give the PHY and MAC time to faff */
	mdelay ( 100 );

	/* Reset and reconfigure the XMAC */
	rc = falcon_reset_xmac ( efab );
	if ( rc )
		goto fail2;
	falcon_reconfigure_xmac ( efab );
	falcon_reconfigure_mac_wrapper ( efab );
	/**
	 * Now wait for the link to come up. This may take a while
	 * for some slower PHY's.
	 */
	for (count=0; count<50; count++) {
		int link_ok = 1;

		/* Wait a while for the link to come up. */
		mdelay ( 100 );
		if ((count % 5) == 0)
			putchar ( '.' );

		/* Does the PHY think the wire-side link is up? */
		link_ok = mdio_clause45_links_ok ( efab );
		/* Ensure the XAUI link to the PHY is good */
		if ( link_ok ) {
			link_ok = falcon_xaui_link_ok ( efab );
			if ( !link_ok )
				falcon_reset_xaui ( efab );
		}

		/* Check fault indication */
		if ( link_ok )
			link_ok = falcon_xgmii_status ( efab );

		efab->link_up = link_ok;
		if ( link_ok ) {
			/* unmask the status interrupt */
			falcon_mask_status_intr ( efab, 1 );
			return 0;
		}
	}

	/* Link failed to come up, but initialisation was fine. */
	rc = -ETIMEDOUT;

fail2:
fail1:
	return rc;
}

static struct efab_mac_operations falcon_xmac_operations = {
	.init                   = falcon_init_xmac,
};

/*******************************************************************************
 *
 *
 * Null PHY handling
 *
 *
 *******************************************************************************/

static int
falcon_xaui_phy_init ( struct efab_nic *efab )
{
	/* CX4 is always 10000FD only */
	efab->link_options = LPA_EF_10000FULL;

	/* There is no PHY! */
	return 0;
}

static struct efab_phy_operations falcon_xaui_phy_ops = {
	.init                   = falcon_xaui_phy_init,
	.mmds                   = 0,
};


/*******************************************************************************
 *
 *
 * Alaska PHY
 *
 *
 *******************************************************************************/

/**
 * Initialise Alaska PHY
 *
 */
static int
alaska_init ( struct efab_nic *efab )
{
	unsigned int advertised, lpa;

	/* Read link up status */
	efab->link_up = gmii_link_ok ( efab );

	if ( ! efab->link_up )
		return -EIO;

	/* Determine link options from PHY. */
	advertised = gmii_autoneg_advertised ( efab );
	lpa = gmii_autoneg_lpa ( efab );
	efab->link_options = gmii_nway_result ( advertised & lpa );

	return 0;
}

static struct efab_phy_operations falcon_alaska_phy_ops = {
	.init  	    	= alaska_init,
};

/*******************************************************************************
 *
 *
 * xfp
 *
 *
 *******************************************************************************/

#define XFP_REQUIRED_DEVS ( MDIO_MMDREG_DEVS0_PCS    |		\
			    MDIO_MMDREG_DEVS0_PMAPMD |		\
			    MDIO_MMDREG_DEVS0_PHYXS )

static int
falcon_xfp_phy_init ( struct efab_nic *efab )
{
	int rc;

	/* Optical link is always 10000FD only */
	efab->link_options = LPA_EF_10000FULL;

	/* Reset the PHY */
	rc = mdio_clause45_reset_mmd ( efab, MDIO_MMD_PHYXS );
	if ( rc )
		return rc;

	return 0;
}

static struct efab_phy_operations falcon_xfp_phy_ops = {
	.init                   = falcon_xfp_phy_init,
	.mmds                   = XFP_REQUIRED_DEVS,
};

/*******************************************************************************
 *
 *
 * txc43128
 *
 *
 *******************************************************************************/

/* Command register */
#define TXC_GLRGS_GLCMD		(0xc004)
#define TXC_GLCMD_LMTSWRST_LBN	(14)

/* Amplitude on lanes 0+1, 2+3 */
#define  TXC_ALRGS_ATXAMP0	(0xc041)
#define  TXC_ALRGS_ATXAMP1	(0xc042)
/* Bit position of value for lane 0+2, 1+3 */
#define TXC_ATXAMP_LANE02_LBN	(3)
#define TXC_ATXAMP_LANE13_LBN	(11)

#define TXC_ATXAMP_1280_mV	(0)
#define TXC_ATXAMP_1200_mV	(8)
#define TXC_ATXAMP_1120_mV	(12)
#define TXC_ATXAMP_1060_mV	(14)
#define TXC_ATXAMP_0820_mV	(25)
#define TXC_ATXAMP_0720_mV	(26)
#define TXC_ATXAMP_0580_mV	(27)
#define TXC_ATXAMP_0440_mV	(28)

#define TXC_ATXAMP_0820_BOTH	( (TXC_ATXAMP_0820_mV << TXC_ATXAMP_LANE02_LBN) | \
				  (TXC_ATXAMP_0820_mV << TXC_ATXAMP_LANE13_LBN) )

#define TXC_ATXAMP_DEFAULT	(0x6060) /* From databook */

/* Preemphasis on lanes 0+1, 2+3 */
#define  TXC_ALRGS_ATXPRE0	(0xc043)
#define  TXC_ALRGS_ATXPRE1	(0xc044)

#define TXC_ATXPRE_NONE (0)
#define TXC_ATXPRE_DEFAULT	(0x1010) /* From databook */

#define TXC_REQUIRED_DEVS ( MDIO_MMDREG_DEVS0_PCS    |	       \
			    MDIO_MMDREG_DEVS0_PMAPMD |	       \
			    MDIO_MMDREG_DEVS0_PHYXS )

static int
falcon_txc_logic_reset ( struct efab_nic *efab )
{
	int val;
	int tries = 50;

	val = falcon_mdio_read ( efab, MDIO_MMD_PCS, TXC_GLRGS_GLCMD );
	val |= (1 << TXC_GLCMD_LMTSWRST_LBN);
	falcon_mdio_write ( efab, MDIO_MMD_PCS, TXC_GLRGS_GLCMD, val );

	while ( tries--) {
		val = falcon_mdio_read ( efab, MDIO_MMD_PCS, TXC_GLRGS_GLCMD );
		if ( ~val & ( 1 << TXC_GLCMD_LMTSWRST_LBN ) )
			return 0;
		udelay(1);
	}

	EFAB_ERR ( "logic reset failed\n" );

	return -ETIMEDOUT;
}

static int
falcon_txc_phy_init ( struct efab_nic *efab )
{
	int rc;

	/* CX4 is always 10000FD only */
	efab->link_options = LPA_EF_10000FULL;

	/* reset the phy */
	rc = mdio_clause45_reset_mmd ( efab, MDIO_MMD_PMAPMD );
	if ( rc )
		goto fail1;

	rc = mdio_clause45_check_mmds ( efab );
	if ( rc )
		goto fail2;

	/* Turn amplitude down and preemphasis off on the host side
	 * (PHY<->MAC) as this is believed less likely to upset falcon
	 * and no adverse effects have been noted. It probably also 
	 * saves a picowatt or two */

	/* Turn off preemphasis */
	falcon_mdio_write ( efab, MDIO_MMD_PHYXS, TXC_ALRGS_ATXPRE0,
			    TXC_ATXPRE_NONE );
	falcon_mdio_write ( efab, MDIO_MMD_PHYXS, TXC_ALRGS_ATXPRE1,
			    TXC_ATXPRE_NONE );

	/* Turn down the amplitude */
	falcon_mdio_write ( efab, MDIO_MMD_PHYXS, TXC_ALRGS_ATXAMP0,
			    TXC_ATXAMP_0820_BOTH );
	falcon_mdio_write ( efab, MDIO_MMD_PHYXS, TXC_ALRGS_ATXAMP1,
			    TXC_ATXAMP_0820_BOTH );

	/* Set the line side amplitude and preemphasis to the databook
	 * defaults as an erratum causes them to be 0 on at least some
	 * PHY rev.s */
	falcon_mdio_write ( efab, MDIO_MMD_PMAPMD, TXC_ALRGS_ATXPRE0,
			    TXC_ATXPRE_DEFAULT );
	falcon_mdio_write ( efab, MDIO_MMD_PMAPMD, TXC_ALRGS_ATXPRE1,
			    TXC_ATXPRE_DEFAULT );
	falcon_mdio_write ( efab, MDIO_MMD_PMAPMD, TXC_ALRGS_ATXAMP0,
			    TXC_ATXAMP_DEFAULT );
	falcon_mdio_write ( efab, MDIO_MMD_PMAPMD, TXC_ALRGS_ATXAMP1,
			    TXC_ATXAMP_DEFAULT );

	rc = falcon_txc_logic_reset ( efab );
	if ( rc )
		goto fail3;

	return 0;

fail3:
fail2:
fail1:
	return rc;
}

static struct efab_phy_operations falcon_txc_phy_ops = {
	.init                   = falcon_txc_phy_init,
	.mmds                   = TXC_REQUIRED_DEVS,
};

/*******************************************************************************
 *
 *
 * tenxpress
 *
 *
 *******************************************************************************/


#define TENXPRESS_REQUIRED_DEVS ( MDIO_MMDREG_DEVS0_PMAPMD |	\
				  MDIO_MMDREG_DEVS0_PCS    |	\
				  MDIO_MMDREG_DEVS0_PHYXS )

#define	PCS_TEST_SELECT_REG 0xd807	/* PRM 10.5.8 */
#define	CLK312_EN_LBN 3
#define	CLK312_EN_WIDTH 1

#define PCS_CLOCK_CTRL_REG 0xd801
#define PLL312_RST_N_LBN 2

/* Special Software reset register */
#define PMA_PMD_EXT_CTRL_REG 49152
#define PMA_PMD_EXT_SSR_LBN 15

/* Boot status register */
#define PCS_BOOT_STATUS_REG	0xd000
#define PCS_BOOT_FATAL_ERR_LBN	0
#define PCS_BOOT_PROGRESS_LBN	1
#define PCS_BOOT_PROGRESS_WIDTH	2
#define PCS_BOOT_COMPLETE_LBN	3

#define PCS_SOFT_RST2_REG 0xd806
#define SERDES_RST_N_LBN 13
#define XGXS_RST_N_LBN 12

static int
falcon_tenxpress_check_c11 ( struct efab_nic *efab )
{
	int count;
	uint32_t boot_stat;

	/* Check that the C11 CPU has booted */
	for (count=0; count<10; count++) {
		boot_stat = falcon_mdio_read ( efab, MDIO_MMD_PCS,
					       PCS_BOOT_STATUS_REG );
		if ( boot_stat & ( 1 << PCS_BOOT_COMPLETE_LBN ) )
			return 0;

		udelay(10);
	}

	EFAB_ERR ( "C11 failed to boot\n" );
	return -ETIMEDOUT;
}

static int
falcon_tenxpress_phy_init ( struct efab_nic *efab )
{
	int rc, reg;

	/* 10XPRESS is always 10000FD (at the moment) */
	efab->link_options = LPA_EF_10000FULL;

	/* Wait for the blocks to come out of reset */
	rc = mdio_clause45_wait_reset_mmds ( efab );
	if ( rc )
		goto fail1;

	rc = mdio_clause45_check_mmds ( efab );
	if ( rc )
		goto fail2;

	/* Turn on the clock  */
	reg = (1 << CLK312_EN_LBN);
	falcon_mdio_write ( efab, MDIO_MMD_PCS, PCS_TEST_SELECT_REG, reg);

	/* Wait 200ms for the PHY to boot */
	mdelay(200);

	rc = falcon_tenxpress_check_c11 ( efab );
	if ( rc )
		goto fail3;

	return 0;

fail3:
fail2:
fail1:
	return rc;
}

static struct efab_phy_operations falcon_tenxpress_phy_ops = {
	.init                   = falcon_tenxpress_phy_init,
	.mmds                   = TENXPRESS_REQUIRED_DEVS,
};

/*******************************************************************************
 *
 *
 * PM8358
 *
 *
 *******************************************************************************/

/* The PM8358 just presents a DTE XS */
#define PM8358_REQUIRED_DEVS (MDIO_MMDREG_DEVS0_DTEXS)

/* PHY-specific definitions */
/* Master ID and Global Performance Monitor Update */
#define PMC_MASTER_REG (0xd000)
/* Analog Tx Rx settings under software control */
#define PMC_MASTER_ANLG_CTRL (1<< 11)

/* Master Configuration register 2 */
#define PMC_MCONF2_REG	(0xd002)
/* Drive Tx off centre of data eye (1) vs. clock edge (0) */
#define	PMC_MCONF2_TEDGE (1 << 2) 
/* Drive Rx off centre of data eye (1) vs. clock edge (0) */
#define PMC_MCONF2_REDGE (1 << 3)

/* Analog Rx settings */
#define PMC_ANALOG_RX_CFG0   (0xd025)
#define PMC_ANALOG_RX_CFG1   (0xd02d)
#define PMC_ANALOG_RX_CFG2   (0xd035)
#define PMC_ANALOG_RX_CFG3   (0xd03d)


#define PMC_ANALOG_RX_TERM     (1 << 15) /* Bit 15 of RX CFG: 0 for 100 ohms float,
					    1 for 50 to 1.2V */
#define PMC_ANALOG_RX_EQ_MASK (3 << 8)
#define PMC_ANALOG_RX_EQ_NONE (0 << 8)
#define PMC_ANALOG_RX_EQ_HALF (1 << 8)
#define PMC_ANALOG_RX_EQ_FULL (2 << 8)
#define PMC_ANALOG_RX_EQ_RSVD (3 << 8)

static int
falcon_pm8358_phy_init ( struct efab_nic *efab )
{
	int rc, reg, i;

	/* This is a XAUI retimer part */
	efab->link_options = LPA_EF_10000FULL;

	rc = mdio_clause45_reset_mmd ( efab, MDIO_MMDREG_DEVS0_DTEXS );
	if ( rc )
		return rc;
	
	/* Enable software control of analogue settings */
	reg = falcon_mdio_read ( efab, MDIO_MMD_DTEXS,  PMC_MASTER_REG );
	reg |= PMC_MASTER_ANLG_CTRL;
	falcon_mdio_write ( efab, MDIO_MMD_DTEXS, PMC_MASTER_REG, reg );

	/* Turn rx eq on for all channels */
	for (i=0; i< 3; i++) {
		/* The analog CFG registers are evenly spaced 8 apart */
		uint16_t addr = PMC_ANALOG_RX_CFG0 + 8*i;
		reg = falcon_mdio_read ( efab, MDIO_MMD_DTEXS, addr );
		reg = ( reg & ~PMC_ANALOG_RX_EQ_MASK ) | PMC_ANALOG_RX_EQ_FULL;
		falcon_mdio_write ( efab, MDIO_MMD_DTEXS, addr, reg );
	}

	/* Set TEDGE, clear REDGE */
	reg = falcon_mdio_read ( efab, MDIO_MMD_DTEXS, PMC_MCONF2_REG );
	reg = ( reg & ~PMC_MCONF2_REDGE) | PMC_MCONF2_TEDGE;
	falcon_mdio_write ( efab, MDIO_MMD_DTEXS, PMC_MCONF2_REG, reg );

	return 0;
}

static struct efab_phy_operations falcon_pm8358_phy_ops = {
	.init                   = falcon_pm8358_phy_init,
	.mmds                   = PM8358_REQUIRED_DEVS,
};

/*******************************************************************************
 *
 *
 * SFE4001 support
 *
 *
 *******************************************************************************/

#define MAX_TEMP_THRESH 90

/* I2C Expander */
#define PCA9539 0x74

#define P0_IN 0x00
#define P0_OUT 0x02
#define P0_CONFIG 0x06

#define P0_EN_1V0X_LBN 0
#define P0_EN_1V0X_WIDTH 1
#define P0_EN_1V2_LBN 1
#define P0_EN_1V2_WIDTH 1
#define P0_EN_2V5_LBN 2
#define P0_EN_2V5_WIDTH 1
#define P0_EN_3V3X_LBN 3
#define P0_EN_3V3X_WIDTH 1
#define P0_EN_5V_LBN 4
#define P0_EN_5V_WIDTH 1
#define P0_X_TRST_LBN 6
#define P0_X_TRST_WIDTH 1

#define P1_IN 0x01
#define P1_CONFIG 0x07

#define P1_AFE_PWD_LBN 0
#define P1_AFE_PWD_WIDTH 1
#define P1_DSP_PWD25_LBN 1
#define P1_DSP_PWD25_WIDTH 1
#define P1_SPARE_LBN 4
#define P1_SPARE_WIDTH 4

/* Temperature Sensor */
#define MAX6647	0x4e

#define RSL	0x02
#define RLHN	0x05
#define WLHO	0x0b

static struct i2c_device i2c_pca9539 = {
	.dev_addr = PCA9539,
	.dev_addr_len = 1,
	.word_addr_len = 1,
};


static struct i2c_device i2c_max6647 = {
	.dev_addr = MAX6647,
	.dev_addr_len = 1,
	.word_addr_len = 1,
};

static int
sfe4001_init ( struct efab_nic *efab )
{
	struct i2c_interface *i2c = &efab->i2c_bb.i2c;
	efab_dword_t reg;
	uint8_t in, cfg, out;
	int count, rc;

	EFAB_LOG ( "Initialise SFE4001 board\n" );

	/* Ensure XGXS and XAUI SerDes are held in reset */
	EFAB_POPULATE_DWORD_7 ( reg,
				FCN_XX_PWRDNA_EN, 1,
				FCN_XX_PWRDNB_EN, 1,
				FCN_XX_RSTPLLAB_EN, 1,
				FCN_XX_RESETA_EN, 1,
				FCN_XX_RESETB_EN, 1,
				FCN_XX_RSTXGXSRX_EN, 1,
				FCN_XX_RSTXGXSTX_EN, 1 );
	falcon_xmac_writel ( efab, &reg, FCN_XX_PWR_RST_REG_MAC);
	udelay(10);

	/* Set DSP over-temperature alert threshold */
	cfg = MAX_TEMP_THRESH;
	rc = i2c->write ( i2c, &i2c_max6647, WLHO, &cfg, EFAB_BYTE );
	if ( rc )
		goto fail1;

	/* Read it back and verify */
	rc = i2c->read ( i2c, &i2c_max6647, RLHN, &in, EFAB_BYTE );
	if ( rc )
		goto fail2;

	if ( in != MAX_TEMP_THRESH ) {
		EFAB_ERR ( "Unable to verify MAX6647 limit (requested=%d "
			   "confirmed=%d)\n", cfg, in );
		rc = -EIO;
		goto fail3;
	}

	/* Clear any previous over-temperature alert */
	rc = i2c->read ( i2c, &i2c_max6647, RSL, &in, EFAB_BYTE );
	if ( rc )
		goto fail4;

	/* Enable port 0 and 1 outputs on IO expander */
	cfg = 0x00;
	rc = i2c->write ( i2c, &i2c_pca9539, P0_CONFIG, &cfg, EFAB_BYTE );
	if ( rc )
		goto fail5;
	cfg = 0xff & ~(1 << P1_SPARE_LBN);
	rc = i2c->write ( i2c, &i2c_pca9539, P1_CONFIG, &cfg, EFAB_BYTE );
	if ( rc )
		goto fail6;

	/* Turn all power off then wait 1 sec. This ensures PHY is reset */
	out = 0xff & ~((0 << P0_EN_1V2_LBN) | (0 << P0_EN_2V5_LBN) |
		       (0 << P0_EN_3V3X_LBN) | (0 << P0_EN_5V_LBN) |
		       (0 << P0_EN_1V0X_LBN));

	rc = i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE );
	if ( rc )
		goto fail7;

	mdelay(1000);

	for (count=0; count<20; count++) {
		/* Turn on 1.2V, 2.5V, 3.3V and 5V power rails */
		out = 0xff & ~( (1 << P0_EN_1V2_LBN)  | (1 << P0_EN_2V5_LBN) |
				(1 << P0_EN_3V3X_LBN) | (1 << P0_EN_5V_LBN)  | 
				(1 << P0_X_TRST_LBN) );

		rc = i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE );
		if ( rc )
			goto fail8;

		mdelay ( 10 );
		
		/* Turn on the 1V power rail */
		out  &= ~( 1 << P0_EN_1V0X_LBN );
		rc = i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE );
		if ( rc )
			goto fail9;

		EFAB_LOG ( "Waiting for power...(attempt %d)\n", count);
		mdelay ( 1000 );

		/* Check DSP is powered */
		rc = i2c->read ( i2c, &i2c_pca9539, P1_IN, &in, EFAB_BYTE );
		if ( rc )
			goto fail10;

		if ( in & ( 1 << P1_AFE_PWD_LBN ) )
			return 0;
	}

	rc = -ETIMEDOUT;

fail10:
fail9:
fail8:
fail7:
	/* Turn off power rails */
	out = 0xff;
	(void) i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE );
	/* Disable port 1 outputs on IO expander */
	out = 0xff;
	(void) i2c->write ( i2c, &i2c_pca9539, P1_CONFIG, &out, EFAB_BYTE );
fail6:
	/* Disable port 0 outputs */
	out = 0xff;
	(void) i2c->write ( i2c, &i2c_pca9539, P1_CONFIG, &out, EFAB_BYTE );
fail5:
fail4:
fail3:
fail2:
fail1:
	EFAB_ERR ( "Failed initialising SFE4001 board\n" );
	return rc;
}

static void
sfe4001_fini ( struct efab_nic *efab )
{
	struct i2c_interface *i2c = &efab->i2c_bb.i2c;
	uint8_t in, cfg, out;

	EFAB_ERR ( "Turning off SFE4001\n" );

	/* Turn off all power rails */
	out = 0xff;
	(void) i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE );

	/* Disable port 1 outputs on IO expander */
	cfg = 0xff;
	(void) i2c->write ( i2c, &i2c_pca9539, P1_CONFIG, &cfg, EFAB_BYTE );

	/* Disable port 0 outputs on IO expander */
	cfg = 0xff;
	(void) i2c->write ( i2c, &i2c_pca9539, P0_CONFIG, &cfg, EFAB_BYTE );

	/* Clear any over-temperature alert */
	(void) i2c->read ( i2c, &i2c_max6647, RSL, &in, EFAB_BYTE );
}

struct efab_board_operations sfe4001_ops = {
	.init		= sfe4001_init,
	.fini		= sfe4001_fini,
};

static int sfe4002_init ( struct efab_nic *efab __attribute__((unused)) )
{
	return 0;
}
static void sfe4002_fini ( struct efab_nic *efab __attribute__((unused)) )
{
}

struct efab_board_operations sfe4002_ops = {
	.init		= sfe4002_init,
	.fini		= sfe4002_fini,
};

static int sfe4003_init ( struct efab_nic *efab __attribute__((unused)) )
{
	return 0;
}
static void sfe4003_fini ( struct efab_nic *efab __attribute__((unused)) )
{
}

struct efab_board_operations sfe4003_ops = {
	.init		= sfe4003_init,
	.fini		= sfe4003_fini,
};

/*******************************************************************************
 *
 *
 * Hardware initialisation
 *
 *
 *******************************************************************************/ 

static void
falcon_free_special_buffer ( void *p )
{
	/* We don't bother cleaning up the buffer table entries -
	 * we're hardly limited */
	free_dma ( p, EFAB_BUF_ALIGN );
}

static void*
falcon_alloc_special_buffer ( struct efab_nic *efab, int bytes,
			      struct efab_special_buffer *entry )
{
	void* buffer;
	int remaining;
	efab_qword_t buf_desc;
	unsigned long dma_addr;

	/* Allocate the buffer, aligned on a buffer address boundary */
	buffer = malloc_dma ( bytes, EFAB_BUF_ALIGN );
	if ( ! buffer )
		return NULL;

	/* Push buffer table entries to back the buffer */
	entry->id = efab->buffer_head;
	entry->dma_addr = dma_addr = virt_to_bus ( buffer );
	assert ( ( dma_addr & ( EFAB_BUF_ALIGN - 1 ) ) == 0 );

	remaining = bytes;
	while ( remaining > 0 ) {
		EFAB_POPULATE_QWORD_3 ( buf_desc,
					FCN_IP_DAT_BUF_SIZE, FCN_IP_DAT_BUF_SIZE_4K,
					FCN_BUF_ADR_FBUF, ( dma_addr >> 12 ),
					FCN_BUF_OWNER_ID_FBUF, 0 );

		falcon_write_sram ( efab, &buf_desc, efab->buffer_head );

		++efab->buffer_head;
		dma_addr += EFAB_BUF_ALIGN;
		remaining -= EFAB_BUF_ALIGN;
	}

	EFAB_TRACE ( "Allocated 0x%x bytes at %p backed by buffer table "
		     "entries 0x%x..0x%x\n", bytes, buffer, entry->id,
		     efab->buffer_head - 1 );

	return buffer;
}

static void
clear_b0_fpga_memories ( struct efab_nic *efab)
{
	efab_oword_t blanko, temp;
	efab_dword_t blankd;
	int offset; 

	EFAB_ZERO_OWORD ( blanko );
	EFAB_ZERO_DWORD ( blankd );

	/* Clear the address region register */
	EFAB_POPULATE_OWORD_4 ( temp,
				FCN_ADR_REGION0, 0,
				FCN_ADR_REGION1, ( 1 << 16 ),
				FCN_ADR_REGION2, ( 2 << 16 ),
				FCN_ADR_REGION3, ( 3 << 16 ) );
	falcon_write ( efab, &temp, FCN_ADR_REGION_REG_KER );
	
	EFAB_TRACE ( "Clearing filter and RSS tables\n" );

	for ( offset = FCN_RX_FILTER_TBL0 ;
	      offset < FCN_RX_RSS_INDIR_TBL_B0+0x800 ;
	      offset += 0x10 ) {
		falcon_write ( efab, &blanko, offset );
	}

	EFAB_TRACE ( "Wiping buffer tables\n" );

	/* Notice the 8 byte access mode */
	for ( offset = 0x2800000 ;
	      offset < 0x3000000 ;
	      offset += 0x8) {
		_falcon_writel ( efab, 0, offset );
		_falcon_writel ( efab, 0, offset + 4 );
		wmb();
	}
}

static int
falcon_reset ( struct efab_nic *efab )
{
	efab_oword_t glb_ctl_reg_ker;

	/* Initiate software reset */
	EFAB_POPULATE_OWORD_6 ( glb_ctl_reg_ker,
				FCN_PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
				FCN_PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
				FCN_PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
				FCN_EE_RST_CTL, EXCLUDE_FROM_RESET,
				FCN_EXT_PHY_RST_DUR, 0x7, /* 10ms */
				FCN_SWRST, 1 );

	falcon_write ( efab, &glb_ctl_reg_ker, FCN_GLB_CTL_REG_KER );

	/* Allow 50ms for reset */
	mdelay ( 50 );

	/* Check for device reset complete */
	falcon_read ( efab, &glb_ctl_reg_ker, FCN_GLB_CTL_REG_KER );
	if ( EFAB_OWORD_FIELD ( glb_ctl_reg_ker, FCN_SWRST ) != 0 ) {
		EFAB_ERR ( "Reset failed\n" );
		return -ETIMEDOUT;
	}

	if ( ( efab->pci_revision == FALCON_REV_B0 ) && !efab->is_asic ) {
		clear_b0_fpga_memories ( efab );
	}

	return 0;
}

/** Offset of MAC address within EEPROM or Flash */
#define FALCON_MAC_ADDRESS_OFFSET 0x310

/*
 * Falcon EEPROM structure
 */
#define SF_NV_CONFIG_BASE 0x300
#define SF_NV_CONFIG_EXTRA 0xA0

struct falcon_nv_config_ver2 {
	uint16_t nports;
	uint8_t  port0_phy_addr;
	uint8_t  port0_phy_type;
	uint8_t  port1_phy_addr;
	uint8_t  port1_phy_type;
	uint16_t asic_sub_revision;
	uint16_t board_revision;
	uint8_t mac_location;
};

struct falcon_nv_extra {
	uint16_t magicnumber;
	uint16_t structure_version;
	uint16_t checksum;
	union {
		struct falcon_nv_config_ver2 ver2;
	} ver_specific;
};

#define BOARD_TYPE(_rev) (_rev >> 8)

static void
falcon_probe_nic_variant ( struct efab_nic *efab, struct pci_device *pci )
{
	efab_oword_t altera_build, nic_stat;
	int is_pcie, fpga_version;
	uint8_t revision;

	/* PCI revision */
	pci_read_config_byte ( pci, PCI_CLASS_REVISION, &revision );
	efab->pci_revision = revision;

	/* Asic vs FPGA */
	falcon_read ( efab, &altera_build, FCN_ALTERA_BUILD_REG_KER );
	fpga_version = EFAB_OWORD_FIELD ( altera_build, FCN_VER_ALL );
	efab->is_asic = (fpga_version == 0);

	/* MAC and PCI type */
	falcon_read ( efab, &nic_stat, FCN_NIC_STAT_REG );
	if ( efab->pci_revision == FALCON_REV_B0 ) {
		is_pcie = 1;
		efab->phy_10g = EFAB_OWORD_FIELD ( nic_stat, FCN_STRAP_10G );
	}
	else if ( efab->is_asic ) {
		is_pcie = EFAB_OWORD_FIELD ( nic_stat, FCN_STRAP_PCIE );
		efab->phy_10g = EFAB_OWORD_FIELD ( nic_stat, FCN_STRAP_10G );
	}
	else {
		int minor = EFAB_OWORD_FIELD ( altera_build,  FCN_VER_MINOR );
		is_pcie = 0;
		efab->phy_10g = ( minor == 0x14 );
	}
}

static void
falcon_init_spi_device ( struct efab_nic *efab, struct spi_device *spi )
{
	/* Falcon's SPI interface only supports reads/writes of up to 16 bytes.
	 * Reduce the nvs block size down to satisfy this - which means callers
	 * should use the nvs_* functions rather than spi_*. */
	if ( spi->nvs.block_size > FALCON_SPI_MAX_LEN )
		spi->nvs.block_size = FALCON_SPI_MAX_LEN;

	spi->bus = &efab->spi_bus;
	efab->spi = spi;
}

static int
falcon_probe_spi ( struct efab_nic *efab )
{
	efab_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
	int has_flash, has_eeprom, ad9bit;

	falcon_read ( efab, &nic_stat, FCN_NIC_STAT_REG );
	falcon_read ( efab, &gpio_ctl, FCN_GPIO_CTL_REG_KER );
	falcon_read ( efab, &ee_vpd_cfg, FCN_EE_VPD_CFG_REG );

	/* determine if FLASH / EEPROM is present */
	if ( ( efab->pci_revision >= FALCON_REV_B0 ) || efab->is_asic ) {
		has_flash = EFAB_OWORD_FIELD ( nic_stat, FCN_SF_PRST );
		has_eeprom = EFAB_OWORD_FIELD ( nic_stat, FCN_EE_PRST );
	} else {
		has_flash = EFAB_OWORD_FIELD ( gpio_ctl, FCN_FLASH_PRESENT );
		has_eeprom = EFAB_OWORD_FIELD ( gpio_ctl, FCN_EEPROM_PRESENT );
	}
	ad9bit = EFAB_OWORD_FIELD ( ee_vpd_cfg, FCN_EE_VPD_EN_AD9_MODE );

	/* Configure the SPI and I2C bus */
	efab->spi_bus.rw = falcon_spi_rw;
	init_i2c_bit_basher ( &efab->i2c_bb, &falcon_i2c_bit_ops );

	/* Configure the EEPROM SPI device. Generally, an Atmel 25040
	 * (or similar) is used, but this is only possible if there is also
	 * a flash device present to store the boot-time chip configuration.
	 */
	if ( has_eeprom ) {
		if ( has_flash && ad9bit )
			init_at25040 ( &efab->spi_eeprom );
		else
			init_mc25xx640 ( &efab->spi_eeprom );
		falcon_init_spi_device ( efab, &efab->spi_eeprom );
	}

	/* Configure the FLASH SPI device */
	if ( has_flash ) {
		init_at25f1024 ( &efab->spi_flash );
		falcon_init_spi_device ( efab, &efab->spi_flash );
	}

	EFAB_LOG ( "flash is %s, EEPROM is %s%s\n",
		   ( has_flash ? "present" : "absent" ),
		   ( has_eeprom ? "present " : "absent" ),
		   ( has_eeprom ? (ad9bit ? "(9bit)" : "(16bit)") : "") );

	/* The device MUST have flash or eeprom */
	if ( ! efab->spi ) {
		EFAB_ERR ( "Device appears to have no flash or eeprom\n" );
		return -EIO;
	}

	/* If the device has EEPROM attached, then advertise NVO space */
	if ( has_eeprom )
		nvo_init ( &efab->nvo, &efab->spi_eeprom.nvs, falcon_nvo_fragments,
			   &efab->netdev->refcnt );

	return 0;
}

static int
falcon_probe_nvram ( struct efab_nic *efab )
{
	struct nvs_device *nvs = &efab->spi->nvs;
	struct falcon_nv_extra nv;
	int rc, board_revision;

	/* Read the MAC address */
	rc = nvs_read ( nvs, FALCON_MAC_ADDRESS_OFFSET,
			efab->mac_addr, ETH_ALEN );
	if ( rc )
		return rc;

	/* Poke through the NVRAM structure for the PHY type. */
	rc = nvs_read ( nvs, SF_NV_CONFIG_BASE + SF_NV_CONFIG_EXTRA,
			&nv, sizeof ( nv ) );
	if ( rc )
		return rc;

	/* Handle each supported NVRAM version */
	if ( ( le16_to_cpu ( nv.magicnumber ) == FCN_NV_MAGIC_NUMBER ) &&
	     ( le16_to_cpu ( nv.structure_version ) >= 2 ) ) {
		struct falcon_nv_config_ver2* ver2 = &nv.ver_specific.ver2;
		
		/* Get the PHY type */
		efab->phy_addr = le16_to_cpu ( ver2->port0_phy_addr );
		efab->phy_type = le16_to_cpu ( ver2->port0_phy_type );
		board_revision = le16_to_cpu ( ver2->board_revision );
	}
	else {
		EFAB_ERR ( "NVram is not recognised\n" );
		return -EINVAL;
	}

	efab->board_type = BOARD_TYPE ( board_revision );
	
	EFAB_TRACE ( "Falcon board %d phy %d @ addr %d\n",
		     efab->board_type, efab->phy_type, efab->phy_addr );

	/* Patch in the board operations */
	switch ( efab->board_type ) {
	case EFAB_BOARD_SFE4001:
		efab->board_op = &sfe4001_ops;
		break;
	case EFAB_BOARD_SFE4002:
		efab->board_op = &sfe4002_ops;
		break;
	case EFAB_BOARD_SFE4003:
		efab->board_op = &sfe4003_ops;
		break;
	default:
		EFAB_ERR ( "Unrecognised board type\n" );
		return -EINVAL;
	}

	/* Patch in MAC operations */
	if ( efab->phy_10g )
		efab->mac_op = &falcon_xmac_operations;
	else
		efab->mac_op = &falcon_gmac_operations;

	/* Hook in the PHY ops */
	switch ( efab->phy_type ) {
	case PHY_TYPE_10XPRESS:
		efab->phy_op = &falcon_tenxpress_phy_ops;
		break;
	case PHY_TYPE_CX4:
		efab->phy_op = &falcon_xaui_phy_ops;
		break;
	case PHY_TYPE_XFP:
		efab->phy_op = &falcon_xfp_phy_ops;
		break;
	case PHY_TYPE_CX4_RTMR:
		efab->phy_op = &falcon_txc_phy_ops;
		break;
	case PHY_TYPE_PM8358:
		efab->phy_op = &falcon_pm8358_phy_ops;
		break;
	case PHY_TYPE_1GIG_ALASKA:
		efab->phy_op = &falcon_alaska_phy_ops;
		break;
	default:
		EFAB_ERR ( "Unknown PHY type: %d\n", efab->phy_type );
		return -EINVAL;
	}

	return 0;
}

static int
falcon_init_sram ( struct efab_nic *efab )
{
	efab_oword_t reg;
	int count;

	/* use card in internal SRAM mode */
	falcon_read ( efab, &reg, FCN_NIC_STAT_REG );
	EFAB_SET_OWORD_FIELD ( reg, FCN_ONCHIP_SRAM, 1 );
	falcon_write ( efab, &reg, FCN_NIC_STAT_REG );

	/* Deactivate any external SRAM that might be present */
	EFAB_POPULATE_OWORD_2 ( reg, 
				FCN_GPIO1_OEN, 1,
				FCN_GPIO1_OUT, 1 );
	falcon_write ( efab, &reg, FCN_GPIO_CTL_REG_KER );

	/* Initiate SRAM reset */
	EFAB_POPULATE_OWORD_2 ( reg,
				FCN_SRAM_OOB_BT_INIT_EN, 1,
				FCN_SRM_NUM_BANKS_AND_BANK_SIZE, 0 );
	falcon_write ( efab, &reg, FCN_SRM_CFG_REG_KER );

	/* Wait for SRAM reset to complete */
	count = 0;
	do {
		/* SRAM reset is slow; expect around 16ms */
		mdelay ( 20 );

		/* Check for reset complete */
		falcon_read ( efab, &reg, FCN_SRM_CFG_REG_KER );
		if ( !EFAB_OWORD_FIELD ( reg, FCN_SRAM_OOB_BT_INIT_EN ) )
			return 0;
	} while (++count < 20);	/* wait upto 0.4 sec */

	EFAB_ERR ( "timed out waiting for SRAM reset\n");
	return -ETIMEDOUT;
}

static void
falcon_setup_nic ( struct efab_nic *efab )
{
	efab_dword_t timer_cmd;
	efab_oword_t reg;
	int tx_fc, xoff_thresh, xon_thresh;

	/* bug5129: Clear the parity enables on the TX data fifos as 
	 * they produce false parity errors because of timing issues 
	 */
	falcon_read ( efab, &reg, FCN_SPARE_REG_KER );
	EFAB_SET_OWORD_FIELD ( reg, FCN_MEM_PERR_EN_TX_DATA, 0 );
	falcon_write ( efab, &reg, FCN_SPARE_REG_KER );
	
	/* Set up TX and RX descriptor caches in SRAM */
	EFAB_POPULATE_OWORD_1 ( reg, FCN_SRM_TX_DC_BASE_ADR, 0x130000 );
	falcon_write ( efab, &reg, FCN_SRM_TX_DC_CFG_REG_KER );
	EFAB_POPULATE_OWORD_1 ( reg, FCN_TX_DC_SIZE, 1 /* 16 descriptors */ );
	falcon_write ( efab, &reg, FCN_TX_DC_CFG_REG_KER );
	EFAB_POPULATE_OWORD_1 ( reg, FCN_SRM_RX_DC_BASE_ADR, 0x100000 );
	falcon_write ( efab, &reg, FCN_SRM_RX_DC_CFG_REG_KER );
	EFAB_POPULATE_OWORD_1 ( reg, FCN_RX_DC_SIZE, 2 /* 32 descriptors */ );
	falcon_write ( efab, &reg, FCN_RX_DC_CFG_REG_KER );
	
	/* Set number of RSS CPUs
	 * bug7244: Increase filter depth to reduce RX_RESET likelyhood
	 */
	EFAB_POPULATE_OWORD_5 ( reg,
				FCN_NUM_KER, 0,
				FCN_UDP_FULL_SRCH_LIMIT, 8,
                                FCN_UDP_WILD_SRCH_LIMIT, 8,
                                FCN_TCP_WILD_SRCH_LIMIT, 8,
                                FCN_TCP_FULL_SRCH_LIMIT, 8);
	falcon_write ( efab, &reg, FCN_RX_FILTER_CTL_REG_KER );
	udelay ( 1000 );

	/* Setup RX.  Wait for descriptor is broken and must
	 * be disabled.  RXDP recovery shouldn't be needed, but is.
	 * disable ISCSI parsing because we don't need it
	 */
	falcon_read ( efab, &reg, FCN_RX_SELF_RST_REG_KER );
	EFAB_SET_OWORD_FIELD ( reg, FCN_RX_NODESC_WAIT_DIS, 1 );
	EFAB_SET_OWORD_FIELD ( reg, FCN_RX_RECOVERY_EN, 1 );
	EFAB_SET_OWORD_FIELD ( reg, FCN_RX_ISCSI_DIS, 1 );
	falcon_write ( efab, &reg, FCN_RX_SELF_RST_REG_KER );
	
	/* Determine recommended flow control settings. *
	 * Flow control is qualified on B0 and A1/1G, not on A1/10G */
	if ( efab->pci_revision == FALCON_REV_B0 ) {
		tx_fc = 1;
		xoff_thresh = 54272;  /* ~80Kb - 3*max MTU */
		xon_thresh = 27648; /* ~3*max MTU */
	}
	else if ( !efab->phy_10g ) {
		tx_fc = 1;
		xoff_thresh = 2048;
		xon_thresh = 512;
	}
	else {
		tx_fc = xoff_thresh = xon_thresh = 0;
	}

	/* Setup TX and RX */
	falcon_read ( efab, &reg, FCN_TX_CFG2_REG_KER );
	EFAB_SET_OWORD_FIELD ( reg, FCN_TX_DIS_NON_IP_EV, 1 );
	falcon_write ( efab, &reg, FCN_TX_CFG2_REG_KER );

	falcon_read ( efab, &reg, FCN_RX_CFG_REG_KER );
	EFAB_SET_OWORD_FIELD_VER ( efab, reg, FCN_RX_USR_BUF_SIZE,
				   (3*4096) / 32 );
	if ( efab->pci_revision == FALCON_REV_B0)
		EFAB_SET_OWORD_FIELD ( reg, FCN_RX_INGR_EN_B0, 1 );
	EFAB_SET_OWORD_FIELD_VER ( efab, reg, FCN_RX_XON_MAC_TH,
				   xon_thresh / 256);
	EFAB_SET_OWORD_FIELD_VER ( efab, reg, FCN_RX_XOFF_MAC_TH,
				   xoff_thresh / 256);
	EFAB_SET_OWORD_FIELD_VER ( efab, reg, FCN_RX_XOFF_MAC_EN, tx_fc);
	falcon_write ( efab, &reg, FCN_RX_CFG_REG_KER );

	/* Set timer register */
	EFAB_POPULATE_DWORD_2 ( timer_cmd,
				FCN_TIMER_MODE, FCN_TIMER_MODE_DIS,
				FCN_TIMER_VAL, 0 );
	falcon_writel ( efab, &timer_cmd, FCN_TIMER_CMD_REG_KER );
}

static void
falcon_init_resources ( struct efab_nic *efab )
{
	struct efab_ev_queue *ev_queue = &efab->ev_queue;
	struct efab_rx_queue *rx_queue = &efab->rx_queue;
	struct efab_tx_queue *tx_queue = &efab->tx_queue;

	efab_oword_t reg;
	int jumbo;

	/* Initialise the ptrs */
	tx_queue->read_ptr = tx_queue->write_ptr = 0;
	rx_queue->read_ptr = rx_queue->write_ptr = 0;
	ev_queue->read_ptr = 0;

	/* Push the event queue to the hardware */
	EFAB_POPULATE_OWORD_3 ( reg,
				FCN_EVQ_EN, 1,
				FCN_EVQ_SIZE, FQS(FCN_EVQ, EFAB_EVQ_SIZE),
				FCN_EVQ_BUF_BASE_ID, ev_queue->entry.id );
	falcon_write ( efab, &reg, 
		       FCN_REVISION_REG ( efab, FCN_EVQ_PTR_TBL_KER ) );
	
	/* Push the tx queue to the hardware */
	EFAB_POPULATE_OWORD_8 ( reg,
				FCN_TX_DESCQ_EN, 1,
				FCN_TX_ISCSI_DDIG_EN, 0,
				FCN_TX_ISCSI_DDIG_EN, 0,
				FCN_TX_DESCQ_BUF_BASE_ID, tx_queue->entry.id,
				FCN_TX_DESCQ_EVQ_ID, 0,
				FCN_TX_DESCQ_SIZE, FQS(FCN_TX_DESCQ, EFAB_TXD_SIZE),
				FCN_TX_DESCQ_TYPE, 0 /* kernel queue */,
				FCN_TX_NON_IP_DROP_DIS_B0, 1 );
	falcon_write ( efab, &reg, 
		       FCN_REVISION_REG ( efab, FCN_TX_DESC_PTR_TBL_KER ) );
	
	/* Push the rx queue to the hardware */
	jumbo = ( efab->pci_revision == FALCON_REV_B0 ) ? 0 : 1;
	EFAB_POPULATE_OWORD_8 ( reg,
				FCN_RX_ISCSI_DDIG_EN, 0,
				FCN_RX_ISCSI_HDIG_EN, 0,
				FCN_RX_DESCQ_BUF_BASE_ID, rx_queue->entry.id,
				FCN_RX_DESCQ_EVQ_ID, 0,
				FCN_RX_DESCQ_SIZE, FQS(FCN_RX_DESCQ, EFAB_RXD_SIZE),
				FCN_RX_DESCQ_TYPE, 0 /* kernel queue */,
				FCN_RX_DESCQ_JUMBO, jumbo,
				FCN_RX_DESCQ_EN, 1 );
	falcon_write ( efab, &reg,
		       FCN_REVISION_REG ( efab, FCN_RX_DESC_PTR_TBL_KER ) );

	/* Program INT_ADR_REG_KER */
	EFAB_POPULATE_OWORD_1 ( reg,
				FCN_INT_ADR_KER, virt_to_bus ( &efab->int_ker ) );
	falcon_write ( efab, &reg, FCN_INT_ADR_REG_KER );

	/* Ack the event queue */
	falcon_eventq_read_ack ( efab, ev_queue );
}

static void
falcon_fini_resources ( struct efab_nic *efab )
{
	efab_oword_t cmd;
	
	/* Disable interrupts */
	falcon_interrupts ( efab, 0, 0 );

	/* Flush the dma queues */
	EFAB_POPULATE_OWORD_2 ( cmd,
				FCN_TX_FLUSH_DESCQ_CMD, 1,
				FCN_TX_FLUSH_DESCQ, 0 );
	falcon_write ( efab, &cmd, 
		       FCN_REVISION_REG ( efab, FCN_TX_DESC_PTR_TBL_KER ) );

	EFAB_POPULATE_OWORD_2 ( cmd,
				FCN_RX_FLUSH_DESCQ_CMD, 1,
				FCN_RX_FLUSH_DESCQ, 0 );
	falcon_write ( efab, &cmd,
		       FCN_REVISION_REG ( efab, FCN_RX_DESC_PTR_TBL_KER ) );

	mdelay ( 100 );

	/* Remove descriptor rings from card */
	EFAB_ZERO_OWORD ( cmd );
	falcon_write ( efab, &cmd, 
		       FCN_REVISION_REG ( efab, FCN_TX_DESC_PTR_TBL_KER ) );
	falcon_write ( efab, &cmd, 
		       FCN_REVISION_REG ( efab, FCN_RX_DESC_PTR_TBL_KER ) );
	falcon_write ( efab, &cmd, 
		       FCN_REVISION_REG ( efab, FCN_EVQ_PTR_TBL_KER ) );
}

/*******************************************************************************
 *
 *
 * Hardware rx path
 *
 *
 *******************************************************************************/

static void
falcon_build_rx_desc ( falcon_rx_desc_t *rxd, struct io_buffer *iob )
{
	EFAB_POPULATE_QWORD_2 ( *rxd,
				FCN_RX_KER_BUF_SIZE, EFAB_RX_BUF_SIZE,
				FCN_RX_KER_BUF_ADR, virt_to_bus ( iob->data ) );
}

static void
falcon_notify_rx_desc ( struct efab_nic *efab, struct efab_rx_queue *rx_queue )
{
	efab_dword_t reg;
	int ptr = rx_queue->write_ptr % EFAB_RXD_SIZE;

	EFAB_POPULATE_DWORD_1 ( reg, FCN_RX_DESC_WPTR_DWORD, ptr );
	falcon_writel ( efab, &reg, FCN_RX_DESC_UPD_REG_KER_DWORD );
}


/*******************************************************************************
 *
 *
 * Hardware tx path
 *
 *
 *******************************************************************************/

static void
falcon_build_tx_desc ( falcon_tx_desc_t *txd, struct io_buffer *iob )
{
	EFAB_POPULATE_QWORD_2 ( *txd,
				FCN_TX_KER_BYTE_CNT, iob_len ( iob ),
				FCN_TX_KER_BUF_ADR, virt_to_bus ( iob->data ) );
}

static void
falcon_notify_tx_desc ( struct efab_nic *efab,
			struct efab_tx_queue *tx_queue )
{
	efab_dword_t reg;
	int ptr = tx_queue->write_ptr % EFAB_TXD_SIZE;

	EFAB_POPULATE_DWORD_1 ( reg, FCN_TX_DESC_WPTR_DWORD, ptr );
	falcon_writel ( efab, &reg, FCN_TX_DESC_UPD_REG_KER_DWORD );
}


/*******************************************************************************
 *
 *
 * Software receive interface
 *
 *
 *******************************************************************************/ 

static int
efab_fill_rx_queue ( struct efab_nic *efab,
		     struct efab_rx_queue *rx_queue )
{
	int fill_level = rx_queue->write_ptr - rx_queue->read_ptr;
	int space = EFAB_NUM_RX_DESC - fill_level - 1;
	int pushed = 0;

	while ( space ) {
		int buf_id = rx_queue->write_ptr % EFAB_NUM_RX_DESC;
		int desc_id = rx_queue->write_ptr % EFAB_RXD_SIZE;
		struct io_buffer *iob;
		falcon_rx_desc_t *rxd;

		assert ( rx_queue->buf[buf_id] == NULL );
		iob = alloc_iob ( EFAB_RX_BUF_SIZE );
		if ( !iob )
			break;

		EFAB_TRACE ( "pushing rx_buf[%d] iob %p data %p\n",
			     buf_id, iob, iob->data );

		rx_queue->buf[buf_id] = iob;
		rxd = rx_queue->ring + desc_id;
		falcon_build_rx_desc ( rxd, iob );
		++rx_queue->write_ptr;
		++pushed;
		--space;
	}

	if ( pushed ) {
		/* Push the ptr to hardware */
		falcon_notify_rx_desc ( efab, rx_queue );

		fill_level = rx_queue->write_ptr - rx_queue->read_ptr;
		EFAB_TRACE ( "pushed %d rx buffers to fill level %d\n",
			     pushed, fill_level );
	}

	if ( fill_level == 0 )
		return -ENOMEM;
	return 0;
}
	
static void
efab_receive ( struct efab_nic *efab, unsigned int id, int len, int drop )
{
	struct efab_rx_queue *rx_queue = &efab->rx_queue;
	struct io_buffer *iob;
	unsigned int read_ptr = rx_queue->read_ptr % EFAB_RXD_SIZE;
	unsigned int buf_ptr = rx_queue->read_ptr % EFAB_NUM_RX_DESC;

	assert ( id == read_ptr );
	
	/* Pop this rx buffer out of the software ring */
	iob = rx_queue->buf[buf_ptr];
	rx_queue->buf[buf_ptr] = NULL;

	EFAB_TRACE ( "popping rx_buf[%d] iob %p data %p with %d bytes %s\n",
		     id, iob, iob->data, len, drop ? "bad" : "ok" );

	/* Pass the packet up if required */
	if ( drop )
		free_iob ( iob );
	else {
		iob_put ( iob, len );
		netdev_rx ( efab->netdev, iob );
	}

	++rx_queue->read_ptr;
}

/*******************************************************************************
 *
 *
 * Software transmit interface
 *
 *
 *******************************************************************************/ 

static int
efab_transmit ( struct net_device *netdev, struct io_buffer *iob )
{
	struct efab_nic *efab = netdev_priv ( netdev );
	struct efab_tx_queue *tx_queue = &efab->tx_queue;
	int fill_level, space;
	falcon_tx_desc_t *txd;
	int buf_id;

	fill_level = tx_queue->write_ptr - tx_queue->read_ptr;
	space = EFAB_TXD_SIZE - fill_level - 1;
	if ( space < 1 )
		return -ENOBUFS;

	/* Save the iobuffer for later completion */
	buf_id = tx_queue->write_ptr % EFAB_TXD_SIZE;
	assert ( tx_queue->buf[buf_id] == NULL );
	tx_queue->buf[buf_id] = iob;

	EFAB_TRACE ( "tx_buf[%d] for iob %p data %p len %zd\n",
		     buf_id, iob, iob->data, iob_len ( iob ) );

	/* Form the descriptor, and push it to hardware */
	txd = tx_queue->ring + buf_id;
	falcon_build_tx_desc ( txd, iob );
	++tx_queue->write_ptr;
	falcon_notify_tx_desc ( efab, tx_queue );

	return 0;
}

static int
efab_transmit_done ( struct efab_nic *efab, int id )
{
	struct efab_tx_queue *tx_queue = &efab->tx_queue;
	unsigned int read_ptr, stop;

	/* Complete all buffers from read_ptr up to and including id */
	read_ptr = tx_queue->read_ptr % EFAB_TXD_SIZE;
	stop = ( id + 1 ) % EFAB_TXD_SIZE;

	while ( read_ptr != stop ) {
		struct io_buffer *iob = tx_queue->buf[read_ptr];
		assert ( iob );

		/* Complete the tx buffer */
		if ( iob )
			netdev_tx_complete ( efab->netdev, iob );
		tx_queue->buf[read_ptr] = NULL;
		
		++tx_queue->read_ptr;
		read_ptr = tx_queue->read_ptr % EFAB_TXD_SIZE;
	}

	return 0;
}

/*******************************************************************************
 *
 *
 * Hardware event path
 *
 *
 *******************************************************************************/

static void
falcon_clear_interrupts ( struct efab_nic *efab )
{
	efab_dword_t reg;

	if ( efab->pci_revision == FALCON_REV_B0 ) {
		/* read the ISR */
		falcon_readl( efab, &reg, INT_ISR0_B0 );
	}
	else {
		/* write to the INT_ACK register */
		falcon_writel ( efab, 0, FCN_INT_ACK_KER_REG_A1 );
		mb();
		falcon_readl ( efab, &reg,
			       WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1 );
	}
}

static void
falcon_handle_event ( struct efab_nic *efab, falcon_event_t *evt )
{
	int ev_code, desc_ptr, len, drop;

	/* Decode event */
	ev_code = EFAB_QWORD_FIELD ( *evt, FCN_EV_CODE );
	switch ( ev_code ) {
	case FCN_TX_IP_EV_DECODE:
		desc_ptr = EFAB_QWORD_FIELD ( *evt, FCN_TX_EV_DESC_PTR );
		efab_transmit_done ( efab, desc_ptr );
		break;
	
	case FCN_RX_IP_EV_DECODE:
		desc_ptr = EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_DESC_PTR );
		len = EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_BYTE_CNT );
		drop = !EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_PKT_OK );

		efab_receive ( efab, desc_ptr, len, drop );
		break;

	default:
		EFAB_TRACE ( "Unknown event type %d\n", ev_code );
		break;
	}
}

/*******************************************************************************
 *
 *
 * Software (polling) interrupt handler
 *
 *
 *******************************************************************************/

static void
efab_poll ( struct net_device *netdev )
{
	struct efab_nic *efab = netdev_priv ( netdev );
	struct efab_ev_queue *ev_queue = &efab->ev_queue;
	struct efab_rx_queue *rx_queue = &efab->rx_queue;
	falcon_event_t *evt;

	/* Read the event queue by directly looking for events
	 * (we don't even bother to read the eventq write ptr) */
	evt = ev_queue->ring + ev_queue->read_ptr;
	while ( falcon_event_present ( evt ) ) {
		
		EFAB_TRACE ( "Event at index 0x%x address %p is "
			     EFAB_QWORD_FMT "\n", ev_queue->read_ptr,
			     evt, EFAB_QWORD_VAL ( *evt ) );
		
		falcon_handle_event ( efab, evt );
		
		/* Clear the event */
		EFAB_SET_QWORD ( *evt );
	
		/* Move to the next event. We don't ack the event
		 * queue until the end */
		ev_queue->read_ptr = ( ( ev_queue->read_ptr + 1 ) %
				       EFAB_EVQ_SIZE );
		evt = ev_queue->ring + ev_queue->read_ptr;
	}

	/* Push more buffers if needed */
	(void) efab_fill_rx_queue ( efab, rx_queue );

	/* Clear any pending interrupts */
	falcon_clear_interrupts ( efab );

	/* Ack the event queue */
	falcon_eventq_read_ack ( efab, ev_queue );
}

static void
efab_irq ( struct net_device *netdev, int enable )
{
	struct efab_nic *efab = netdev_priv ( netdev );
	struct efab_ev_queue *ev_queue = &efab->ev_queue;

	switch ( enable ) {
	case 0:
		falcon_interrupts ( efab, 0, 0 );
		break;
	case 1:
		falcon_interrupts ( efab, 1, 0 );
		falcon_eventq_read_ack ( efab, ev_queue );
		break;
	case 2:
		falcon_interrupts ( efab, 1, 1 );
		break;
	}
}

/*******************************************************************************
 *
 *
 * Software open/close
 *
 *
 *******************************************************************************/

static void
efab_free_resources ( struct efab_nic *efab )
{
	struct efab_ev_queue *ev_queue = &efab->ev_queue;
	struct efab_rx_queue *rx_queue = &efab->rx_queue;
	struct efab_tx_queue *tx_queue = &efab->tx_queue;
	int i;

	for ( i = 0; i < EFAB_NUM_RX_DESC; i++ ) {
		if ( rx_queue->buf[i] )
			free_iob ( rx_queue->buf[i] );
	}

	for ( i = 0; i < EFAB_TXD_SIZE; i++ ) {
		if ( tx_queue->buf[i] )
			netdev_tx_complete ( efab->netdev,  tx_queue->buf[i] );
	}

	if ( rx_queue->ring )
		falcon_free_special_buffer ( rx_queue->ring );

	if ( tx_queue->ring )
		falcon_free_special_buffer ( tx_queue->ring );

	if ( ev_queue->ring )
		falcon_free_special_buffer ( ev_queue->ring );

	memset ( rx_queue, 0, sizeof ( *rx_queue ) );
	memset ( tx_queue, 0, sizeof ( *tx_queue ) );
	memset ( ev_queue, 0, sizeof ( *ev_queue ) );

	/* Ensure subsequent buffer allocations start at id 0 */
	efab->buffer_head = 0;
}

static int
efab_alloc_resources ( struct efab_nic *efab )
{
	struct efab_ev_queue *ev_queue = &efab->ev_queue;
	struct efab_rx_queue *rx_queue = &efab->rx_queue;
	struct efab_tx_queue *tx_queue = &efab->tx_queue;
	size_t bytes;

	/* Allocate the hardware event queue */
	bytes = sizeof ( falcon_event_t ) * EFAB_TXD_SIZE;
	ev_queue->ring = falcon_alloc_special_buffer ( efab, bytes,
						       &ev_queue->entry );
	if ( !ev_queue->ring )
		goto fail1;

	/* Initialise the hardware event queue */
	memset ( ev_queue->ring, 0xff, bytes );

	/* Allocate the hardware tx queue */
	bytes = sizeof ( falcon_tx_desc_t ) * EFAB_TXD_SIZE;
	tx_queue->ring = falcon_alloc_special_buffer ( efab, bytes,
						       &tx_queue->entry );
	if ( ! tx_queue->ring )
		goto fail2;

	/* Allocate the hardware rx queue */
	bytes = sizeof ( falcon_rx_desc_t ) * EFAB_RXD_SIZE;
	rx_queue->ring = falcon_alloc_special_buffer ( efab, bytes,
						       &rx_queue->entry );
	if ( ! rx_queue->ring )
		goto fail3;

	return 0;

fail3:
	falcon_free_special_buffer ( tx_queue->ring );
	tx_queue->ring = NULL;
fail2:
	falcon_free_special_buffer ( ev_queue->ring );
	ev_queue->ring = NULL;
fail1:
	return -ENOMEM;
}

static int
efab_init_mac ( struct efab_nic *efab )
{
	int count, rc;

	/* This can take several seconds */
	EFAB_LOG ( "Waiting for link..\n" );
	for ( count=0; count<5; count++ ) {
		rc = efab->mac_op->init ( efab );
		if ( rc ) {
			EFAB_ERR ( "Failed reinitialising MAC, error %s\n",
				strerror ( rc ));
			return rc;
		}

		/* Sleep for 2s to wait for the link to settle, either
		 * because we want to use it, or because we're about
		 * to reset the mac anyway
		 */
		sleep ( 2 );

		if ( ! efab->link_up ) {
			EFAB_ERR ( "!\n" );
			continue;
		}

		EFAB_LOG ( "\n%dMbps %s-duplex\n",
			   ( efab->link_options & LPA_EF_10000 ? 10000 :
			     ( efab->link_options & LPA_EF_1000 ? 1000 :
			       ( efab->link_options & LPA_100 ? 100 : 10 ) ) ),
			   ( efab->link_options & LPA_EF_DUPLEX ?
			     "full" : "half" ) );

		/* TODO: Move link state handling to the poll() routine */
		netdev_link_up ( efab->netdev );
		return 0;
	}

	EFAB_ERR ( "timed initialising MAC\n" );
	return -ETIMEDOUT;
}

static void
efab_close ( struct net_device *netdev )
{
	struct efab_nic *efab = netdev_priv ( netdev );

	falcon_fini_resources ( efab );
	efab_free_resources ( efab );
	efab->board_op->fini ( efab );
	falcon_reset ( efab );
}

static int
efab_open ( struct net_device *netdev )
{
	struct efab_nic *efab = netdev_priv ( netdev );
	struct efab_rx_queue *rx_queue = &efab->rx_queue;
	int rc;

	rc = falcon_reset ( efab );
	if ( rc )
		goto fail1;

	rc = efab->board_op->init ( efab );
	if ( rc )
		goto fail2;
	
	rc = falcon_init_sram ( efab );
	if ( rc )
		goto fail3;

	/* Configure descriptor caches before pushing hardware queues */
	falcon_setup_nic ( efab );

	rc = efab_alloc_resources ( efab );
	if ( rc )
		goto fail4;
	
	falcon_init_resources ( efab );

	/* Push rx buffers */
	rc = efab_fill_rx_queue ( efab, rx_queue );
	if ( rc )
		goto fail5;

	/* Try and bring the interface up */
	rc = efab_init_mac ( efab );
	if ( rc )
		goto fail6;

	return 0;

fail6:
fail5:
	efab_free_resources ( efab );
fail4:
fail3:
	efab->board_op->fini ( efab );
fail2:
	falcon_reset ( efab );
fail1:
	return rc;
}

static struct net_device_operations efab_operations = {
        .open           = efab_open,
        .close          = efab_close,
        .transmit       = efab_transmit,
        .poll           = efab_poll,
        .irq            = efab_irq,
};

static void
efab_remove ( struct pci_device *pci )
{
	struct net_device *netdev = pci_get_drvdata ( pci );
	struct efab_nic *efab = netdev_priv ( netdev );

	if ( efab->membase ) {
		falcon_reset ( efab );

		iounmap ( efab->membase );
		efab->membase = NULL;
	}

	if ( efab->nvo.nvs ) {
		unregister_nvo ( &efab->nvo );
		efab->nvo.nvs = NULL;
	}

	unregister_netdev ( netdev );
	netdev_nullify ( netdev );
	netdev_put ( netdev );
}

static int
efab_probe ( struct pci_device *pci,
	     const struct pci_device_id *id )
{
	struct net_device *netdev;
	struct efab_nic *efab;
	unsigned long mmio_start, mmio_len;
	int rc;

	/* Create the network adapter */
	netdev = alloc_etherdev ( sizeof ( struct efab_nic ) );
	if ( ! netdev ) {
		rc = -ENOMEM;
		goto fail1;
	}

	/* Initialise the network adapter, and initialise private storage */
	netdev_init ( netdev, &efab_operations );
	pci_set_drvdata ( pci, netdev );
	netdev->dev = &pci->dev;

	efab = netdev_priv ( netdev );
	memset ( efab, 0, sizeof ( *efab ) );
	efab->netdev = netdev;

	/* Get iobase/membase */
	mmio_start = pci_bar_start ( pci, PCI_BASE_ADDRESS_2 );
	mmio_len = pci_bar_size ( pci, PCI_BASE_ADDRESS_2 );
	efab->membase = ioremap ( mmio_start, mmio_len );
	EFAB_TRACE ( "BAR of %lx bytes at phys %lx mapped at %p\n",
		     mmio_len, mmio_start, efab->membase );

	/* Enable the PCI device */
	adjust_pci_device ( pci );
	efab->iobase = pci->ioaddr & ~3;

	/* Determine the NIC variant */
	falcon_probe_nic_variant ( efab, pci );

	/* Read the SPI interface and determine the MAC address,
	 * and the board and phy variant. Hook in the op tables */
	rc = falcon_probe_spi ( efab );
	if ( rc )
		goto fail2;
	rc = falcon_probe_nvram ( efab );
	if ( rc )
		goto fail3;

	memcpy ( netdev->hw_addr, efab->mac_addr, ETH_ALEN );

	netdev_link_up ( netdev );
	rc = register_netdev ( netdev );
	if ( rc )
		goto fail4;

	/* Advertise non-volatile storage */
	if ( efab->nvo.nvs ) {
		rc = register_nvo ( &efab->nvo, netdev_settings ( netdev ) );
		if ( rc )
			goto fail5;
	}

	EFAB_LOG ( "Found %s EtherFabric %s %s revision %d\n", id->name,
		   efab->is_asic ? "ASIC" : "FPGA",
		   efab->phy_10g ? "10G" : "1G",
		   efab->pci_revision );

	return 0;

fail5:
	unregister_netdev ( netdev );
fail4:
fail3:
fail2:
	iounmap ( efab->membase );
	efab->membase = NULL;
	netdev_put ( netdev );
fail1:
	return rc;
}


static struct pci_device_id efab_nics[] = {
	PCI_ROM(0x1924, 0x0703, "falcon", "EtherFabric Falcon", 0),
	PCI_ROM(0x1924, 0x0710, "falconb0", "EtherFabric FalconB0", 0),
};

struct pci_driver etherfabric_driver __pci_driver = {
	.ids = efab_nics,
	.id_count = sizeof ( efab_nics ) / sizeof ( efab_nics[0] ),
	.probe = efab_probe,
	.remove = efab_remove,
};

/*
 * Local variables:
 *  c-basic-offset: 8
 *  c-indent-level: 8
 *  tab-width: 8
 * End:
 */