1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
|
/* This file was automatically imported with
import_gcry.py. Please don't modify it */
#include <grub/dl.h>
GRUB_MOD_LICENSE ("GPLv3+");
/* rsa.c - RSA implementation
* Copyright (C) 1997, 1998, 1999 by Werner Koch (dd9jn)
* Copyright (C) 2000, 2001, 2002, 2003, 2008 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/* This code uses an algorithm protected by U.S. Patent #4,405,829
which expired on September 20, 2000. The patent holder placed that
patent into the public domain on Sep 6th, 2000.
*/
#include "g10lib.h"
#include "mpi.h"
#include "cipher.h"
typedef struct
{
gcry_mpi_t n; /* modulus */
gcry_mpi_t e; /* exponent */
} RSA_public_key;
typedef struct
{
gcry_mpi_t n; /* public modulus */
gcry_mpi_t e; /* public exponent */
gcry_mpi_t d; /* exponent */
gcry_mpi_t p; /* prime p. */
gcry_mpi_t q; /* prime q. */
gcry_mpi_t u; /* inverse of p mod q. */
} RSA_secret_key;
/* A sample 1024 bit RSA key used for the selftests. */
/* A sample 1024 bit RSA key used for the selftests (public only). */
static int check_secret_key (RSA_secret_key *sk);
static void public (gcry_mpi_t output, gcry_mpi_t input, RSA_public_key *skey);
/* Check that a freshly generated key actually works. Returns 0 on success. */
/* Callback used by the prime generation to test whether the exponent
is suitable. Returns 0 if the test has been passed. */
/****************
* Generate a key pair with a key of size NBITS.
* USE_E = 0 let Libcgrypt decide what exponent to use.
* = 1 request the use of a "secure" exponent; this is required by some
* specification to be 65537.
* > 2 Use this public exponent. If the given exponent
* is not odd one is internally added to it.
* TRANSIENT_KEY: If true, generate the primes using the standard RNG.
* Returns: 2 structures filled with all needed values
*/
/* Helper for generate_x931. */
/* Helper for generate_x931. */
/* Variant of the standard key generation code using the algorithm
from X9.31. Using this algorithm has the advantage that the
generation can be made deterministic which is required for CAVS
testing. */
/****************
* Test whether the secret key is valid.
* Returns: true if this is a valid key.
*/
static int
check_secret_key( RSA_secret_key *sk )
{
int rc;
gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(sk->p)*2 );
mpi_mul(temp, sk->p, sk->q );
rc = mpi_cmp( temp, sk->n );
mpi_free(temp);
return !rc;
}
/****************
* Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT.
*
* c = m^e mod n
*
* Where c is OUTPUT, m is INPUT and e,n are elements of PKEY.
*/
static void
public(gcry_mpi_t output, gcry_mpi_t input, RSA_public_key *pkey )
{
if( output == input ) /* powm doesn't like output and input the same */
{
gcry_mpi_t x = mpi_alloc( mpi_get_nlimbs(input)*2 );
mpi_powm( x, input, pkey->e, pkey->n );
mpi_set(output, x);
mpi_free(x);
}
else
mpi_powm( output, input, pkey->e, pkey->n );
}
#if 0
static void
stronger_key_check ( RSA_secret_key *skey )
{
gcry_mpi_t t = mpi_alloc_secure ( 0 );
gcry_mpi_t t1 = mpi_alloc_secure ( 0 );
gcry_mpi_t t2 = mpi_alloc_secure ( 0 );
gcry_mpi_t phi = mpi_alloc_secure ( 0 );
/* check that n == p * q */
mpi_mul( t, skey->p, skey->q);
if (mpi_cmp( t, skey->n) )
log_info ( "RSA Oops: n != p * q\n" );
/* check that p is less than q */
if( mpi_cmp( skey->p, skey->q ) > 0 )
{
log_info ("RSA Oops: p >= q - fixed\n");
_gcry_mpi_swap ( skey->p, skey->q);
}
/* check that e divides neither p-1 nor q-1 */
mpi_sub_ui(t, skey->p, 1 );
mpi_fdiv_r(t, t, skey->e );
if ( !mpi_cmp_ui( t, 0) )
log_info ( "RSA Oops: e divides p-1\n" );
mpi_sub_ui(t, skey->q, 1 );
mpi_fdiv_r(t, t, skey->e );
if ( !mpi_cmp_ui( t, 0) )
log_info ( "RSA Oops: e divides q-1\n" );
/* check that d is correct */
mpi_sub_ui( t1, skey->p, 1 );
mpi_sub_ui( t2, skey->q, 1 );
mpi_mul( phi, t1, t2 );
gcry_mpi_gcd(t, t1, t2);
mpi_fdiv_q(t, phi, t);
mpi_invm(t, skey->e, t );
if ( mpi_cmp(t, skey->d ) )
{
log_info ( "RSA Oops: d is wrong - fixed\n");
mpi_set (skey->d, t);
_gcry_log_mpidump (" fixed d", skey->d);
}
/* check for correctness of u */
mpi_invm(t, skey->p, skey->q );
if ( mpi_cmp(t, skey->u ) )
{
log_info ( "RSA Oops: u is wrong - fixed\n");
mpi_set (skey->u, t);
_gcry_log_mpidump (" fixed u", skey->u);
}
log_info ( "RSA secret key check finished\n");
mpi_free (t);
mpi_free (t1);
mpi_free (t2);
mpi_free (phi);
}
#endif
/****************
* Secret key operation. Encrypt INPUT with SKEY and put result into OUTPUT.
*
* m = c^d mod n
*
* Or faster:
*
* m1 = c ^ (d mod (p-1)) mod p
* m2 = c ^ (d mod (q-1)) mod q
* h = u * (m2 - m1) mod q
* m = m1 + h * p
*
* Where m is OUTPUT, c is INPUT and d,n,p,q,u are elements of SKEY.
*/
/* Perform RSA blinding. */
/* Undo RSA blinding. */
/*********************************************
************** interface ******************
*********************************************/
#define rsa_generate 0
static gcry_err_code_t
rsa_check_secret_key (int algo, gcry_mpi_t *skey)
{
gcry_err_code_t err = GPG_ERR_NO_ERROR;
RSA_secret_key sk;
(void)algo;
sk.n = skey[0];
sk.e = skey[1];
sk.d = skey[2];
sk.p = skey[3];
sk.q = skey[4];
sk.u = skey[5];
if (!sk.p || !sk.q || !sk.u)
err = GPG_ERR_NO_OBJ; /* To check the key we need the optional
parameters. */
else if (!check_secret_key (&sk))
err = GPG_ERR_BAD_SECKEY;
return err;
}
static gcry_err_code_t
rsa_encrypt (int algo, gcry_mpi_t *resarr, gcry_mpi_t data,
gcry_mpi_t *pkey, int flags)
{
RSA_public_key pk;
(void)algo;
(void)flags;
pk.n = pkey[0];
pk.e = pkey[1];
resarr[0] = mpi_alloc (mpi_get_nlimbs (pk.n));
public (resarr[0], data, &pk);
return GPG_ERR_NO_ERROR;
}
#define rsa_decrypt 0
#define rsa_sign 0
static gcry_err_code_t
rsa_verify (int algo, gcry_mpi_t hash, gcry_mpi_t *data, gcry_mpi_t *pkey,
int (*cmp) (void *opaque, gcry_mpi_t tmp),
void *opaquev)
{
RSA_public_key pk;
gcry_mpi_t result;
gcry_err_code_t rc;
(void)algo;
(void)cmp;
(void)opaquev;
pk.n = pkey[0];
pk.e = pkey[1];
result = gcry_mpi_new ( 160 );
public( result, data[0], &pk );
#ifdef IS_DEVELOPMENT_VERSION
if (DBG_CIPHER)
{
log_mpidump ("rsa verify result:", result );
log_mpidump (" hash:", hash );
}
#endif /*IS_DEVELOPMENT_VERSION*/
if (cmp)
rc = (*cmp) (opaquev, result);
else
rc = mpi_cmp (result, hash) ? GPG_ERR_BAD_SIGNATURE : GPG_ERR_NO_ERROR;
gcry_mpi_release (result);
return rc;
}
static unsigned int
rsa_get_nbits (int algo, gcry_mpi_t *pkey)
{
(void)algo;
return mpi_get_nbits (pkey[0]);
}
/* Compute a keygrip. MD is the hash context which we are going to
update. KEYPARAM is an S-expression with the key parameters, this
is usually a public key but may also be a secret key. An example
of such an S-expression is:
(rsa
(n #00B...#)
(e #010001#))
PKCS-15 says that for RSA only the modulus should be hashed -
however, it is not clear whether this is meant to use the raw bytes
(assuming this is an unsigned integer) or whether the DER required
0 should be prefixed. We hash the raw bytes. */
/*
Self-test section.
*/
/* Given an S-expression ENCR_DATA of the form:
(enc-val
(rsa
(a a-value)))
as returned by gcry_pk_decrypt, return the the A-VALUE. On error,
return NULL. */
/* Run a full self-test for ALGO and return 0 on success. */
static const char *rsa_names[] =
{
"rsa",
"openpgp-rsa",
"oid.1.2.840.113549.1.1.1",
NULL,
};
gcry_pk_spec_t _gcry_pubkey_spec_rsa =
{
"RSA", rsa_names,
"ne", "nedpqu", "a", "s", "n",
GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR,
rsa_generate,
rsa_check_secret_key,
rsa_encrypt,
rsa_decrypt,
rsa_sign,
rsa_verify,
rsa_get_nbits,
#ifdef GRUB_UTIL
.modname = "gcry_rsa",
#endif
};
GRUB_MOD_INIT(gcry_rsa)
{
grub_crypto_pk_rsa = &_gcry_pubkey_spec_rsa;
}
GRUB_MOD_FINI(gcry_rsa)
{
grub_crypto_pk_rsa = 0;
}
|