summaryrefslogtreecommitdiffstats
path: root/share/extensions/draw_from_triangle.py
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:24:48 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:24:48 +0000
commitcca66b9ec4e494c1d919bff0f71a820d8afab1fa (patch)
tree146f39ded1c938019e1ed42d30923c2ac9e86789 /share/extensions/draw_from_triangle.py
parentInitial commit. (diff)
downloadinkscape-upstream.tar.xz
inkscape-upstream.zip
Adding upstream version 1.2.2.upstream/1.2.2upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'share/extensions/draw_from_triangle.py')
-rwxr-xr-xshare/extensions/draw_from_triangle.py493
1 files changed, 493 insertions, 0 deletions
diff --git a/share/extensions/draw_from_triangle.py b/share/extensions/draw_from_triangle.py
new file mode 100755
index 0000000..d99bfaf
--- /dev/null
+++ b/share/extensions/draw_from_triangle.py
@@ -0,0 +1,493 @@
+#!/usr/bin/env python
+# coding=utf-8
+#
+# Copyright (C) 2007 John Beard john.j.beard@gmail.com
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+#
+"""
+This extension allows you to draw various triangle constructions
+It requires a path to be selected
+It will use the first three nodes of this path
+
+Dimensions of a triangle__
+
+ /`__
+ / a_c``--__
+ / ``--__ s_a
+s_b / ``--__
+ /a_a a_b`--__
+ /--------------------------------``B
+ A s_b
+"""
+
+from math import acos, cos, pi, sin, sqrt, tan
+
+import inkex
+from inkex import PathElement, Circle
+
+(X, Y) = range(2)
+
+# DRAWING ROUTINES
+
+# draw an SVG triangle given in trilinar coords
+def draw_SVG_circle(
+ rad, centre, params, style, name, parent
+): # draw an SVG circle with a given radius as trilinear coordinates
+ if rad == 0: # we want a dot
+ r = style.d_rad # get the dot width from the style
+ circ_style = {
+ "stroke": style.d_col,
+ "stroke-width": str(style.d_th),
+ "fill": style.d_fill,
+ }
+ else:
+ r = rad # use given value
+ circ_style = {
+ "stroke": style.c_col,
+ "stroke-width": str(style.c_th),
+ "fill": style.c_fill,
+ }
+
+ cx, cy = get_cartesian_pt(centre, params)
+ circ_attribs = {"cx": str(cx), "cy": str(cy), "r": str(r)}
+ elem = parent.add(Circle(**circ_attribs))
+ elem.style = circ_style
+ elem.label = name
+
+
+# draw an SVG triangle given in trilinar coords
+def draw_SVG_tri(vert_mat, params, style, name, parent):
+ p1, p2, p3 = get_cartesian_tri(
+ vert_mat, params
+ ) # get the vertex matrix in cartesian points
+ elem = parent.add(PathElement())
+ elem.path = (
+ "M "
+ + str(p1[0])
+ + ","
+ + str(p1[1])
+ + " L "
+ + str(p2[0])
+ + ","
+ + str(p2[1])
+ + " L "
+ + str(p3[0])
+ + ","
+ + str(p3[1])
+ + " L "
+ + str(p1[0])
+ + ","
+ + str(p1[1])
+ + " z"
+ )
+ elem.style = {
+ "stroke": style.l_col,
+ "stroke-width": str(style.l_th),
+ "fill": style.l_fill,
+ }
+ elem.label = name
+
+
+# draw an SVG line segment between the given (raw) points
+def draw_SVG_line(a, b, style, name, parent):
+ (x1, y1) = a
+ (x2, y2) = b
+ line = parent.add(PathElement())
+ line.style = {
+ "stroke": style.l_col,
+ "stroke-width": str(style.l_th),
+ "fill": style.l_fill,
+ }
+ line.path = "M " + str(x1) + "," + str(y1) + " L " + str(x2) + "," + str(y2)
+ line.lavel = name
+
+
+# lines from each vertex to a corresponding point in trilinears
+def draw_vertex_lines(vert_mat, params, width, name, parent):
+ for i in range(3):
+ oppositepoint = get_cartesian_pt(vert_mat[i], params)
+ draw_SVG_line(
+ params[3][-i % 3], oppositepoint, width, name + ":" + str(i), parent
+ )
+
+
+# MATHEMATICAL ROUTINES
+
+
+def distance(a, b):
+ """find the pythagorean distance"""
+ (x0, y0) = a
+ (x1, y1) = b
+ return sqrt((x0 - x1) * (x0 - x1) + (y0 - y1) * (y0 - y1))
+
+
+def vector_from_to(a, b):
+ """get the vector from (x0,y0) to (x1,y1)"""
+ return b[X] - a[X], b[Y], a[Y]
+
+
+def get_cartesian_pt(t, p): # get the cartesian coordinates from a trilinear set
+ denom = p[0][0] * t[0] + p[0][1] * t[1] + p[0][2] * t[2]
+ c1 = p[0][1] * t[1] / denom
+ c2 = p[0][2] * t[2] / denom
+ return c1 * p[2][1][0] + c2 * p[2][0][0], c1 * p[2][1][1] + c2 * p[2][0][1]
+
+
+def get_cartesian_tri(arg, params):
+ """get the cartesian points from a trilinear vertex matrix"""
+ (t11, t12, t13), (t21, t22, t23), (t31, t32, t33) = arg
+ p1 = get_cartesian_pt((t11, t12, t13), params)
+ p2 = get_cartesian_pt((t21, t22, t23), params)
+ p3 = get_cartesian_pt((t31, t32, t33), params)
+ return p1, p2, p3
+
+
+def angle_from_3_sides(a, b, c): # return the angle opposite side c
+ cosx = (a * a + b * b - c * c) / (2 * a * b) # use the cosine rule
+ return acos(cosx)
+
+
+def translate_string(
+ string, os
+): # translates s_a, a_a, etc to params[x][y], with cyclic offset
+ string = string.replace(
+ "s_a", "params[0][" + str((os + 0) % 3) + "]"
+ ) # replace with ref. to the relvant values,
+ string = string.replace(
+ "s_b", "params[0][" + str((os + 1) % 3) + "]"
+ ) # cycled by i
+ string = string.replace("s_c", "params[0][" + str((os + 2) % 3) + "]")
+ string = string.replace("a_a", "params[1][" + str((os + 0) % 3) + "]")
+ string = string.replace("a_b", "params[1][" + str((os + 1) % 3) + "]")
+ string = string.replace("a_c", "params[1][" + str((os + 2) % 3) + "]")
+ string = string.replace("area", "params[4][0]")
+ string = string.replace("semiperim", "params[4][1]")
+ return string
+
+
+def pt_from_tcf(
+ tcf, params
+): # returns a trilinear triplet from a triangle centre function
+ trilin_pts = [] # will hold the final points
+ for i in range(3):
+ temp = tcf # read in the tcf
+ temp = translate_string(temp, i)
+ func = eval(
+ "lambda params: " + temp.strip('"')
+ ) # the function leading to the trilinar element
+ trilin_pts.append(
+ func(params)
+ ) # evaluate the function for the first trilinear element
+ return trilin_pts
+
+
+# SVG DATA PROCESSING
+
+
+def get_n_points_from_path(node, n):
+ """returns a list of first n points (x,y) in an SVG path-representing node"""
+ points = list(node.path.control_points)
+ if len(points) < 3:
+ return []
+ return points[:3]
+
+
+# EXTRA MATHS FUNCTIONS
+def sec(x): # secant(x)
+ if (
+ x == pi / 2 or x == -pi / 2 or x == 3 * pi / 2 or x == -3 * pi / 2
+ ): # sec(x) is undefined
+ return 100000000000
+ else:
+ return 1 / cos(x)
+
+
+def csc(x): # cosecant(x)
+ if x == 0 or x == pi or x == 2 * pi or x == -2 * pi: # csc(x) is undefined
+ return 100000000000
+ else:
+ return 1 / sin(x)
+
+
+def cot(x): # cotangent(x)
+ if x == 0 or x == pi or x == 2 * pi or x == -2 * pi: # cot(x) is undefined
+ return 100000000000
+ else:
+ return 1 / tan(x)
+
+
+class Style(object): # container for style information
+ def __init__(self, svg):
+ # dot markers
+ self.d_rad = svg.unittouu("4px") # dot marker radius
+ self.d_th = svg.unittouu("2px") # stroke width
+ self.d_fill = "#aaaaaa" # fill colour
+ self.d_col = "#000000" # stroke colour
+
+ # lines
+ self.l_th = svg.unittouu("2px")
+ self.l_fill = "none"
+ self.l_col = "#000000"
+
+ # circles
+ self.c_th = svg.unittouu("2px")
+ self.c_fill = "none"
+ self.c_col = "#000000"
+
+
+class DrawFromTriangle(inkex.EffectExtension):
+ def add_arguments(self, pars):
+ pars.add_argument("--tab")
+ # PRESET POINT OPTIONS
+ pars.add_argument("--circumcircle", type=inkex.Boolean, default=False)
+ pars.add_argument("--circumcentre", type=inkex.Boolean, default=False)
+ pars.add_argument("--incircle", type=inkex.Boolean, default=False)
+ pars.add_argument("--incentre", type=inkex.Boolean, default=False)
+ pars.add_argument("--contact_tri", type=inkex.Boolean, default=False)
+ pars.add_argument("--excircles", type=inkex.Boolean, default=False)
+ pars.add_argument("--excentres", type=inkex.Boolean, default=False)
+ pars.add_argument("--extouch_tri", type=inkex.Boolean, default=False)
+ pars.add_argument("--excentral_tri", type=inkex.Boolean, default=False)
+ pars.add_argument("--orthocentre", type=inkex.Boolean, default=False)
+ pars.add_argument("--orthic_tri", type=inkex.Boolean, default=False)
+ pars.add_argument("--altitudes", type=inkex.Boolean, default=False)
+ pars.add_argument("--anglebisectors", type=inkex.Boolean, default=False)
+ pars.add_argument("--centroid", type=inkex.Boolean, default=False)
+ pars.add_argument("--ninepointcentre", type=inkex.Boolean, default=False)
+ pars.add_argument("--ninepointcircle", type=inkex.Boolean, default=False)
+ pars.add_argument("--symmedians", type=inkex.Boolean, default=False)
+ pars.add_argument("--sym_point", type=inkex.Boolean, default=False)
+ pars.add_argument("--sym_tri", type=inkex.Boolean, default=False)
+ pars.add_argument("--gergonne_pt", type=inkex.Boolean, default=False)
+ pars.add_argument("--nagel_pt", type=inkex.Boolean, default=False)
+ # CUSTOM POINT OPTIONS
+ pars.add_argument("--mode", default="trilin")
+ pars.add_argument("--cust_str", default="cos(a_a):cos(a_b):cos(a_c)")
+ pars.add_argument("--cust_pt", type=inkex.Boolean, default=False)
+ pars.add_argument("--cust_radius", type=inkex.Boolean, default=False)
+ pars.add_argument("--radius", default="s_a*s_b*s_c/(4*area)")
+ pars.add_argument("--isogonal_conj", type=inkex.Boolean, default=False)
+ pars.add_argument("--isotomic_conj", type=inkex.Boolean, default=False)
+
+ def effect(self):
+ so = self.options # shorthand
+
+ pts = (
+ []
+ ) # initialise in case nothing is selected and following loop is not executed
+ for node in self.svg.selection.filter(inkex.PathElement):
+ # find the (x,y) coordinates of the first 3 points of the path
+ pts = get_n_points_from_path(node, 3)
+
+ if len(pts) == 3: # if we have right number of nodes, else skip and end program
+ st = Style(self.svg) # style for dots, lines and circles
+
+ # CREATE A GROUP TO HOLD ALL GENERATED ELEMENTS IN
+ # Hold relative to point A (pt[0])
+ layer = self.svg.get_current_layer().add(
+ inkex.Group.new("TriangleElements")
+ )
+ layer.transform = "translate(" + str(pts[0][0]) + "," + str(pts[0][1]) + ")"
+
+ # GET METRICS OF THE TRIANGLE
+ # vertices in the local coordinates (set pt[0] to be the origin)
+ vtx = [
+ [0, 0],
+ [pts[1][0] - pts[0][0], pts[1][1] - pts[0][1]],
+ [pts[2][0] - pts[0][0], pts[2][1] - pts[0][1]],
+ ]
+
+ s_a = distance(vtx[1], vtx[2]) # get the scalar side lengths
+ s_b = distance(vtx[0], vtx[1])
+ s_c = distance(vtx[0], vtx[2])
+ sides = (
+ s_a,
+ s_b,
+ s_c,
+ ) # side list for passing to functions easily and for indexing
+
+ a_a = angle_from_3_sides(s_b, s_c, s_a) # angles in radians
+ a_b = angle_from_3_sides(s_a, s_c, s_b)
+ a_c = angle_from_3_sides(s_a, s_b, s_c)
+ angles = (a_a, a_b, a_c)
+
+ ab = vector_from_to(vtx[0], vtx[1]) # vector from a to b
+ ac = vector_from_to(vtx[0], vtx[2]) # vector from a to c
+ bc = vector_from_to(vtx[1], vtx[2]) # vector from b to c
+ vecs = (ab, ac) # vectors for finding cartesian point from trilinears
+
+ semiperim = (s_a + s_b + s_c) / 2.0 # semiperimeter
+ area = sqrt(
+ semiperim * (semiperim - s_a) * (semiperim - s_b) * (semiperim - s_c)
+ ) # area of the triangle by heron's formula
+ uvals = (area, semiperim) # useful values
+
+ params = (
+ sides,
+ angles,
+ vecs,
+ vtx,
+ uvals,
+ ) # all useful triangle parameters in one object
+
+ # BEGIN DRAWING
+ if so.circumcentre or so.circumcircle:
+ r = s_a * s_b * s_c / (4 * area)
+ pt = (cos(a_a), cos(a_b), cos(a_c))
+ if so.circumcentre:
+ draw_SVG_circle(0, pt, params, st, "Circumcentre", layer)
+ if so.circumcircle:
+ draw_SVG_circle(r, pt, params, st, "Circumcircle", layer)
+
+ if so.incentre or so.incircle:
+ pt = [1, 1, 1]
+ if so.incentre:
+ draw_SVG_circle(0, pt, params, st, "Incentre", layer)
+ if so.incircle:
+ r = area / semiperim
+ draw_SVG_circle(r, pt, params, st, "Incircle", layer)
+
+ if so.contact_tri:
+ t1 = s_b * s_c / (-s_a + s_b + s_c)
+ t2 = s_a * s_c / (s_a - s_b + s_c)
+ t3 = s_a * s_b / (s_a + s_b - s_c)
+ v_mat = ((0, t2, t3), (t1, 0, t3), (t1, t2, 0))
+ draw_SVG_tri(v_mat, params, st, "ContactTriangle", layer)
+
+ if so.extouch_tri:
+ t1 = (-s_a + s_b + s_c) / s_a
+ t2 = (s_a - s_b + s_c) / s_b
+ t3 = (s_a + s_b - s_c) / s_c
+ v_mat = ((0, t2, t3), (t1, 0, t3), (t1, t2, 0))
+ draw_SVG_tri(v_mat, params, st, "ExtouchTriangle", layer)
+
+ if so.orthocentre:
+ pt = pt_from_tcf("cos(a_b)*cos(a_c)", params)
+ draw_SVG_circle(0, pt, params, st, "Orthocentre", layer)
+
+ if so.orthic_tri:
+ v_mat = [
+ [0, sec(a_b), sec(a_c)],
+ [sec(a_a), 0, sec(a_c)],
+ [sec(a_a), sec(a_b), 0],
+ ]
+ draw_SVG_tri(v_mat, params, st, "OrthicTriangle", layer)
+
+ if so.centroid:
+ pt = [1 / s_a, 1 / s_b, 1 / s_c]
+ draw_SVG_circle(0, pt, params, st, "Centroid", layer)
+
+ if so.ninepointcentre or so.ninepointcircle:
+ pt = [cos(a_b - a_c), cos(a_c - a_a), cos(a_a - a_b)]
+ if so.ninepointcentre:
+ draw_SVG_circle(0, pt, params, st, "NinePointCentre", layer)
+ if so.ninepointcircle:
+ r = s_a * s_b * s_c / (8 * area)
+ draw_SVG_circle(r, pt, params, st, "NinePointCircle", layer)
+
+ if so.altitudes:
+ v_mat = [
+ [0, sec(a_b), sec(a_c)],
+ [sec(a_a), 0, sec(a_c)],
+ [sec(a_a), sec(a_b), 0],
+ ]
+ draw_vertex_lines(v_mat, params, st, "Altitude", layer)
+
+ if so.anglebisectors:
+ v_mat = ((0, 1, 1), (1, 0, 1), (1, 1, 0))
+ draw_vertex_lines(v_mat, params, st, "AngleBisectors", layer)
+
+ if so.excircles or so.excentres or so.excentral_tri:
+ v_mat = ((-1, 1, 1), (1, -1, 1), (1, 1, -1))
+ if so.excentral_tri:
+ draw_SVG_tri(v_mat, params, st, "ExcentralTriangle", layer)
+ for i in range(3):
+ if so.excircles:
+ r = area / (semiperim - sides[i])
+ draw_SVG_circle(
+ r, v_mat[i], params, st, "Excircle:" + str(i), layer
+ )
+ if so.excentres:
+ draw_SVG_circle(
+ 0, v_mat[i], params, st, "Excentre:" + str(i), layer
+ )
+
+ if so.sym_tri or so.symmedians:
+ v_mat = ((0, s_b, s_c), (s_a, 0, s_c), (s_a, s_b, 0))
+ if so.sym_tri:
+ draw_SVG_tri(v_mat, params, st, "SymmedialTriangle", layer)
+ if so.symmedians:
+ draw_vertex_lines(v_mat, params, st, "Symmedian", layer)
+
+ if so.sym_point:
+ pt = (s_a, s_b, s_c)
+ draw_SVG_circle(0, pt, params, st, "SymmmedianPoint", layer)
+
+ if so.gergonne_pt:
+ pt = pt_from_tcf("1/(s_a*(s_b+s_c-s_a))", params)
+ draw_SVG_circle(0, pt, params, st, "GergonnePoint", layer)
+
+ if so.nagel_pt:
+ pt = pt_from_tcf("(s_b+s_c-s_a)/s_a", params)
+ draw_SVG_circle(0, pt, params, st, "NagelPoint", layer)
+
+ if so.cust_pt or so.cust_radius or so.isogonal_conj or so.isotomic_conj:
+ pt = [] # where we will store the point in trilinears
+ if so.mode == "trilin": # if we are receiving from trilinears
+ for i in range(3):
+ strings = so.cust_str.split(":") # get split string
+ strings[i] = translate_string(strings[i], 0)
+ func = eval(
+ "lambda params: " + strings[i].strip('"')
+ ) # the function leading to the trilinar element
+ pt.append(
+ func(params)
+ ) # evaluate the function for the trilinear element
+ else: # we need a triangle function
+ string = (
+ so.cust_str
+ ) # don't need to translate, as the pt_from_tcf function does that for us
+ pt = pt_from_tcf(
+ string, params
+ ) # get the point from the tcf directly
+
+ if so.cust_pt: # draw the point
+ draw_SVG_circle(0, pt, params, st, "CustomTrilinearPoint", layer)
+ if so.cust_radius: # draw the circle with given radius
+ strings = translate_string(so.radius, 0)
+ func = eval(
+ "lambda params: " + strings.strip('"')
+ ) # the function leading to the radius
+ r = func(params)
+ draw_SVG_circle(r, pt, params, st, "CustomTrilinearCircle", layer)
+ if so.isogonal_conj:
+ isogonal = [0, 0, 0]
+ for i in range(3):
+ isogonal[i] = 1 / pt[i]
+ draw_SVG_circle(
+ 0, isogonal, params, st, "CustomIsogonalConjugate", layer
+ )
+ if so.isotomic_conj:
+ isotomic = [0, 0, 0]
+ for i in range(3):
+ isotomic[i] = 1 / (params[0][i] * params[0][i] * pt[i])
+ draw_SVG_circle(
+ 0, isotomic, params, st, "CustomIsotomicConjugate", layer
+ )
+
+
+if __name__ == "__main__":
+ DrawFromTriangle().run()