summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/2geom/src/2geom/affine.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/2geom/src/2geom/affine.cpp')
-rw-r--r--src/3rdparty/2geom/src/2geom/affine.cpp522
1 files changed, 522 insertions, 0 deletions
diff --git a/src/3rdparty/2geom/src/2geom/affine.cpp b/src/3rdparty/2geom/src/2geom/affine.cpp
new file mode 100644
index 0000000..48179e8
--- /dev/null
+++ b/src/3rdparty/2geom/src/2geom/affine.cpp
@@ -0,0 +1,522 @@
+/*
+ * Authors:
+ * Lauris Kaplinski <lauris@kaplinski.com>
+ * Michael G. Sloan <mgsloan@gmail.com>
+ *
+ * This code is in public domain
+ */
+
+#include <2geom/affine.h>
+#include <2geom/point.h>
+#include <2geom/polynomial.h>
+#include <2geom/utils.h>
+
+namespace Geom {
+
+/** Creates a Affine given an axis and origin point.
+ * The axis is represented as two vectors, which represent skew, rotation, and scaling in two dimensions.
+ * from_basis(Point(1, 0), Point(0, 1), Point(0, 0)) would return the identity matrix.
+
+ \param x_basis the vector for the x-axis.
+ \param y_basis the vector for the y-axis.
+ \param offset the translation applied by the matrix.
+ \return The new Affine.
+ */
+//NOTE: Inkscape's version is broken, so when including this version, you'll have to search for code with this func
+Affine from_basis(Point const &x_basis, Point const &y_basis, Point const &offset) {
+ return Affine(x_basis[X], x_basis[Y],
+ y_basis[X], y_basis[Y],
+ offset [X], offset [Y]);
+}
+
+Point Affine::xAxis() const {
+ return Point(_c[0], _c[1]);
+}
+
+Point Affine::yAxis() const {
+ return Point(_c[2], _c[3]);
+}
+
+/// Gets the translation imparted by the Affine.
+Point Affine::translation() const {
+ return Point(_c[4], _c[5]);
+}
+
+void Affine::setXAxis(Point const &vec) {
+ for(int i = 0; i < 2; i++)
+ _c[i] = vec[i];
+}
+
+void Affine::setYAxis(Point const &vec) {
+ for(int i = 0; i < 2; i++)
+ _c[i + 2] = vec[i];
+}
+
+/// Sets the translation imparted by the Affine.
+void Affine::setTranslation(Point const &loc) {
+ for(int i = 0; i < 2; i++)
+ _c[i + 4] = loc[i];
+}
+
+/** Calculates the amount of x-scaling imparted by the Affine. This is the scaling applied to
+ * the original x-axis region. It is \emph{not} the overall x-scaling of the transformation.
+ * Equivalent to L2(m.xAxis()). */
+double Affine::expansionX() const {
+ return sqrt(_c[0] * _c[0] + _c[1] * _c[1]);
+}
+
+/** Calculates the amount of y-scaling imparted by the Affine. This is the scaling applied before
+ * the other transformations. It is \emph{not} the overall y-scaling of the transformation.
+ * Equivalent to L2(m.yAxis()). */
+double Affine::expansionY() const {
+ return sqrt(_c[2] * _c[2] + _c[3] * _c[3]);
+}
+
+void Affine::setExpansionX(double val) {
+ double exp_x = expansionX();
+ if (exp_x != 0.0) { //TODO: best way to deal with it is to skip op?
+ double coef = val / expansionX();
+ for (unsigned i = 0; i < 2; ++i) {
+ _c[i] *= coef;
+ }
+ }
+}
+
+void Affine::setExpansionY(double val) {
+ double exp_y = expansionY();
+ if (exp_y != 0.0) { //TODO: best way to deal with it is to skip op?
+ double coef = val / expansionY();
+ for (unsigned i = 2; i < 4; ++i) {
+ _c[i] *= coef;
+ }
+ }
+}
+
+/** Sets this matrix to be the Identity Affine. */
+void Affine::setIdentity() {
+ _c[0] = 1.0; _c[1] = 0.0;
+ _c[2] = 0.0; _c[3] = 1.0;
+ _c[4] = 0.0; _c[5] = 0.0;
+}
+
+/** @brief Check whether this matrix is an identity matrix.
+ * @param eps Numerical tolerance
+ * @return True iff the matrix is of the form
+ * \f$\left[\begin{array}{ccc}
+ 1 & 0 & 0 \\
+ 0 & 1 & 0 \\
+ 0 & 0 & 1 \end{array}\right]\f$ */
+bool Affine::isIdentity(Coord eps) const {
+ return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) &&
+ are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps) &&
+ are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps);
+}
+
+/** @brief Check whether this matrix represents a pure translation.
+ * Will return true for the identity matrix, which represents a zero translation.
+ * @param eps Numerical tolerance
+ * @return True iff the matrix is of the form
+ * \f$\left[\begin{array}{ccc}
+ 1 & 0 & 0 \\
+ 0 & 1 & 0 \\
+ a & b & 1 \end{array}\right]\f$ */
+bool Affine::isTranslation(Coord eps) const {
+ return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) &&
+ are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps);
+}
+/** @brief Check whether this matrix represents a pure nonzero translation.
+ * @param eps Numerical tolerance
+ * @return True iff the matrix is of the form
+ * \f$\left[\begin{array}{ccc}
+ 1 & 0 & 0 \\
+ 0 & 1 & 0 \\
+ a & b & 1 \end{array}\right]\f$ and \f$a, b \neq 0\f$ */
+bool Affine::isNonzeroTranslation(Coord eps) const {
+ return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) &&
+ are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps) &&
+ (!are_near(_c[4], 0.0, eps) || !are_near(_c[5], 0.0, eps));
+}
+
+/** @brief Check whether this matrix represents pure scaling.
+ * @param eps Numerical tolerance
+ * @return True iff the matrix is of the form
+ * \f$\left[\begin{array}{ccc}
+ a & 0 & 0 \\
+ 0 & b & 0 \\
+ 0 & 0 & 1 \end{array}\right]\f$. */
+bool Affine::isScale(Coord eps) const {
+ if (isSingular(eps)) return false;
+ return are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) &&
+ are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps);
+}
+
+/** @brief Check whether this matrix represents pure, nonzero scaling.
+ * @param eps Numerical tolerance
+ * @return True iff the matrix is of the form
+ * \f$\left[\begin{array}{ccc}
+ a & 0 & 0 \\
+ 0 & b & 0 \\
+ 0 & 0 & 1 \end{array}\right]\f$ and \f$a, b \neq 1\f$. */
+bool Affine::isNonzeroScale(Coord eps) const {
+ if (isSingular(eps)) return false;
+ return (!are_near(_c[0], 1.0, eps) || !are_near(_c[3], 1.0, eps)) && //NOTE: these are the diags, and the next line opposite diags
+ are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) &&
+ are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps);
+}
+
+/** @brief Check whether this matrix represents pure uniform scaling.
+ * @param eps Numerical tolerance
+ * @return True iff the matrix is of the form
+ * \f$\left[\begin{array}{ccc}
+ a_1 & 0 & 0 \\
+ 0 & a_2 & 0 \\
+ 0 & 0 & 1 \end{array}\right]\f$ where \f$|a_1| = |a_2|\f$. */
+bool Affine::isUniformScale(Coord eps) const {
+ if (isSingular(eps)) return false;
+ return are_near(fabs(_c[0]), fabs(_c[3]), eps) &&
+ are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) &&
+ are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps);
+}
+
+/** @brief Check whether this matrix represents pure, nonzero uniform scaling.
+ * @param eps Numerical tolerance
+ * @return True iff the matrix is of the form
+ * \f$\left[\begin{array}{ccc}
+ a_1 & 0 & 0 \\
+ 0 & a_2 & 0 \\
+ 0 & 0 & 1 \end{array}\right]\f$ where \f$|a_1| = |a_2|\f$
+ * and \f$a_1, a_2 \neq 1\f$. */
+bool Affine::isNonzeroUniformScale(Coord eps) const {
+ if (isSingular(eps)) return false;
+ // we need to test both c0 and c3 to handle the case of flips,
+ // which should be treated as nonzero uniform scales
+ return !(are_near(_c[0], 1.0, eps) && are_near(_c[3], 1.0, eps)) &&
+ are_near(fabs(_c[0]), fabs(_c[3]), eps) &&
+ are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) &&
+ are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps);
+}
+
+/** @brief Check whether this matrix represents a pure rotation.
+ * @param eps Numerical tolerance
+ * @return True iff the matrix is of the form
+ * \f$\left[\begin{array}{ccc}
+ a & b & 0 \\
+ -b & a & 0 \\
+ 0 & 0 & 1 \end{array}\right]\f$ and \f$a^2 + b^2 = 1\f$. */
+bool Affine::isRotation(Coord eps) const {
+ return are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps) &&
+ are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps) &&
+ are_near(_c[0]*_c[0] + _c[1]*_c[1], 1.0, eps);
+}
+
+/** @brief Check whether this matrix represents a pure, nonzero rotation.
+ * @param eps Numerical tolerance
+ * @return True iff the matrix is of the form
+ * \f$\left[\begin{array}{ccc}
+ a & b & 0 \\
+ -b & a & 0 \\
+ 0 & 0 & 1 \end{array}\right]\f$, \f$a^2 + b^2 = 1\f$ and \f$a \neq 1\f$. */
+bool Affine::isNonzeroRotation(Coord eps) const {
+ return !are_near(_c[0], 1.0, eps) &&
+ are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps) &&
+ are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps) &&
+ are_near(_c[0]*_c[0] + _c[1]*_c[1], 1.0, eps);
+}
+
+/** @brief Check whether this matrix represents a non-zero rotation about any point.
+ * @param eps Numerical tolerance
+ * @return True iff the matrix is of the form
+ * \f$\left[\begin{array}{ccc}
+ a & b & 0 \\
+ -b & a & 0 \\
+ c & d & 1 \end{array}\right]\f$, \f$a^2 + b^2 = 1\f$ and \f$a \neq 1\f$. */
+bool Affine::isNonzeroNonpureRotation(Coord eps) const {
+ return !are_near(_c[0], 1.0, eps) &&
+ are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps) &&
+ are_near(_c[0]*_c[0] + _c[1]*_c[1], 1.0, eps);
+}
+
+/** @brief For a (possibly non-pure) non-zero-rotation matrix, calculate the rotation center.
+ * @pre The matrix must be a non-zero-rotation matrix to prevent division by zero, see isNonzeroNonpureRotation().
+ * @return The rotation center x, the solution to the equation
+ * \f$A x = x\f$. */
+Point Affine::rotationCenter() const {
+ Coord x = (_c[2]*_c[5]+_c[4]-_c[4]*_c[3]) / (1-_c[3]-_c[0]+_c[0]*_c[3]-_c[2]*_c[1]);
+ Coord y = (_c[1]*x + _c[5]) / (1 - _c[3]);
+ return Point(x,y);
+};
+
+/** @brief Check whether this matrix represents pure horizontal shearing.
+ * @param eps Numerical tolerance
+ * @return True iff the matrix is of the form
+ * \f$\left[\begin{array}{ccc}
+ 1 & 0 & 0 \\
+ k & 1 & 0 \\
+ 0 & 0 & 1 \end{array}\right]\f$. */
+bool Affine::isHShear(Coord eps) const {
+ return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) &&
+ are_near(_c[3], 1.0, eps) && are_near(_c[4], 0.0, eps) &&
+ are_near(_c[5], 0.0, eps);
+}
+/** @brief Check whether this matrix represents pure, nonzero horizontal shearing.
+ * @param eps Numerical tolerance
+ * @return True iff the matrix is of the form
+ * \f$\left[\begin{array}{ccc}
+ 1 & 0 & 0 \\
+ k & 1 & 0 \\
+ 0 & 0 & 1 \end{array}\right]\f$ and \f$k \neq 0\f$. */
+bool Affine::isNonzeroHShear(Coord eps) const {
+ return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) &&
+ !are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps) &&
+ are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps);
+}
+
+/** @brief Check whether this matrix represents pure vertical shearing.
+ * @param eps Numerical tolerance
+ * @return True iff the matrix is of the form
+ * \f$\left[\begin{array}{ccc}
+ 1 & k & 0 \\
+ 0 & 1 & 0 \\
+ 0 & 0 & 1 \end{array}\right]\f$. */
+bool Affine::isVShear(Coord eps) const {
+ return are_near(_c[0], 1.0, eps) && are_near(_c[2], 0.0, eps) &&
+ are_near(_c[3], 1.0, eps) && are_near(_c[4], 0.0, eps) &&
+ are_near(_c[5], 0.0, eps);
+}
+
+/** @brief Check whether this matrix represents pure, nonzero vertical shearing.
+ * @param eps Numerical tolerance
+ * @return True iff the matrix is of the form
+ * \f$\left[\begin{array}{ccc}
+ 1 & k & 0 \\
+ 0 & 1 & 0 \\
+ 0 & 0 & 1 \end{array}\right]\f$ and \f$k \neq 0\f$. */
+bool Affine::isNonzeroVShear(Coord eps) const {
+ return are_near(_c[0], 1.0, eps) && !are_near(_c[1], 0.0, eps) &&
+ are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps) &&
+ are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps);
+}
+
+/** @brief Check whether this matrix represents zooming.
+ * Zooming is any combination of translation and uniform non-flipping scaling.
+ * It preserves angles, ratios of distances between arbitrary points
+ * and unit vectors of line segments.
+ * @param eps Numerical tolerance
+ * @return True iff the matrix is invertible and of the form
+ * \f$\left[\begin{array}{ccc}
+ a & 0 & 0 \\
+ 0 & a & 0 \\
+ b & c & 1 \end{array}\right]\f$. */
+bool Affine::isZoom(Coord eps) const {
+ if (isSingular(eps)) return false;
+ return are_near(_c[0], _c[3], eps) && are_near(_c[1], 0, eps) && are_near(_c[2], 0, eps);
+}
+
+/** @brief Check whether the transformation preserves areas of polygons.
+ * This means that the transformation can be any combination of translation, rotation,
+ * shearing and squeezing (non-uniform scaling such that the absolute value of the product
+ * of Y-scale and X-scale is 1).
+ * @param eps Numerical tolerance
+ * @return True iff \f$|\det A| = 1\f$. */
+bool Affine::preservesArea(Coord eps) const
+{
+ return are_near(descrim2(), 1.0, eps);
+}
+
+/** @brief Check whether the transformation preserves angles between lines.
+ * This means that the transformation can be any combination of translation, uniform scaling,
+ * rotation and flipping.
+ * @param eps Numerical tolerance
+ * @return True iff the matrix is of the form
+ * \f$\left[\begin{array}{ccc}
+ a & b & 0 \\
+ -b & a & 0 \\
+ c & d & 1 \end{array}\right]\f$ or
+ \f$\left[\begin{array}{ccc}
+ -a & b & 0 \\
+ b & a & 0 \\
+ c & d & 1 \end{array}\right]\f$. */
+bool Affine::preservesAngles(Coord eps) const
+{
+ if (isSingular(eps)) return false;
+ return (are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps)) ||
+ (are_near(_c[0], -_c[3], eps) && are_near(_c[1], _c[2], eps));
+}
+
+/** @brief Check whether the transformation preserves distances between points.
+ * This means that the transformation can be any combination of translation,
+ * rotation and flipping.
+ * @param eps Numerical tolerance
+ * @return True iff the matrix is of the form
+ * \f$\left[\begin{array}{ccc}
+ a & b & 0 \\
+ -b & a & 0 \\
+ c & d & 1 \end{array}\right]\f$ or
+ \f$\left[\begin{array}{ccc}
+ -a & b & 0 \\
+ b & a & 0 \\
+ c & d & 1 \end{array}\right]\f$ and \f$a^2 + b^2 = 1\f$. */
+bool Affine::preservesDistances(Coord eps) const
+{
+ return ((are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps)) ||
+ (are_near(_c[0], -_c[3], eps) && are_near(_c[1], _c[2], eps))) &&
+ are_near(_c[0] * _c[0] + _c[1] * _c[1], 1.0, eps);
+}
+
+/** @brief Check whether this transformation flips objects.
+ * A transformation flips objects if it has a negative scaling component. */
+bool Affine::flips() const {
+ return det() < 0;
+}
+
+/** @brief Check whether this matrix is singular.
+ * Singular matrices have no inverse, which means that applying them to a set of points
+ * results in a loss of information.
+ * @param eps Numerical tolerance
+ * @return True iff the determinant is near zero. */
+bool Affine::isSingular(Coord eps) const {
+ return are_near(det(), 0.0, eps);
+}
+
+/** @brief Compute the inverse matrix.
+ * Inverse is a matrix (denoted \f$A^{-1}\f$) such that \f$AA^{-1} = A^{-1}A = I\f$.
+ * Singular matrices have no inverse (for example a matrix that has two of its columns equal).
+ * For such matrices, the identity matrix will be returned instead.
+ * @param eps Numerical tolerance
+ * @return Inverse of the matrix, or the identity matrix if the inverse is undefined.
+ * @post (m * m.inverse()).isIdentity() == true */
+Affine Affine::inverse() const {
+ Affine d;
+
+ double mx = std::max(fabs(_c[0]) + fabs(_c[1]),
+ fabs(_c[2]) + fabs(_c[3])); // a random matrix norm (either l1 or linfty
+ if(mx > 0) {
+ Geom::Coord const determ = det();
+ if (!rel_error_bound(std::sqrt(fabs(determ)), mx)) {
+ Geom::Coord const ideterm = 1.0 / (determ);
+
+ d._c[0] = _c[3] * ideterm;
+ d._c[1] = -_c[1] * ideterm;
+ d._c[2] = -_c[2] * ideterm;
+ d._c[3] = _c[0] * ideterm;
+ d._c[4] = (-_c[4] * d._c[0] - _c[5] * d._c[2]);
+ d._c[5] = (-_c[4] * d._c[1] - _c[5] * d._c[3]);
+ } else {
+ d.setIdentity();
+ }
+ } else {
+ d.setIdentity();
+ }
+
+ return d;
+}
+
+/** @brief Calculate the determinant.
+ * @return \f$\det A\f$. */
+Coord Affine::det() const {
+ // TODO this can overflow
+ return _c[0] * _c[3] - _c[1] * _c[2];
+}
+
+/** @brief Calculate the square of the descriminant.
+ * This is simply the absolute value of the determinant.
+ * @return \f$|\det A|\f$. */
+Coord Affine::descrim2() const {
+ return fabs(det());
+}
+
+/** @brief Calculate the descriminant.
+ * If the matrix doesn't contain a shearing or non-uniform scaling component, this value says
+ * how will the length of any line segment change after applying this transformation
+ * to arbitrary objects on a plane. The new length will be
+ * @code line_seg.length() * m.descrim()) @endcode
+ * @return \f$\sqrt{|\det A|}\f$. */
+Coord Affine::descrim() const {
+ return sqrt(descrim2());
+}
+
+/** @brief Combine this transformation with another one.
+ * After this operation, the matrix will correspond to the transformation
+ * obtained by first applying the original version of this matrix, and then
+ * applying @a m. */
+Affine &Affine::operator*=(Affine const &o) {
+ Coord nc[6];
+ for(int a = 0; a < 5; a += 2) {
+ for(int b = 0; b < 2; b++) {
+ nc[a + b] = _c[a] * o._c[b] + _c[a + 1] * o._c[b + 2];
+ }
+ }
+ for(int a = 0; a < 6; ++a) {
+ _c[a] = nc[a];
+ }
+ _c[4] += o._c[4];
+ _c[5] += o._c[5];
+ return *this;
+}
+
+//TODO: What's this!?!
+/** Given a matrix m such that unit_circle = m*x, this returns the
+ * quadratic form x*A*x = 1.
+ * @relates Affine */
+Affine elliptic_quadratic_form(Affine const &m) {
+ double od = m[0] * m[1] + m[2] * m[3];
+ Affine ret (m[0]*m[0] + m[1]*m[1], od,
+ od, m[2]*m[2] + m[3]*m[3],
+ 0, 0);
+ return ret; // allow NRVO
+}
+
+Eigen::Eigen(Affine const &m) {
+ double const B = -m[0] - m[3];
+ double const C = m[0]*m[3] - m[1]*m[2];
+
+ std::vector<double> v = solve_quadratic(1, B, C);
+
+ for (unsigned i = 0; i < v.size(); ++i) {
+ values[i] = v[i];
+ vectors[i] = unit_vector(rot90(Point(m[0] - values[i], m[1])));
+ }
+ for (unsigned i = v.size(); i < 2; ++i) {
+ values[i] = 0;
+ vectors[i] = Point(0,0);
+ }
+}
+
+Eigen::Eigen(double m[2][2]) {
+ double const B = -m[0][0] - m[1][1];
+ double const C = m[0][0]*m[1][1] - m[1][0]*m[0][1];
+
+ std::vector<double> v = solve_quadratic(1, B, C);
+
+ for (unsigned i = 0; i < v.size(); ++i) {
+ values[i] = v[i];
+ vectors[i] = unit_vector(rot90(Point(m[0][0] - values[i], m[0][1])));
+ }
+ for (unsigned i = v.size(); i < 2; ++i) {
+ values[i] = 0;
+ vectors[i] = Point(0,0);
+ }
+}
+
+/** @brief Nearness predicate for affine transforms.
+ * @returns True if all entries of matrices are within eps of each other.
+ * @relates Affine */
+bool are_near(Affine const &a, Affine const &b, Coord eps)
+{
+ return are_near(a[0], b[0], eps) && are_near(a[1], b[1], eps) &&
+ are_near(a[2], b[2], eps) && are_near(a[3], b[3], eps) &&
+ are_near(a[4], b[4], eps) && are_near(a[5], b[5], eps);
+}
+
+} //namespace Geom
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :