summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/2geom/src/cython/report.md
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/2geom/src/cython/report.md')
-rw-r--r--src/3rdparty/2geom/src/cython/report.md237
1 files changed, 237 insertions, 0 deletions
diff --git a/src/3rdparty/2geom/src/cython/report.md b/src/3rdparty/2geom/src/cython/report.md
new file mode 100644
index 0000000..e1f8353
--- /dev/null
+++ b/src/3rdparty/2geom/src/cython/report.md
@@ -0,0 +1,237 @@
+# State of cython Bindings
+
+This report summarizes work done on [lib2geom][2g] cython bindings during
+GSoC 2012 mostly from technical standpoint. It should serve for anyone
+doing any further work on these bindings, and for me to help my memory.
+
+Prior to the project, there were bindings using boost.python. These
+bindigs, however, uncovered only part of the lib2geom functionality and
+were not actively developed. I decided to go for a fresh start using
+[cython][cy]. Cython is programming language capable of calling C and C++
+methods and making so-called "extension types", which act as python
+classes. Reasons for choosing python include bit of experience I had with
+it, its cleanliness and activity in development.
+
+## Overview of Bindings
+
+All work was done in [trunk][tr], since it mostly added new functionality
+without altering existing code. Whole bindings are located in directory
+
+ 2geom_dir/src/2geom/cython-bindings
+
+Code is located in files ending with `.pxd` and `.pyx`, roughly cython's
+equivalent of header and implementation files. Classes in cython are
+divided into logical groups, which are wrapped in corresponding classes.
+cy2geom.pyx imports all classes and methods, and it's what one sees after
+
+ >>> import cy2geom
+
+In addition to this, there are some C++ files, necessary to wrap some of
+the code for cython, unit-tests covering most of the functionality and
+wrapper.py script, used to skip tedious part of creating extension types.
+
+Building of bindings was integrated with cmake, which is used to build
+the bindings, using [thewext's code][cm].
+
+I will now describe files/logical groups of them, their significance and
+state. I will try to write down most of the technical non-trivialities that
+I encountered.
+
+Pattern used for wrapping all classes is taken from cython docs and various
+other cython bindings. In .pxd file C++ classes, methods and functions are
+declared. In corresponding .pyx file there is an extension type which holds
+pointer (called `thisptr`) to it's underlying C++ class. Instance of this
+class is created with cython's `__cinit__`, and deleted with `__dealloc__`.
+Methods of class are called with `self.thisptr.methodname`, which cython
+translates to `thisptr->methodname`. Argument are stripped of their python
+wrapping using `deref(arg.thisptr)`, or they are translated automatically
+(these are basic numerical types).
+
+There is a function for each class, named `wrap_classname()`, which takes
+C++ instance and creates new python object around it.
+
+## `_common_decl`
+These files (.pxd/.pyx) include basic declarations, common to all files.
+Functions for creating and wrapping `vector[double]` should become redundant
+in next cython release (0.17), since it should do this conversion
+automatically.
+
+All extension types (cdef classes) have prefix `_cy_`, to avoid clash with
+C++ classes. This is removed when importing to `_common_decl.pyx`, but is still
+somewhat visible to the user of bindings, for example in traces. Other
+option would be renaming the C++ classes.
+
+## `_cy_primitives`
+Geometric primitives are wrapped here. These are relatively simple, few
+things that are worth mentioning are:
+
+* Some of the methods for Line and Ray could be rewritten using properties.
+* General points about exceptions, docstrings and classmethod apply here.
+
+## `_cy_rectangle`
+These files include intervals and rectangles, which all inherit from
+`GenericInterval[C]` or `GenericRect[C]`, respectively.
+
+For intervals, classes Interval and IntInterval are wrapped, with added
+methods for interval too. Opt variants are supported by rewriting
+`__getattr__` method. When calling the method that Interval provides,
+OptInterval checks whether it's not empty and passes arguments to Interval's
+method. If it is empty, it will raise ValueError. Due to this, Interval's
+method do not appear in OptInterval's namespace, which might be not ideal.
+
+GenericInterval is supported by setting the template type to WrappedPyObject,
+defined in `wrapped-pyobject.h`. This thin wrapper of `PyObject *` overloads
+operators to support arithmetic operations, comparisons and similar. When
+adding two WrappedPyObjects, these objects call corresponding addition using
+Python's C-API. This is a bit unstable feature, because it still leaks these
+python objects, and propagating error from Python, through C-API to cython
+back to Python is not done yet correctly. However, constraints on
+parameter of GenericInterval's type are pretty tight - it has to support
+arithmetic operations within itself, multiplication by reals and has to be
+ordered (ordered linear space with multiplication and division between its
+elements), so having GenericInterval only with reals and integers covers most
+cases.
+
+For rectangles, situations is almost identical as for intervals. GenericRect,
+return 2-tuples as a points, which is a bit of disadvantage, because adding
+tuples doesn't add element-wise, but append them one after another. It might
+be convenient to implement PyPoint overloading this functionality.
+
+A bit problematic region is in comparing all the intervals and rectangles.
+Should every interval be comparable to every other type, Interval with
+OptIntInterval? This would probably require writing the logic in cython.
+
+GenericOptRect is not there yet, because I got GenericRect only working
+only recently. It should be, however, quick to add.
+
+## `_cy_affine`
+Affine and specialised transforms. This is in pretty good state. Eigenvalues
+seem to be a bit off sometimes.
+
+## `_cy_curves`
+All of the curves are wrapped here, together with functions like Linear,
+SBasis and Bezier.
+
+Curve implements method every curve should implement, but other curve
+classes do not inherit from Curve. This is mainly because of technical
+details, this inheritance would only add complexity to code. However, I
+might consider rewriting curves, so they would actually inherit from
+Curve, if this appears to be needed.
+
+State of functions and classmethods is a bit strange. I tried to copy
+2geom's methods, but there are differences for Beziers and SBasis
+polynomials - to name a few, SBasis implements multiplication with SBasis
+as a operator, but Bezier only as a function, or bounds are implemented
+as instance methods for Linear, but as a module level functions for Bezier
+and SBasis. In case I wasn't sure what to do with a method, I put it, as
+a classmethod, to corresponding class.
+
+BezierCurveN is not implemented. It would be major hurdle, as cython has
+problems with templated classes - one would have to declare each type
+separately. First three orders are wrapped, and BezierCurve, with variable
+degree, is also wrapped.
+
+`hacks.h` is used to go around cython's problems with integer template
+parameters.
+
+## `_cy_path`
+Path is wrapped here. Biggest problem with path was it's heavy use of
+iterators, which are not the same as python's iterators. In most of the
+cases, I replaced them with integers marking the position of iterator,
+and go to the position step-by-step. This makes potentially O(1) operations
+actually O(n) where n is size of Path. Best way to deal with this would be
+to allow iterators to be shifted by arbitrary number.
+
+Not everything is provided, but there should be enough functionality to
+have total control over Path's curves.
+
+## `_cy_conicsection`
+Circle and ellipse classes. ratQuad and xAx from conic-section should also
+go there.
+
+## `utils.py`
+Only a simple function to draw curve/path to Tk windows and regular
+N-agon creating function reside there, useful mainly for debugging
+
+## `wrapper.py`
+Script used to cut the most trivial part of creating bindings, writing
+.pxd declarations, extension type and other functions. It's pretty tailored
+into 2geom, but I guess after some work one could make it more generic.
+
+
+## General Issues
+Exceptions coming from C++ code are not handled yet, they actually crash
+the program. Simplest solution is adding `except +` after every method that
+possibly raises exceptions, but traces won't look that nice.
+
+cython has some kind of problem with docstrings, it doesn't write function's
+argument to them, just ellipsis. This can be addressed by specifying all
+arguments in the docstring.
+
+Design decision has been made to put most of function not belonging to any
+class to extension type's namespace using classmethods. Most apt extension
+type is chosen, distance(Point, Point) goes to Point class. Other options
+are making them check for all possible types (this is ugly and error-prone)
+or differentiating using different names, which is more or less the same as
+classmethods, just not that systematic
+
+## What's missing
+Piecewise missing and all of crossings/boolops stuff are biggest things
+that didn't make. Concerning Piecewise, I think best option is to
+implement only `Piecewise<SBasis>` and `Piecewise<D2<SBasis>>` as those are
+only ones actually useful (SBasis, Bezier and their D2 versions are AFAIK
+only classes implementing required concepts).
+
+Crossings are working, boolops not so much. Work on Shape and Region has
+been started.
+
+# Personal Notes
+I am also summarizing a bit on my personal experience with GSoC.
+
+## What Did I Learn
+I learned a lot, not only new technology, but also gained new perspective
+on long-time work.
+
+Speaking of technology, I am much more confident with cython, and I am not
+really scared of python C-API. I got a grasp of bazaar, CMake, python's
+unittest module and various (mainly template) C++ features, heavily used
+in 2geom.
+
+I got a grasp of what a polished product looks like, and I realize how
+hard is to get your product to that state. I can now appreciate testing,
+at first seemingly just a boring and not trivial chore, turned out to be
+very helpful both for my understanding of code and for making changes more
+quickly. I also read a lot about design of python API, what's idiomatic
+and what does various norms (PEPs) say about python.
+
+I think I never did something of this size before (not that monolithic),
+so I learned lot about my work habits and importance of both work ethic
+and taking a rest.
+
+## What I Liked & Disliked
+I liked mainly the process of learning new things. I disliked the really
+technical scope of this project - I can imagine more exciting things to
+work on than doing bindings, but I guess it doesn't hurt to have this kind
+of experience. I certainly won't spend my whole life doing only exciting
+things :)
+
+## What Would I Do Differently
+I would have planned a bit more. I like to write it on account of my
+inexperience, I felt many times that knowing how should final product
+look like would save me tons of work - this way, I approached state
+with which I was more-or-less content at the end of doing most of the tasks.
+Luckily, I got time to go through the code at the end, so I ended up
+correcting the largest mistakes.
+
+I would also discuss design of API bit more, since mapping the C++ sometimes
+turned out to be cumbersome from python's perspective. Often, I would spend
+lots of time thinking through some detail (Iterator for Path, std::optional,
+most of the templated classes), only doing ad-hoc solution at the end in
+order to I to keep progressing.
+
+Jan Pulmann - jan.pulmann@gmail.com
+
+[2g]: http://lib2geom.sourceforge.net/
+[cy]: http://www.cython.org/
+[cm]: https://github.com/thewtex/cython-cmake-example
+[tr]: https://code.launchpad.net/~lib2geom-hackers/lib2geom/trunk