summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/2geom/src/toys/kinematic_templates.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/2geom/src/toys/kinematic_templates.cpp')
-rw-r--r--src/3rdparty/2geom/src/toys/kinematic_templates.cpp365
1 files changed, 365 insertions, 0 deletions
diff --git a/src/3rdparty/2geom/src/toys/kinematic_templates.cpp b/src/3rdparty/2geom/src/toys/kinematic_templates.cpp
new file mode 100644
index 0000000..0089a1a
--- /dev/null
+++ b/src/3rdparty/2geom/src/toys/kinematic_templates.cpp
@@ -0,0 +1,365 @@
+#include <toys/toy-framework-2.h>
+
+/*
+ * Copyright cilix42
+ * Kinematic template toy. The aim is to manipulate the cursor movement
+ * so that it stays closer to a given shape (e.g., a circle or a line).
+ * For details, see http://hci.uwaterloo.ca/Publications/Papers/uist222-fung.pdf
+ *
+ * Each kinematic template has a radius of action outside of which it
+ * has no effect (this is indicated by a red circle).
+ */
+
+#include <vector>
+#include <2geom/point.h>
+#include <2geom/transforms.h>
+
+using std::vector;
+using namespace Geom;
+using namespace std;
+
+// I feel a little uneasy using a Point for polar coords.
+Point cartesian_to_polar(Point const &pt, Point const &center = Point(0,0)) {
+ Point rvec = pt - center;
+ // use atan2 unless you want to measure between two vectors
+ return Point(L2(rvec), atan2(rvec));
+}
+
+Point polar_to_cartesian(Point const &pt, Point const &center = Point(0,0)) {
+ return center + Point(pt[0],0) * Rotate(pt[1]);
+}
+
+class KinematicTemplate {
+public:
+ KinematicTemplate(double const sx = 0.0, double const sy = 0.0, double const cx = 0.0, double const cy = 0.0);
+ ~KinematicTemplate();
+
+ /*
+ * To facilitate the creation of templates, we can use different coordinates at each point
+ * (e.g., radial coordinates around a fixed center)
+ */
+ virtual std::pair<Point, Point> local_coordinate_system(Point const &/*at*/) {
+ // Return standard cartesian coordinates
+ return std::make_pair(Point(1,0), Point(0,1));
+ }
+
+ virtual Point next_point(Point const &at, Point const &delta);// { return at; }
+ virtual void draw_visual_cue(cairo_t *cr);
+
+ Point const get_center() { return center; }
+ void set_center(Point const &pos) { center = pos; }
+
+ double get_radius_of_action() { return radius; }
+ void set_radius_of_action(double const r) { radius = r; }
+ void enlarge_radius_of_action(double const by) {
+ if (radius > -by)
+ radius += by;
+ else
+ radius = 0;
+ }
+
+
+protected:
+ double sx, sy, cx, cy;
+ Point center;
+ double radius;
+};
+
+KinematicTemplate::KinematicTemplate(double const sx, double const sy, double const cx, double const cy)
+ : sx(sx),
+ sy(sy),
+ cx(cx),
+ cy(cy),
+ center(300,300),
+ radius(100)
+{
+}
+
+KinematicTemplate::~KinematicTemplate()
+{
+}
+
+Point
+KinematicTemplate::next_point(Point const &last_pt, Point const &delta)
+{
+// Point new_pt = last_pushed + kinematic_delta(last_pushed, delta, 0);
+
+ /* Compute the "relative" coordinates w.r.t. the "local coordinate system" at the current point */
+ Point v = local_coordinate_system(last_pt).first;
+ Point w = local_coordinate_system(last_pt).second;
+ double dotv = dot(v, delta);
+ double dotw = dot(w, delta);
+
+ Point new_delta;
+ if (L2(last_pt + delta - center) < radius) {
+ /*
+ * We are within the radius of action of the kinematic template.
+ * Compute displacement w.r.t. the v/w-coordinate system.
+ */
+ new_delta = (dotv*sx + cx)*v + (dotw*sy + cy)*w;
+ } else {
+ new_delta = delta;
+ }
+
+ return last_pt + new_delta;
+}
+
+void
+KinematicTemplate::draw_visual_cue(cairo_t *cr) {
+ cairo_set_source_rgba (cr, 1, 0, 0, 1);
+ cairo_set_line_width (cr, 0.5);
+ cairo_new_sub_path(cr);
+ cairo_arc(cr, center[X], center[Y], radius, 0, M_PI*2);
+ cairo_stroke(cr);
+}
+
+class RadialKinematicTemplate : public KinematicTemplate {
+public:
+ RadialKinematicTemplate(Point const &center, double const sx, double const sy, double const cx, double const cy);
+
+ std::pair<Point, Point> local_coordinate_system(Point const &at) override {
+ /* Return 'radial' coordinates around polar_center */
+ Point v = unit_vector(at - center);
+ return std::make_pair(v, rot90(v));
+ }
+
+private:
+ Point radial_center;
+};
+
+RadialKinematicTemplate::RadialKinematicTemplate(Point const &center, double const sx, double const sy,
+ double const cx = 0.0, double const cy = 0.0)
+ : KinematicTemplate(sx, sy, cx, cy)
+{
+ radial_center = center;
+}
+
+class GridKinematicTemplate : public KinematicTemplate {
+public:
+ GridKinematicTemplate(double const sx = 0.0, double const sy = 0.0, double const cx = 0.0, double const cy = 0.0)
+ : KinematicTemplate(sx, sy, cx, cy) {};
+ Point next_point(Point const &at, Point const &delta) override;// { return at; }
+};
+
+Point
+GridKinematicTemplate::next_point(Point const &at, Point const &delta) {
+ if (L2(at + delta - center) < radius) {
+ // we are within the radius of action
+ Point new_delta = delta;
+
+ if (fabs(delta[0]) > fabs(delta[1]))
+ new_delta[1] *= sy;
+ else
+ new_delta[0] *= sx;
+
+ return at + new_delta;
+ } else {
+ return at + delta;
+ }
+}
+
+
+// My idea was to compute the gradient of an arbitrary potential function as the transform. Probably the right way to do this is to use the hessian as the integrand -- njh
+class ImplicitKinematicTemplate : public KinematicTemplate {
+public:
+ ImplicitKinematicTemplate() {}
+
+ Point next_point(Point const &at, Point const &delta) override {
+ if (L2(at + delta - center) < radius) {
+ // we are within the radius of action
+
+ // the 0.7dx+1 includes a weakened version of the constraining force
+ // I can't help but think this is really a form of differential constraint solver, let's discuss.
+ return at + delta*Scale(0.7*sin(at[0]/10.0)+1, 0.7*cos(at[1]/10.0)+1);
+ } else {
+ return at + delta;
+ }
+ }
+};
+
+
+
+vector<KinematicTemplate*> kin;
+KinematicTemplate *cur_kin;
+std::string cur_choice = "A";
+
+class KinematicTemplatesToy : public Toy {
+
+ enum menu_item_t
+ {
+ KT_HORIZONTAL = 0,
+ KT_VERTICAL,
+ KT_GRID,
+ KT_CIRCLE,
+ KT_RADIAL,
+ KT_CONVEYOR,
+ KT_IMP,
+ TOTAL_ITEMS // this one must be the last item
+ };
+
+ static const char* menu_items[TOTAL_ITEMS];
+ static const char keys[TOTAL_ITEMS];
+
+ Point cur, last_pushed;
+ vector<vector<Point>*> pts;
+
+ bool dragging_center; // to prevent drawing while dragging the center
+
+ void draw_menu( cairo_t * /*cr*/, std::ostringstream *notify,
+ int /*width*/, int /*height*/, bool /*save*/,
+ std::ostringstream */*timer_stream*/ )
+ {
+ *notify << std::endl;
+ for (int i = KT_HORIZONTAL; i < TOTAL_ITEMS; ++i)
+ {
+ *notify << " " << keys[i] << " - " << menu_items[i] << std::endl;
+ }
+ *notify << "+/- - enlarge/shrink radius of action" << endl << endl << endl << endl;
+ *notify << "Current choice: " << cur_choice << endl;
+ }
+
+ void draw(cairo_t *cr, std::ostringstream *notify, int width, int height, bool save, std::ostringstream *timer_stream) override {
+ cairo_set_source_rgba (cr, 0., 0.125, 0, 1);
+ cairo_set_line_width (cr, 1);
+
+ //draw_handle(cr, cur_kin->get_center());
+ draw_menu(cr, notify, width, height, save, timer_stream);
+
+ // draw all points accumulated so far
+ for (auto & pt : pts) {
+ if (pt->size() > 0) {
+ cairo_move_to(cr, (*pt)[0]);
+ }
+ for (auto & j : *pt) {
+ //cout << " --> drawing line to point #" << j << endl;
+ cairo_line_to(cr, j);
+ }
+ }
+
+ cairo_stroke(cr);
+
+ cur_kin->draw_visual_cue(cr);
+
+ Toy::draw(cr, notify, width, height, save,timer_stream);
+ }
+
+ void first_time(int /*argc*/, char** /*argv*/) override {
+ p1.pos = Point(200, 200);
+ handles.push_back(&p1);
+
+ pts.clear();
+ kin.push_back(new KinematicTemplate(1.0, 0.1)); // horizontal lines
+ kin.push_back(new KinematicTemplate(0.1, 1.0)); // horizontal lines
+ kin.push_back(new GridKinematicTemplate(0.1, 0.1));
+ kin.push_back(new RadialKinematicTemplate(p1.pos, 0.1, 1.0));
+ kin.push_back(new RadialKinematicTemplate(p1.pos, 1.0, 0.1));
+ kin.push_back(new KinematicTemplate(1.0, 0.1, 1, 0)); // horiz conveyor
+ kin.push_back(new ImplicitKinematicTemplate());
+ cur_kin = kin[0];
+ cur_kin->set_center(p1.pos);
+
+ dragging_center = false;
+ }
+
+ void mouse_pressed(GdkEventButton *e) override {
+ Point at(e->x, e->y);
+
+ if(L2(at - p1.pos) < 5) {
+ dragging_center = true;
+ } else {
+ if(e->button == 1) {
+ vector<Point> *vec = new vector<Point>;
+ vec->clear();
+ vec->push_back(at);
+ last_pushed = at;
+ pts.push_back(vec);
+ }
+ }
+
+ Toy::mouse_pressed(e);
+ }
+
+ void mouse_released(GdkEventButton */*e*/) override {
+ dragging_center = false;
+ }
+
+ void mouse_moved(GdkEventMotion* e) override {
+ if (!dragging_center) {
+ Point at(e->x, e->y);
+
+ Point delta = at - cur;
+ //cout << "Mouse moved to: " << at << " (difference: " << delta << ")" << endl;
+ if(e->state & GDK_BUTTON1_MASK) {
+ Point new_pt = cur_kin->next_point(last_pushed, delta);
+
+ pts.back()->push_back(new_pt);
+ last_pushed = new_pt;
+ }
+ cur = at;
+ } else {
+ cur_kin->set_center(p1.pos);
+ }
+
+ Toy::mouse_moved(e);
+ }
+
+ void key_hit(GdkEventKey *e) override
+ {
+ char choice = std::toupper(e->keyval);
+ // No need to copy and paste code
+ if(choice >= 'A' and choice < 'A' + TOTAL_ITEMS) {
+ cur_kin = kin[choice - 'A'];
+ cur_choice = choice;
+
+ } else
+ switch (choice)
+ {
+ case '+':
+ cur_kin->enlarge_radius_of_action(5);
+ break;
+ case '-':
+ cur_kin->enlarge_radius_of_action(-5);
+ break;
+ default:
+ break;
+ }
+ p1.pos = cur_kin->get_center();
+ redraw();
+ }
+
+private:
+ PointHandle p1;
+};
+
+const char* KinematicTemplatesToy::menu_items[] =
+{
+ "horizontal",
+ "vertical",
+ "grid",
+ "circular",
+ "radial",
+ "conveyor",
+ "implicit"
+};
+
+const char KinematicTemplatesToy::keys[] =
+{
+ 'A', 'B', 'C', 'D', 'E', 'F', 'G'
+};
+
+int main(int argc, char **argv) {
+ init(argc, argv, new KinematicTemplatesToy);
+ return 0;
+}
+
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :