summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/adaptagrams/libavoid/geometry.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/adaptagrams/libavoid/geometry.cpp')
-rw-r--r--src/3rdparty/adaptagrams/libavoid/geometry.cpp641
1 files changed, 641 insertions, 0 deletions
diff --git a/src/3rdparty/adaptagrams/libavoid/geometry.cpp b/src/3rdparty/adaptagrams/libavoid/geometry.cpp
new file mode 100644
index 0000000..7f50800
--- /dev/null
+++ b/src/3rdparty/adaptagrams/libavoid/geometry.cpp
@@ -0,0 +1,641 @@
+/*
+ * vim: ts=4 sw=4 et tw=0 wm=0
+ *
+ * libavoid - Fast, Incremental, Object-avoiding Line Router
+ *
+ * Copyright (C) 2004-2011 Monash University
+ *
+ * --------------------------------------------------------------------
+ * Much of the code in this module is based on code published with
+ * and/or described in "Computational Geometry in C" (Second Edition),
+ * Copyright (C) 1998 Joseph O'Rourke <orourke@cs.smith.edu>
+ * --------------------------------------------------------------------
+ * The segmentIntersectPoint function is based on code published and
+ * described in Franklin Antonio, Faster Line Segment Intersection,
+ * Graphics Gems III, p. 199-202, code: p. 500-501.
+ * --------------------------------------------------------------------
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ * See the file LICENSE.LGPL distributed with the library.
+ *
+ * Licensees holding a valid commercial license may use this file in
+ * accordance with the commercial license agreement provided with the
+ * library.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+ *
+ * Author(s): Michael Wybrow
+*/
+
+
+// For M_PI:
+#define _USE_MATH_DEFINES
+#include <cmath>
+
+#include <limits>
+
+#include "libavoid/graph.h"
+#include "libavoid/geometry.h"
+#include "libavoid/assertions.h"
+
+
+namespace Avoid {
+
+
+// Returns true iff the point c lies on the closed segment ab.
+// To be used when the points are known to be collinear.
+//
+// Based on the code of 'Between'.
+//
+bool inBetween(const Point& a, const Point& b, const Point& c)
+{
+ double epsilon = std::numeric_limits<double>::epsilon();
+
+ // We only call this when we know the points are collinear,
+ // otherwise we should be checking this here.
+ COLA_ASSERT(vecDir(a, b, c, epsilon) == 0);
+
+ if (fabs(a.x - b.x) > epsilon)
+ {
+ // not vertical
+ return (((a.x < c.x) && (c.x < b.x)) ||
+ ((b.x < c.x) && (c.x < a.x)));
+ }
+ else
+ {
+ return (((a.y < c.y) && (c.y < b.y)) ||
+ ((b.y < c.y) && (c.y < a.y)));
+ }
+}
+
+
+// Returns true iff the three points are colinear.
+//
+bool colinear(const Point& a, const Point& b, const Point& c,
+ const double tolerance)
+{
+
+ // Do this a bit more optimally for orthogonal AB line segments.
+ if (a == b)
+ {
+ return true;
+ }
+ else if (a.x == b.x)
+ {
+ return (a.x == c.x);
+ }
+ else if (a.y == b.y)
+ {
+ return (a.y == c.y);
+ }
+
+ // Or use the general case.
+ return (vecDir(a, b, c, tolerance) == 0);
+
+}
+
+
+// Returns true iff the point c lies on the closed segment ab.
+//
+bool pointOnLine(const Point& a, const Point& b, const Point& c,
+ const double tolerance)
+{
+ // Do this a bit more optimally for orthogonal AB line segments.
+ if (a.x == b.x)
+ {
+ return (a.x == c.x) &&
+ (((a.y < c.y) && (c.y < b.y)) ||
+ ((b.y < c.y) && (c.y < a.y)));
+ }
+ else if (a.y == b.y)
+ {
+ return (a.y == c.y) &&
+ (((a.x < c.x) && (c.x < b.x)) ||
+ ((b.x < c.x) && (c.x < a.x)));
+ }
+
+ // Or use the general case.
+ return (vecDir(a, b, c, tolerance) == 0) && inBetween(a, b, c);
+}
+
+
+// Returns true if the segment cd intersects the segment ab, blocking
+// visibility.
+//
+// Based on the code of 'IntersectProp' and 'Intersect'.
+//
+bool segmentIntersect(const Point& a, const Point& b, const Point& c,
+ const Point& d)
+{
+ int ab_c = vecDir(a, b, c);
+ if (ab_c == 0)
+ {
+ return false;
+ }
+
+ int ab_d = vecDir(a, b, d);
+ if (ab_d == 0)
+ {
+ return false;
+ }
+
+ // It's ok for either of the points a or b to be on the line cd,
+ // so we don't have to check the other two cases.
+
+ int cd_a = vecDir(c, d, a);
+ int cd_b = vecDir(c, d, b);
+
+ // Is an intersection if a and b are on opposite sides of cd,
+ // and c and d are on opposite sides of the line ab.
+ //
+ // Note: this is safe even though the textbook warns about it
+ // since, unlike them, our vecDir is equivilent to 'AreaSign'
+ // rather than 'Area2'.
+ return (((ab_c * ab_d) < 0) && ((cd_a * cd_b) < 0));
+}
+
+
+// Returns true if the segment e1-e2 intersects the shape boundary
+// segment s1-s2, blocking visibility.
+//
+bool segmentShapeIntersect(const Point& e1, const Point& e2, const Point& s1,
+ const Point& s2, bool& seenIntersectionAtEndpoint)
+{
+ if (segmentIntersect(e1, e2, s1, s2))
+ {
+ // Basic intersection of segments.
+ return true;
+ }
+ else if ( (((s2 == e1) || pointOnLine(s1, s2, e1)) &&
+ (vecDir(s1, s2, e2) != 0))
+ ||
+ (((s2 == e2) || pointOnLine(s1, s2, e2)) &&
+ (vecDir(s1, s2, e1) != 0)) )
+ {
+ // Segments intersect at the endpoint of one of the segments. We
+ // allow this once, but the second one blocks visibility. Otherwise
+ // shapes butted up against each other could have visibility through
+ // shapes.
+ if (seenIntersectionAtEndpoint)
+ {
+ return true;
+ }
+ seenIntersectionAtEndpoint = true;
+ }
+ return false;
+}
+
+
+// Returns true iff the point p in a valid region that can contain
+// shortest paths. a0, a1, a2 are ordered vertices of a shape.
+//
+// Based on the code of 'InCone'.
+//
+bool inValidRegion(bool IgnoreRegions, const Point& a0, const Point& a1,
+ const Point& a2, const Point& b)
+{
+ // r is a0--a1
+ // s is a1--a2
+
+ int rSide = vecDir(b, a0, a1);
+ int sSide = vecDir(b, a1, a2);
+
+ bool rOutOn = (rSide <= 0);
+ bool sOutOn = (sSide <= 0);
+
+ bool rOut = (rSide < 0);
+ bool sOut = (sSide < 0);
+
+ if (vecDir(a0, a1, a2) > 0)
+ {
+ // Convex at a1:
+ //
+ // !rO rO
+ // sO sO
+ //
+ // ---s---+
+ // |
+ // !rO r rO
+ // !sO | !sO
+ //
+ //
+ if (IgnoreRegions)
+ {
+ return (rOutOn && !sOut) || (!rOut && sOutOn);
+ }
+ return (rOutOn || sOutOn);
+ }
+ else
+ {
+ // Concave at a1:
+ //
+ // !rO rO
+ // !sO !sO
+ //
+ // +---s---
+ // |
+ // !rO r rO
+ // sO | sO
+ //
+ //
+ return (IgnoreRegions ? false : (rOutOn && sOutOn));
+ }
+}
+
+
+// Gives the side of a corner that a point lies on:
+// 1 anticlockwise
+// -1 clockwise
+// e.g. /|s2
+// /s3 -1 / |
+// / / |
+// 1 |s2 -1 / 1 | -1
+// | / |
+// |s1 s3/ |s1
+//
+int cornerSide(const Point &c1, const Point &c2, const Point &c3,
+ const Point& p)
+{
+ int s123 = vecDir(c1, c2, c3);
+ int s12p = vecDir(c1, c2, p);
+ int s23p = vecDir(c2, c3, p);
+
+ if (s123 == 1)
+ {
+ if ((s12p >= 0) && (s23p >= 0))
+ {
+ return 1;
+ }
+ return -1;
+ }
+ else if (s123 == -1)
+ {
+ if ((s12p <= 0) && (s23p <= 0))
+ {
+ return -1;
+ }
+ return 1;
+ }
+
+ // c1-c2-c3 are collinear, so just return vecDir from c1-c2
+ return s12p;
+}
+
+
+// Returns the Euclidean distance between points a and b.
+//
+double euclideanDist(const Point& a, const Point& b)
+{
+ double xdiff = a.x - b.x;
+ double ydiff = a.y - b.y;
+
+ return sqrt((xdiff * xdiff) + (ydiff * ydiff));
+}
+
+// Returns the Manhattan distance between points a and b.
+//
+double manhattanDist(const Point& a, const Point& b)
+{
+ return fabs(a.x - b.x) + fabs(a.y - b.y);
+}
+
+
+// Returns the Euclidean distance between points a and b.
+//
+double dist(const Point& a, const Point& b)
+{
+ double xdiff = a.x - b.x;
+ double ydiff = a.y - b.y;
+
+ return sqrt((xdiff * xdiff) + (ydiff * ydiff));
+}
+
+// Returns the total length of all line segments in the polygon
+double totalLength(const Polygon& poly)
+{
+ double l = 0;
+ for (size_t i = 1; i < poly.size(); ++i)
+ {
+ l += dist(poly.ps[i-1], poly.ps[i]);
+ }
+ return l;
+}
+
+// Uses the dot-product rule to find the angle (radians) between ab and bc
+double angle(const Point& a, const Point& b, const Point& c)
+{
+ double ux = b.x - a.x,
+ uy = b.y - a.y,
+ vx = c.x - b.x,
+ vy = c.y - b.y,
+ lu = sqrt(ux*ux+uy*uy),
+ lv = sqrt(vx*vx+vy*vy),
+ udotv = ux * vx + uy * vy,
+ costheta = udotv / (lu * lv);
+ return acos(costheta);
+}
+
+// Returns true iff the point q is inside (or on the edge of) the
+// polygon argpoly.
+//
+// This is a fast version that only works for convex shapes. The
+// other version (inPolyGen) is more general.
+//
+bool inPoly(const Polygon& poly, const Point& q, bool countBorder)
+{
+ size_t n = poly.size();
+ const std::vector<Point>& P = poly.ps;
+ bool onBorder = false;
+ for (size_t i = 0; i < n; i++)
+ {
+ // point index; i1 = i-1 mod n
+ size_t prev = (i + n - 1) % n;
+ int dir = vecDir(P[prev], P[i], q);
+ if (dir == -1)
+ {
+ // Point is outside
+ return false;
+ }
+ // Record if point was on a boundary.
+ onBorder |= (dir == 0);
+ }
+ if (!countBorder && onBorder)
+ {
+ return false;
+ }
+ return true;
+}
+
+
+// Returns true iff the point q is inside (or on the edge of) the
+// polygon argpoly.
+//
+// Based on the code of 'InPoly'.
+//
+bool inPolyGen(const PolygonInterface& argpoly, const Point& q)
+{
+ // Numbers of right and left edge/ray crossings.
+ int Rcross = 0;
+ int Lcross = 0;
+
+ // Copy the argument polygon
+ Polygon poly = argpoly;
+ std::vector<Point>& P = poly.ps;
+ size_t n = poly.size();
+
+ // Shift so that q is the origin. This is done for pedagogical clarity.
+ for (size_t i = 0; i < n; ++i)
+ {
+ P[i].x = P[i].x - q.x;
+ P[i].y = P[i].y - q.y;
+ }
+
+ // For each edge e=(i-1,i), see if crosses ray.
+ for (size_t i = 0; i < n; ++i)
+ {
+ // First see if q=(0,0) is a vertex.
+ if ((P[i].x == 0) && (P[i].y == 0))
+ {
+ // We count a vertex as inside.
+ return true;
+ }
+
+ // point index; i1 = i-1 mod n
+ size_t i1 = ( i + n - 1 ) % n;
+
+ // if e "straddles" the x-axis...
+ // The commented-out statement is logically equivalent to the one
+ // following.
+ // if( ((P[i].y > 0) && (P[i1].y <= 0)) ||
+ // ((P[i1].y > 0) && (P[i].y <= 0)) )
+
+ if ((P[i].y > 0) != (P[i1].y > 0))
+ {
+ // e straddles ray, so compute intersection with ray.
+ double x = (P[i].x * P[i1].y - P[i1].x * P[i].y)
+ / (P[i1].y - P[i].y);
+
+ // crosses ray if strictly positive intersection.
+ if (x > 0)
+ {
+ Rcross++;
+ }
+ }
+
+ // if e straddles the x-axis when reversed...
+ // if( ((P[i].y < 0) && (P[i1].y >= 0)) ||
+ // ((P[i1].y < 0) && (P[i].y >= 0)) )
+
+ if ((P[i].y < 0) != (P[i1].y < 0))
+ {
+ // e straddles ray, so compute intersection with ray.
+ double x = (P[i].x * P[i1].y - P[i1].x * P[i].y)
+ / (P[i1].y - P[i].y);
+
+ // crosses ray if strictly positive intersection.
+ if (x < 0)
+ {
+ Lcross++;
+ }
+ }
+ }
+
+ // q on the edge if left and right cross are not the same parity.
+ if ( (Rcross % 2) != (Lcross % 2) )
+ {
+ // We count the edge as inside.
+ return true;
+ }
+
+ // Inside iff an odd number of crossings.
+ if ((Rcross % 2) == 1)
+ {
+ return true;
+ }
+
+ // Outside.
+ return false;
+}
+
+
+
+// Line Segment Intersection
+// Original code by Franklin Antonio
+//
+// The SAME_SIGNS macro assumes arithmetic where the exclusive-or
+// operation will work on sign bits. This works for twos-complement,
+// and most other machine arithmetic.
+#define SAME_SIGNS( a, b ) \
+ (((long) ((unsigned long) a ^ (unsigned long) b)) >= 0 )
+//
+int segmentIntersectPoint(const Point& a1, const Point& a2,
+ const Point& b1, const Point& b2, double *x, double *y)
+{
+ double Ax,Bx,Cx,Ay,By,Cy,d,e,f,num;
+ double x1lo,x1hi,y1lo,y1hi;
+
+ Ax = a2.x - a1.x;
+ Bx = b1.x - b2.x;
+
+ // X bound box test:
+ if (Ax < 0)
+ {
+ x1lo = a2.x;
+ x1hi = a1.x;
+ }
+ else
+ {
+ x1hi = a2.x;
+ x1lo = a1.x;
+ }
+ if (Bx > 0)
+ {
+ if (x1hi < b2.x || b1.x < x1lo) return DONT_INTERSECT;
+ }
+ else
+ {
+ if (x1hi < b1.x || b2.x < x1lo) return DONT_INTERSECT;
+ }
+
+ Ay = a2.y - a1.y;
+ By = b1.y - b2.y;
+
+ // Y bound box test:
+ if (Ay < 0)
+ {
+ y1lo = a2.y;
+ y1hi = a1.y;
+ }
+ else
+ {
+ y1hi = a2.y;
+ y1lo = a1.y;
+ }
+ if (By > 0)
+ {
+ if (y1hi < b2.y || b1.y < y1lo) return DONT_INTERSECT;
+ }
+ else
+ {
+ if (y1hi < b1.y || b2.y < y1lo) return DONT_INTERSECT;
+ }
+
+ Cx = a1.x - b1.x;
+ Cy = a1.y - b1.y;
+ // alpha numerator:
+ d = By*Cx - Bx*Cy;
+ // Both denominator:
+ f = Ay*Bx - Ax*By;
+ // alpha tests:
+ if (f > 0)
+ {
+ if (d < 0 || d > f) return DONT_INTERSECT;
+ }
+ else
+ {
+ if (d > 0 || d < f) return DONT_INTERSECT;
+ }
+
+ // beta numerator:
+ e = Ax*Cy - Ay*Cx;
+ // beta tests:
+ if (f > 0)
+ {
+ if (e < 0 || e > f) return DONT_INTERSECT;
+ }
+ else
+ {
+ if (e > 0 || e < f) return DONT_INTERSECT;
+ }
+
+ // compute intersection coordinates:
+
+ if (f == 0) return PARALLEL;
+
+ // Numerator:
+ num = d*Ax;
+ // Intersection X:
+ *x = a1.x + (num) / f;
+
+ num = d*Ay;
+ // Intersection Y:
+ *y = a1.y + (num) / f;
+
+ return DO_INTERSECT;
+}
+
+
+// Line Segment Intersection
+// Original code by Franklin Antonio
+//
+int rayIntersectPoint(const Point& a1, const Point& a2,
+ const Point& b1, const Point& b2, double *x, double *y)
+{
+ double Ax,Bx,Cx,Ay,By,Cy,d,f,num;
+
+ Ay = a2.y - a1.y;
+ By = b1.y - b2.y;
+ Ax = a2.x - a1.x;
+ Bx = b1.x - b2.x;
+
+ Cx = a1.x - b1.x;
+ Cy = a1.y - b1.y;
+ // alpha numerator:
+ d = By*Cx - Bx*Cy;
+ // Both denominator:
+ f = Ay*Bx - Ax*By;
+
+ // compute intersection coordinates:
+
+ if (f == 0) return PARALLEL;
+
+ // Numerator:
+ num = d*Ax;
+ // Intersection X:
+ *x = a1.x + (num) / f;
+
+ num = d*Ay;
+ // Intersection Y:
+ *y = a1.y + (num) / f;
+
+ return DO_INTERSECT;
+}
+
+// Returns the rotationalAngle, between 0 and 360, of this point from (0,0).
+//
+double rotationalAngle(const Point& p)
+{
+ if (p.y == 0)
+ {
+ return ((p.x < 0) ? 180 : 0);
+ }
+ else if (p.x == 0)
+ {
+ return ((p.y < 0) ? 270 : 90);
+ }
+
+ double ang = atan(p.y / p.x);
+ ang = (ang * 180) / M_PI;
+
+ if (p.x < 0)
+ {
+ ang += 180;
+ }
+ else if (p.y < 0)
+ {
+ ang += 360;
+ }
+ COLA_ASSERT(ang >= 0);
+ COLA_ASSERT(ang <= 360);
+
+ return ang;
+}
+
+
+}
+