summaryrefslogtreecommitdiffstats
path: root/src/extension/internal/odf.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/extension/internal/odf.cpp')
-rw-r--r--src/extension/internal/odf.cpp2126
1 files changed, 2126 insertions, 0 deletions
diff --git a/src/extension/internal/odf.cpp b/src/extension/internal/odf.cpp
new file mode 100644
index 0000000..4b10711
--- /dev/null
+++ b/src/extension/internal/odf.cpp
@@ -0,0 +1,2126 @@
+// SPDX-License-Identifier: LGPL-2.1-or-later
+/** @file
+ * OpenDocument (drawing) input and output
+ *//*
+ * Authors:
+ * Bob Jamison
+ * Abhishek Sharma
+ * Kris De Gussem
+ *
+ * Copyright (C) 2018 Authors
+ * Released under GNU LGPL v2.1+, read the file 'COPYING' for more information.
+ */
+/*
+ * This is an an entry in the extensions mechanism to begin to enable
+ * the inputting and outputting of OpenDocument Format (ODF) files from
+ * within Inkscape. Although the initial implementations will be very lossy
+ * due to the differences in the models of SVG and ODF, they will hopefully
+ * improve greatly with time. People should consider this to be a framework
+ * that can be continuously upgraded for ever improving fidelity. Potential
+ * developers should especially look in preprocess() and writeTree() to see how
+ * the SVG tree is scanned, read, translated, and then written to ODF.
+ *
+ * http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/idl-definitions.html
+ *
+ */
+
+#include "odf.h"
+
+//# System includes
+#include <cstdio>
+#include <ctime>
+#include <vector>
+#include <cmath>
+
+//# Inkscape includes
+#include "clear-n_.h"
+#include "inkscape.h"
+#include "display/curve.h"
+#include <2geom/pathvector.h>
+#include <2geom/curves.h>
+#include <2geom/transforms.h>
+#include <helper/geom.h>
+#include "helper/geom-curves.h"
+#include "extension/system.h"
+
+#include "xml/repr.h"
+#include "xml/attribute-record.h"
+#include "object/sp-image.h"
+#include "object/sp-gradient.h"
+#include "object/sp-stop.h"
+#include "object/sp-linear-gradient.h"
+#include "object/sp-radial-gradient.h"
+#include "object/sp-root.h"
+#include "object/sp-path.h"
+#include "object/sp-text.h"
+#include "object/sp-flowtext.h"
+#include "object/uri.h"
+#include "style.h"
+
+#include "svg/svg.h"
+#include "text-editing.h"
+#include "util/units.h"
+
+
+#include "inkscape-version.h"
+#include "document.h"
+#include "extension/extension.h"
+
+#include "io/stream/bufferstream.h"
+#include "io/stream/stringstream.h"
+#include "io/sys.h"
+#include <util/ziptool.h>
+#include <iomanip>
+namespace Inkscape
+{
+namespace Extension
+{
+namespace Internal
+{
+//# Shorthand notation
+typedef Inkscape::IO::BufferOutputStream BufferOutputStream;
+typedef Inkscape::IO::OutputStreamWriter OutputStreamWriter;
+typedef Inkscape::IO::StringOutputStream StringOutputStream;
+
+
+//########################################################################
+//# C L A S S SingularValueDecomposition
+//########################################################################
+#include <cmath>
+
+class SVDMatrix
+{
+public:
+
+ SVDMatrix()
+ {
+ init();
+ }
+
+ SVDMatrix(unsigned int rowSize, unsigned int colSize)
+ {
+ init();
+ rows = rowSize;
+ cols = colSize;
+ size = rows * cols;
+ d = new double[size];
+ for (unsigned int i=0 ; i<size ; i++)
+ d[i] = 0.0;
+ }
+
+ SVDMatrix(double *vals, unsigned int rowSize, unsigned int colSize)
+ {
+ init();
+ rows = rowSize;
+ cols = colSize;
+ size = rows * cols;
+ d = new double[size];
+ for (unsigned int i=0 ; i<size ; i++)
+ d[i] = vals[i];
+ }
+
+
+ SVDMatrix(const SVDMatrix &other)
+ {
+ init();
+ assign(other);
+ }
+
+ SVDMatrix &operator=(const SVDMatrix &other)
+ {
+ assign(other);
+ return *this;
+ }
+
+ virtual ~SVDMatrix()
+ {
+ delete[] d;
+ }
+
+ double& operator() (unsigned int row, unsigned int col)
+ {
+ if (row >= rows || col >= cols)
+ return badval;
+ return d[cols*row + col];
+ }
+
+ double operator() (unsigned int row, unsigned int col) const
+ {
+ if (row >= rows || col >= cols)
+ return badval;
+ return d[cols*row + col];
+ }
+
+ unsigned int getRows()
+ {
+ return rows;
+ }
+
+ unsigned int getCols()
+ {
+ return cols;
+ }
+
+ SVDMatrix multiply(const SVDMatrix &other)
+ {
+ if (cols != other.rows)
+ {
+ SVDMatrix dummy;
+ return dummy;
+ }
+ SVDMatrix result(rows, other.cols);
+ for (unsigned int i=0 ; i<rows ; i++)
+ {
+ for (unsigned int j=0 ; j<other.cols ; j++)
+ {
+ double sum = 0.0;
+ for (unsigned int k=0 ; k<cols ; k++)
+ {
+ //sum += a[i][k] * b[k][j];
+ sum += d[i*cols +k] * other(k, j);
+ }
+ result(i, j) = sum;
+ }
+
+ }
+ return result;
+ }
+
+ SVDMatrix transpose()
+ {
+ SVDMatrix result(cols, rows);
+ for (unsigned int i=0 ; i<rows ; i++){
+ for (unsigned int j=0 ; j<cols ; j++){
+ result(j, i) = d[i*cols + j];
+ }
+ }
+ return result;
+ }
+
+private:
+
+
+ virtual void init()
+ {
+ badval = 0.0;
+ d = nullptr;
+ rows = 0;
+ cols = 0;
+ size = 0;
+ }
+
+ void assign(const SVDMatrix &other)
+ {
+ if (d)
+ {
+ delete[] d;
+ d = nullptr;
+ }
+ rows = other.rows;
+ cols = other.cols;
+ size = other.size;
+ badval = other.badval;
+ d = new double[size];
+ for (unsigned int i=0 ; i<size ; i++){
+ d[i] = other.d[i];
+ }
+ }
+
+ double badval;
+
+ double *d;
+ unsigned int rows;
+ unsigned int cols;
+ unsigned int size;
+};
+
+
+
+/**
+ *
+ * ====================================================
+ *
+ * NOTE:
+ * This class is ported almost verbatim from the public domain
+ * JAMA Matrix package. It is modified to handle only 3x3 matrices
+ * and our Geom::Affine affine transform class. We give full
+ * attribution to them, along with many thanks. JAMA can be found at:
+ * http://math.nist.gov/javanumerics/jama
+ *
+ * ====================================================
+ *
+ * Singular Value Decomposition.
+ * <P>
+ * For an m-by-n matrix A with m >= n, the singular value decomposition is
+ * an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
+ * an n-by-n orthogonal matrix V so that A = U*S*V'.
+ * <P>
+ * The singular values, sigma[k] = S[k][k], are ordered so that
+ * sigma[0] >= sigma[1] >= ... >= sigma[n-1].
+ * <P>
+ * The singular value decomposition always exists, so the constructor will
+ * never fail. The matrix condition number and the effective numerical
+ * rank can be computed from this decomposition.
+ */
+class SingularValueDecomposition
+{
+public:
+
+ /** Construct the singular value decomposition
+ @param A Rectangular matrix
+ @return Structure to access U, S and V.
+ */
+
+ SingularValueDecomposition (const SVDMatrix &mat) :
+ A (mat),
+ U (),
+ s (nullptr),
+ s_size (0),
+ V ()
+ {
+ calculate();
+ }
+
+ virtual ~SingularValueDecomposition()
+ {
+ delete[] s;
+ }
+
+ /**
+ * Return the left singular vectors
+ * @return U
+ */
+ SVDMatrix &getU();
+
+ /**
+ * Return the right singular vectors
+ * @return V
+ */
+ SVDMatrix &getV();
+
+ /**
+ * Return the s[index] value
+ */ double getS(unsigned int index);
+
+ /**
+ * Two norm
+ * @return max(S)
+ */
+ double norm2();
+
+ /**
+ * Two norm condition number
+ * @return max(S)/min(S)
+ */
+ double cond();
+
+ /**
+ * Effective numerical matrix rank
+ * @return Number of nonnegligible singular values.
+ */
+ int rank();
+
+private:
+
+ void calculate();
+
+ SVDMatrix A;
+ SVDMatrix U;
+ double *s;
+ unsigned int s_size;
+ SVDMatrix V;
+
+};
+
+
+static double svd_hypot(double a, double b)
+{
+ double r;
+
+ if (fabs(a) > fabs(b))
+ {
+ r = b/a;
+ r = fabs(a) * sqrt(1+r*r);
+ }
+ else if (b != 0)
+ {
+ r = a/b;
+ r = fabs(b) * sqrt(1+r*r);
+ }
+ else
+ {
+ r = 0.0;
+ }
+ return r;
+}
+
+
+
+void SingularValueDecomposition::calculate()
+{
+ // Initialize.
+ int m = A.getRows();
+ int n = A.getCols();
+
+ int nu = (m > n) ? m : n;
+ s_size = (m+1 < n) ? m+1 : n;
+ s = new double[s_size];
+ U = SVDMatrix(m, nu);
+ V = SVDMatrix(n, n);
+ double *e = new double[n];
+ double *work = new double[m];
+ bool wantu = true;
+ bool wantv = true;
+
+ // Reduce A to bidiagonal form, storing the diagonal elements
+ // in s and the super-diagonal elements in e.
+
+ int nct = (m-1<n) ? m-1 : n;
+ int nrtx = (n-2<m) ? n-2 : m;
+ int nrt = (nrtx>0) ? nrtx : 0;
+ for (int k = 0; k < 2; k++) {
+ if (k < nct) {
+
+ // Compute the transformation for the k-th column and
+ // place the k-th diagonal in s[k].
+ // Compute 2-norm of k-th column without under/overflow.
+ s[k] = 0;
+ for (int i = k; i < m; i++) {
+ s[k] = svd_hypot(s[k],A(i, k));
+ }
+ if (s[k] != 0.0) {
+ if (A(k, k) < 0.0) {
+ s[k] = -s[k];
+ }
+ for (int i = k; i < m; i++) {
+ A(i, k) /= s[k];
+ }
+ A(k, k) += 1.0;
+ }
+ s[k] = -s[k];
+ }
+ for (int j = k+1; j < n; j++) {
+ if ((k < nct) & (s[k] != 0.0)) {
+
+ // Apply the transformation.
+
+ double t = 0;
+ for (int i = k; i < m; i++) {
+ t += A(i, k) * A(i, j);
+ }
+ t = -t/A(k, k);
+ for (int i = k; i < m; i++) {
+ A(i, j) += t*A(i, k);
+ }
+ }
+
+ // Place the k-th row of A into e for the
+ // subsequent calculation of the row transformation.
+
+ e[j] = A(k, j);
+ }
+ if (wantu & (k < nct)) {
+
+ // Place the transformation in U for subsequent back
+ // multiplication.
+
+ for (int i = k; i < m; i++) {
+ U(i, k) = A(i, k);
+ }
+ }
+ if (k < nrt) {
+
+ // Compute the k-th row transformation and place the
+ // k-th super-diagonal in e[k].
+ // Compute 2-norm without under/overflow.
+ e[k] = 0;
+ for (int i = k+1; i < n; i++) {
+ e[k] = svd_hypot(e[k],e[i]);
+ }
+ if (e[k] != 0.0) {
+ if (e[k+1] < 0.0) {
+ e[k] = -e[k];
+ }
+ for (int i = k+1; i < n; i++) {
+ e[i] /= e[k];
+ }
+ e[k+1] += 1.0;
+ }
+ e[k] = -e[k];
+ if ((k+1 < m) & (e[k] != 0.0)) {
+
+ // Apply the transformation.
+
+ for (int i = k+1; i < m; i++) {
+ work[i] = 0.0;
+ }
+ for (int j = k+1; j < n; j++) {
+ for (int i = k+1; i < m; i++) {
+ work[i] += e[j]*A(i, j);
+ }
+ }
+ for (int j = k+1; j < n; j++) {
+ double t = -e[j]/e[k+1];
+ for (int i = k+1; i < m; i++) {
+ A(i, j) += t*work[i];
+ }
+ }
+ }
+ if (wantv) {
+
+ // Place the transformation in V for subsequent
+ // back multiplication.
+
+ for (int i = k+1; i < n; i++) {
+ V(i, k) = e[i];
+ }
+ }
+ }
+ }
+
+ // Set up the final bidiagonal matrix or order p.
+
+ int p = (n < m+1) ? n : m+1;
+ if (nct < n) {
+ s[nct] = A(nct, nct);
+ }
+ if (m < p) {
+ s[p-1] = 0.0;
+ }
+ if (nrt+1 < p) {
+ e[nrt] = A(nrt, p-1);
+ }
+ e[p-1] = 0.0;
+
+ // If required, generate U.
+
+ if (wantu) {
+ for (int j = nct; j < nu; j++) {
+ for (int i = 0; i < m; i++) {
+ U(i, j) = 0.0;
+ }
+ U(j, j) = 1.0;
+ }
+ for (int k = nct-1; k >= 0; k--) {
+ if (s[k] != 0.0) {
+ for (int j = k+1; j < nu; j++) {
+ double t = 0;
+ for (int i = k; i < m; i++) {
+ t += U(i, k)*U(i, j);
+ }
+ t = -t/U(k, k);
+ for (int i = k; i < m; i++) {
+ U(i, j) += t*U(i, k);
+ }
+ }
+ for (int i = k; i < m; i++ ) {
+ U(i, k) = -U(i, k);
+ }
+ U(k, k) = 1.0 + U(k, k);
+ for (int i = 0; i < k-1; i++) {
+ U(i, k) = 0.0;
+ }
+ } else {
+ for (int i = 0; i < m; i++) {
+ U(i, k) = 0.0;
+ }
+ U(k, k) = 1.0;
+ }
+ }
+ }
+
+ // If required, generate V.
+
+ if (wantv) {
+ for (int k = n-1; k >= 0; k--) {
+ if ((k < nrt) & (e[k] != 0.0)) {
+ for (int j = k+1; j < nu; j++) {
+ double t = 0;
+ for (int i = k+1; i < n; i++) {
+ t += V(i, k)*V(i, j);
+ }
+ t = -t/V(k+1, k);
+ for (int i = k+1; i < n; i++) {
+ V(i, j) += t*V(i, k);
+ }
+ }
+ }
+ for (int i = 0; i < n; i++) {
+ V(i, k) = 0.0;
+ }
+ V(k, k) = 1.0;
+ }
+ }
+
+ // Main iteration loop for the singular values.
+
+ int pp = p-1;
+ //double eps = pow(2.0,-52.0);
+ //double tiny = pow(2.0,-966.0);
+ //let's just calculate these now
+ //a double can be e ± 308.25, so this is safe
+ double eps = 2.22e-16;
+ double tiny = 1.6e-291;
+ while (p > 0) {
+ int k,kase;
+
+ // Here is where a test for too many iterations would go.
+
+ // This section of the program inspects for
+ // negligible elements in the s and e arrays. On
+ // completion the variables kase and k are set as follows.
+
+ // kase = 1 if s(p) and e[k-1] are negligible and k<p
+ // kase = 2 if s(k) is negligible and k<p
+ // kase = 3 if e[k-1] is negligible, k<p, and
+ // s(k), ..., s(p) are not negligible (qr step).
+ // kase = 4 if e(p-1) is negligible (convergence).
+
+ for (k = p-2; k >= -1; k--) {
+ if (k == -1) {
+ break;
+ }
+ if (fabs(e[k]) <=
+ tiny + eps*(fabs(s[k]) + fabs(s[k+1]))) {
+ e[k] = 0.0;
+ break;
+ }
+ }
+ if (k == p-2) {
+ kase = 4;
+ } else {
+ int ks;
+ for (ks = p-1; ks >= k; ks--) {
+ if (ks == k) {
+ break;
+ }
+ double t = (ks != p ? fabs(e[ks]) : 0.) +
+ (ks != k+1 ? fabs(e[ks-1]) : 0.);
+ if (fabs(s[ks]) <= tiny + eps*t) {
+ s[ks] = 0.0;
+ break;
+ }
+ }
+ if (ks == k) {
+ kase = 3;
+ } else if (ks == p-1) {
+ kase = 1;
+ } else {
+ kase = 2;
+ k = ks;
+ }
+ }
+ k++;
+
+ // Perform the task indicated by kase.
+
+ switch (kase) {
+
+ // Deflate negligible s(p).
+
+ case 1: {
+ double f = e[p-2];
+ e[p-2] = 0.0;
+ for (int j = p-2; j >= k; j--) {
+ double t = svd_hypot(s[j],f);
+ double cs = s[j]/t;
+ double sn = f/t;
+ s[j] = t;
+ if (j != k) {
+ f = -sn*e[j-1];
+ e[j-1] = cs*e[j-1];
+ }
+ if (wantv) {
+ for (int i = 0; i < n; i++) {
+ t = cs*V(i, j) + sn*V(i, p-1);
+ V(i, p-1) = -sn*V(i, j) + cs*V(i, p-1);
+ V(i, j) = t;
+ }
+ }
+ }
+ }
+ break;
+
+ // Split at negligible s(k).
+
+ case 2: {
+ double f = e[k-1];
+ e[k-1] = 0.0;
+ for (int j = k; j < p; j++) {
+ double t = svd_hypot(s[j],f);
+ double cs = s[j]/t;
+ double sn = f/t;
+ s[j] = t;
+ f = -sn*e[j];
+ e[j] = cs*e[j];
+ if (wantu) {
+ for (int i = 0; i < m; i++) {
+ t = cs*U(i, j) + sn*U(i, k-1);
+ U(i, k-1) = -sn*U(i, j) + cs*U(i, k-1);
+ U(i, j) = t;
+ }
+ }
+ }
+ }
+ break;
+
+ // Perform one qr step.
+
+ case 3: {
+
+ // Calculate the shift.
+
+ double scale = fabs(s[p-1]);
+ double d = fabs(s[p-2]);
+ if (d>scale) scale=d;
+ d = fabs(e[p-2]);
+ if (d>scale) scale=d;
+ d = fabs(s[k]);
+ if (d>scale) scale=d;
+ d = fabs(e[k]);
+ if (d>scale) scale=d;
+ double sp = s[p-1]/scale;
+ double spm1 = s[p-2]/scale;
+ double epm1 = e[p-2]/scale;
+ double sk = s[k]/scale;
+ double ek = e[k]/scale;
+ double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;
+ double c = (sp*epm1)*(sp*epm1);
+ double shift = 0.0;
+ if ((b != 0.0) | (c != 0.0)) {
+ shift = sqrt(b*b + c);
+ if (b < 0.0) {
+ shift = -shift;
+ }
+ shift = c/(b + shift);
+ }
+ double f = (sk + sp)*(sk - sp) + shift;
+ double g = sk*ek;
+
+ // Chase zeros.
+
+ for (int j = k; j < p-1; j++) {
+ double t = svd_hypot(f,g);
+ double cs = f/t;
+ double sn = g/t;
+ if (j != k) {
+ e[j-1] = t;
+ }
+ f = cs*s[j] + sn*e[j];
+ e[j] = cs*e[j] - sn*s[j];
+ g = sn*s[j+1];
+ s[j+1] = cs*s[j+1];
+ if (wantv) {
+ for (int i = 0; i < n; i++) {
+ t = cs*V(i, j) + sn*V(i, j+1);
+ V(i, j+1) = -sn*V(i, j) + cs*V(i, j+1);
+ V(i, j) = t;
+ }
+ }
+ t = svd_hypot(f,g);
+ cs = f/t;
+ sn = g/t;
+ s[j] = t;
+ f = cs*e[j] + sn*s[j+1];
+ s[j+1] = -sn*e[j] + cs*s[j+1];
+ g = sn*e[j+1];
+ e[j+1] = cs*e[j+1];
+ if (wantu && (j < m-1)) {
+ for (int i = 0; i < m; i++) {
+ t = cs*U(i, j) + sn*U(i, j+1);
+ U(i, j+1) = -sn*U(i, j) + cs*U(i, j+1);
+ U(i, j) = t;
+ }
+ }
+ }
+ e[p-2] = f;
+ }
+ break;
+
+ // Convergence.
+
+ case 4: {
+
+ // Make the singular values positive.
+
+ if (s[k] <= 0.0) {
+ s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
+ if (wantv) {
+ for (int i = 0; i <= pp; i++) {
+ V(i, k) = -V(i, k);
+ }
+ }
+ }
+
+ // Order the singular values.
+
+ while (k < pp) {
+ if (s[k] >= s[k+1]) {
+ break;
+ }
+ double t = s[k];
+ s[k] = s[k+1];
+ s[k+1] = t;
+ if (wantv && (k < n-1)) {
+ for (int i = 0; i < n; i++) {
+ t = V(i, k+1); V(i, k+1) = V(i, k); V(i, k) = t;
+ }
+ }
+ if (wantu && (k < m-1)) {
+ for (int i = 0; i < m; i++) {
+ t = U(i, k+1); U(i, k+1) = U(i, k); U(i, k) = t;
+ }
+ }
+ k++;
+ }
+ p--;
+ }
+ break;
+ }
+ }
+
+ delete [] e;
+ delete [] work;
+
+}
+
+
+/**
+ * Return the left singular vectors
+ * @return U
+ */
+SVDMatrix &SingularValueDecomposition::getU()
+{
+ return U;
+}
+
+/**
+ * Return the right singular vectors
+ * @return V
+ */
+
+SVDMatrix &SingularValueDecomposition::getV()
+{
+ return V;
+}
+
+/**
+ * Return the s[0] value
+ */
+double SingularValueDecomposition::getS(unsigned int index)
+{
+ if (index >= s_size)
+ return 0.0;
+ return s[index];
+}
+
+/**
+ * Two norm
+ * @return max(S)
+ */
+double SingularValueDecomposition::norm2()
+{
+ return s[0];
+}
+
+/**
+ * Two norm condition number
+ * @return max(S)/min(S)
+ */
+
+double SingularValueDecomposition::cond()
+{
+ return s[0]/s[2];
+}
+
+/**
+ * Effective numerical matrix rank
+ * @return Number of nonnegligible singular values.
+ */
+int SingularValueDecomposition::rank()
+{
+ double eps = pow(2.0,-52.0);
+ double tol = 3.0*s[0]*eps;
+ int r = 0;
+ for (int i = 0; i < 3; i++)
+ {
+ if (s[i] > tol)
+ r++;
+ }
+ return r;
+}
+
+//########################################################################
+//# E N D C L A S S SingularValueDecomposition
+//########################################################################
+
+
+
+
+
+//#define pxToCm 0.0275
+#define pxToCm 0.03
+
+
+//########################################################################
+//# O U T P U T
+//########################################################################
+
+/**
+ * Get the value of a node/attribute pair
+ */
+static Glib::ustring getAttribute( Inkscape::XML::Node *node, char const *attrName)
+{
+ Glib::ustring val;
+ char const *valstr = node->attribute(attrName);
+ if (valstr)
+ val = valstr;
+ return val;
+}
+
+
+static Glib::ustring formatTransform(Geom::Affine &tf)
+{
+ Glib::ustring str;
+ if (!tf.isIdentity())
+ {
+ StringOutputStream outs;
+ OutputStreamWriter out(outs);
+ out.printf("matrix(%.3f %.3f %.3f %.3f %.3f %.3f)",
+ tf[0], tf[1], tf[2], tf[3], tf[4], tf[5]);
+ str = outs.getString();
+ }
+ return str;
+}
+
+
+/**
+ * Get the general transform from SVG pixels to
+ * ODF cm
+ */
+static Geom::Affine getODFTransform(const SPItem *item)
+{
+ //### Get SVG-to-ODF transform
+ Geom::Affine tf (item->i2doc_affine());
+ tf = tf * Geom::Affine(Geom::Scale(pxToCm));
+ return tf;
+}
+
+
+/**
+ * Get the bounding box of an item, as mapped onto
+ * an ODF document, in cm.
+ */
+static Geom::OptRect getODFBoundingBox(const SPItem *item)
+{
+ // TODO: geometric or visual?
+ Geom::OptRect bbox = item->documentVisualBounds();
+ if (bbox) {
+ *bbox *= Geom::Affine(Geom::Scale(pxToCm));
+ }
+ return bbox;
+}
+
+
+/**
+ * Get the transform for an item, including parents, but without
+ * root viewBox transformation.
+ */
+static Geom::Affine getODFItemTransform(const SPItem *item)
+{
+ Geom::Affine itemTransform (item->i2doc_affine() *
+ item->document->getRoot()->c2p.inverse());
+ return itemTransform;
+}
+
+
+/**
+ * Get some fun facts from the transform
+ */
+static void analyzeTransform(Geom::Affine &tf,
+ double &rotate, double &/*xskew*/, double &/*yskew*/,
+ double &xscale, double &yscale)
+{
+ SVDMatrix mat(2, 2);
+ mat(0, 0) = tf[0];
+ mat(0, 1) = tf[1];
+ mat(1, 0) = tf[2];
+ mat(1, 1) = tf[3];
+
+ SingularValueDecomposition svd(mat);
+
+ SVDMatrix U = svd.getU();
+ SVDMatrix V = svd.getV();
+ SVDMatrix Vt = V.transpose();
+ SVDMatrix UVt = U.multiply(Vt);
+ double s0 = svd.getS(0);
+ double s1 = svd.getS(1);
+ xscale = s0;
+ yscale = s1;
+ rotate = UVt(0,0);
+}
+
+static void gatherText(Inkscape::XML::Node *node, Glib::ustring &buf)
+{
+ if (node->type() == Inkscape::XML::NodeType::TEXT_NODE)
+ {
+ char *s = (char *)node->content();
+ if (s)
+ buf.append(s);
+ }
+
+ for (Inkscape::XML::Node *child = node->firstChild() ;
+ child != nullptr; child = child->next())
+ {
+ gatherText(child, buf);
+ }
+
+}
+
+
+/**
+ * FIRST PASS.
+ * Method descends into the repr tree, converting image, style, and gradient info
+ * into forms compatible in ODF.
+ */
+void OdfOutput::preprocess(ZipFile &zf, SPDocument *doc, Inkscape::XML::Node *node)
+{
+ Glib::ustring nodeName = node->name();
+ Glib::ustring id = getAttribute(node, "id");
+
+ //### First, check for metadata
+ if (nodeName == "metadata" || nodeName == "svg:metadata")
+ {
+ Inkscape::XML::Node *mchild = node->firstChild() ;
+ if (!mchild || strcmp(mchild->name(), "rdf:RDF"))
+ return;
+ Inkscape::XML::Node *rchild = mchild->firstChild() ;
+ if (!rchild || strcmp(rchild->name(), "cc:Work"))
+ return;
+ for (Inkscape::XML::Node *cchild = rchild->firstChild() ;
+ cchild ; cchild = cchild->next())
+ {
+ Glib::ustring ccName = cchild->name();
+ Glib::ustring ccVal;
+ gatherText(cchild, ccVal);
+ //g_message("ccName: %s ccVal:%s", ccName.c_str(), ccVal.c_str());
+ metadata[ccName] = ccVal;
+ }
+ return;
+ }
+
+ //Now consider items.
+ SPObject *reprobj = doc->getObjectByRepr(node);
+ if (!reprobj)
+ {
+ return;
+ }
+ if (!SP_IS_ITEM(reprobj))
+ {
+ return;
+ }
+
+ if (nodeName == "image" || nodeName == "svg:image") {
+ Glib::ustring href = getAttribute(node, "xlink:href");
+ if (href.size() > 0 && imageTable.count(href) == 0) {
+ try {
+ auto uri = Inkscape::URI(href.c_str(), docBaseUri.c_str());
+ auto mimetype = uri.getMimeType();
+
+ if (mimetype.substr(0, 6) != "image/") {
+ return;
+ }
+
+ auto ext = mimetype.substr(6);
+ auto newName = Glib::ustring("Pictures/image") + std::to_string(imageTable.size()) + "." + ext;
+
+ imageTable[href] = newName;
+
+ auto ze = zf.newEntry(newName.raw(), "");
+ ze->setUncompressedData(uri.getContents());
+ ze->finish();
+ } catch (...) {
+ g_warning("Could not handle URI '%.100s'", href.c_str());
+ }
+ }
+ }
+
+ for (Inkscape::XML::Node *child = node->firstChild() ;
+ child ; child = child->next())
+ preprocess(zf, doc, child);
+}
+
+
+/**
+ * Writes the manifest. Currently it only changes according to the
+ * file names of images packed into the zip file.
+ */
+bool OdfOutput::writeManifest(ZipFile &zf)
+{
+ BufferOutputStream bouts;
+ OutputStreamWriter outs(bouts);
+
+ time_t tim;
+ time(&tim);
+
+ outs.writeString("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
+ outs.writeString("<!DOCTYPE manifest:manifest PUBLIC \"-//OpenOffice.org//DTD Manifest 1.0//EN\" \"Manifest.dtd\">\n");
+ outs.writeString("\n");
+ outs.writeString("\n");
+ outs.writeString("<!--\n");
+ outs.writeString("*************************************************************************\n");
+ outs.writeString(" file: manifest.xml\n");
+ outs.printf (" Generated by Inkscape: %s", ctime(&tim)); //ctime has its own <cr>
+ outs.writeString(" http://www.inkscape.org\n");
+ outs.writeString("*************************************************************************\n");
+ outs.writeString("-->\n");
+ outs.writeString("\n");
+ outs.writeString("\n");
+ outs.writeString("<manifest:manifest xmlns:manifest=\"urn:oasis:names:tc:opendocument:xmlns:manifest:1.0\">\n");
+ outs.writeString(" <manifest:file-entry manifest:media-type=\"application/vnd.oasis.opendocument.graphics\" manifest:full-path=\"/\"/>\n");
+ outs.writeString(" <manifest:file-entry manifest:media-type=\"text/xml\" manifest:full-path=\"content.xml\"/>\n");
+ outs.writeString(" <manifest:file-entry manifest:media-type=\"text/xml\" manifest:full-path=\"styles.xml\"/>\n");
+ outs.writeString(" <manifest:file-entry manifest:media-type=\"text/xml\" manifest:full-path=\"meta.xml\"/>\n");
+ outs.writeString(" <!--List our images here-->\n");
+ std::map<Glib::ustring, Glib::ustring>::iterator iter;
+ for (iter = imageTable.begin() ; iter!=imageTable.end() ; ++iter)
+ {
+ Glib::ustring newName = iter->second;
+
+ // note: mime subtype was added as file extension in OdfOutput::preprocess
+ Glib::ustring mimesubtype = Inkscape::IO::get_file_extension(newName);
+
+ outs.printf(" <manifest:file-entry manifest:media-type=\"");
+ outs.printf("image/");
+ outs.printf("%s", mimesubtype.c_str());
+ outs.printf("\" manifest:full-path=\"");
+ outs.writeString(newName.c_str());
+ outs.printf("\"/>\n");
+ }
+ outs.printf("</manifest:manifest>\n");
+
+ outs.close();
+
+ //Make our entry
+ ZipEntry *ze = zf.newEntry("META-INF/manifest.xml", "ODF file manifest");
+ ze->setUncompressedData(bouts.getBuffer());
+ ze->finish();
+
+ return true;
+}
+
+
+/**
+ * This writes the document meta information to meta.xml
+ */
+bool OdfOutput::writeMeta(ZipFile &zf)
+{
+ BufferOutputStream bouts;
+ OutputStreamWriter outs(bouts);
+
+ time_t tim;
+ time(&tim);
+
+ std::map<Glib::ustring, Glib::ustring>::iterator iter;
+ Glib::ustring InkscapeVersion = Glib::ustring("Inkscape.org - ") + Inkscape::version_string;
+ Glib::ustring creator = InkscapeVersion;
+ iter = metadata.find("dc:creator");
+ if (iter != metadata.end())
+ {
+ creator = iter->second;
+ }
+
+ Glib::ustring date;
+ Glib::ustring moddate;
+ char buf [80];
+ time_t rawtime;
+ struct tm * timeinfo;
+ time (&rawtime);
+ timeinfo = localtime (&rawtime);
+ strftime (buf,80,"%Y-%m-%d %H:%M:%S",timeinfo);
+ moddate = Glib::ustring(buf);
+
+ iter = metadata.find("dc:date");
+ if (iter != metadata.end())
+ {
+ date = iter->second;
+ }
+ else
+ {
+ date = moddate;
+ }
+
+ outs.writeString("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
+ outs.writeString("\n");
+ outs.writeString("<!--\n");
+ outs.writeString("*************************************************************************\n");
+ outs.writeString(" file: meta.xml\n");
+ outs.printf (" Generated by Inkscape: %s", ctime(&tim)); //ctime has its own <cr>
+ outs.writeString(" http://www.inkscape.org\n");
+ outs.writeString("*************************************************************************\n");
+ outs.writeString("-->\n");
+ outs.writeString("\n");
+ outs.writeString("<office:document-meta\n");
+ outs.writeString("xmlns:office=\"urn:oasis:names:tc:opendocument:xmlns:office:1.0\"\n");
+ outs.writeString("xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n");
+ outs.writeString("xmlns:dc=\"http://purl.org/dc/elements/1.1/\"\n");
+ outs.writeString("xmlns:meta=\"urn:oasis:names:tc:opendocument:xmlns:meta:1.0\"\n");
+ outs.writeString("xmlns:presentation=\"urn:oasis:names:tc:opendocument:xmlns:presentation:1.0\"\n");
+ outs.writeString("xmlns:ooo=\"http://openoffice.org/2004/office\"\n");
+ outs.writeString("xmlns:smil=\"urn:oasis:names:tc:opendocument:xmlns:smil-compatible:1.0\"\n");
+ outs.writeString("xmlns:anim=\"urn:oasis:names:tc:opendocument:xmlns:animation:1.0\"\n");
+ outs.writeString("office:version=\"1.0\">\n");
+ outs.writeString("<office:meta>\n");
+ Glib::ustring tmp = Glib::ustring::compose(" <meta:generator>%1</meta:generator>\n", InkscapeVersion);
+ tmp += Glib::ustring::compose(" <meta:initial-creator>%1</meta:initial-creator>\n", creator);
+ tmp += Glib::ustring::compose(" <meta:creation-date>%1</meta:creation-date>\n", date);
+ tmp += Glib::ustring::compose(" <dc:date>%1</dc:date>\n", moddate);
+ outs.writeUString(tmp);
+ for (iter = metadata.begin() ; iter != metadata.end() ; ++iter)
+ {
+ Glib::ustring name = iter->first;
+ Glib::ustring value = iter->second;
+ if (!name.empty() && !value.empty())
+ {
+ tmp = Glib::ustring::compose(" <%1>%2</%3>\n", name, value, name);
+ outs.writeUString(tmp);
+ }
+ }
+ // outs.writeString(" <meta:editing-cycles>2</meta:editing-cycles>\n");
+ // outs.writeString(" <meta:editing-duration>PT56S</meta:editing-duration>\n");
+ // outs.writeString(" <meta:user-defined meta:name=\"Info 1\"/>\n");
+ // outs.writeString(" <meta:user-defined meta:name=\"Info 2\"/>\n");
+ // outs.writeString(" <meta:user-defined meta:name=\"Info 3\"/>\n");
+ // outs.writeString(" <meta:user-defined meta:name=\"Info 4\"/>\n");
+ // outs.writeString(" <meta:document-statistic meta:object-count=\"2\"/>\n");
+ outs.writeString("</office:meta>\n");
+ outs.writeString("</office:document-meta>\n");
+ outs.close();
+
+ //Make our entry
+ ZipEntry *ze = zf.newEntry("meta.xml", "ODF info file");
+ ze->setUncompressedData(bouts.getBuffer());
+ ze->finish();
+
+ return true;
+}
+
+
+/**
+ * Writes an SVG path as an ODF <draw:path> and returns the number of points written
+ */
+static int
+writePath(Writer &outs, Geom::PathVector const &pathv,
+ Geom::Affine const &tf, double xoff, double yoff)
+{
+ using Geom::X;
+ using Geom::Y;
+
+ int nrPoints = 0;
+
+ // convert the path to only lineto's and cubic curveto's:
+ Geom::PathVector pv = pathv_to_linear_and_cubic_beziers(pathv * tf * Geom::Translate(xoff, yoff) * Geom::Scale(1000.));
+
+ for (const auto & pit : pv) {
+
+ double destx = pit.initialPoint()[X];
+ double desty = pit.initialPoint()[Y];
+ if (fabs(destx)<1.0) destx = 0.0; // Why is this needed? Shouldn't we just round all numbers then?
+ if (fabs(desty)<1.0) desty = 0.0;
+ outs.printf("M %.3f %.3f ", destx, desty);
+ nrPoints++;
+
+ for (Geom::Path::const_iterator cit = pit.begin(); cit != pit.end_closed(); ++cit) {
+
+ if( is_straight_curve(*cit) )
+ {
+ double destx = cit->finalPoint()[X];
+ double desty = cit->finalPoint()[Y];
+ if (fabs(destx)<1.0) destx = 0.0; // Why is this needed? Shouldn't we just round all numbers then?
+ if (fabs(desty)<1.0) desty = 0.0;
+ outs.printf("L %.3f %.3f ", destx, desty);
+ }
+ else if(Geom::CubicBezier const *cubic = dynamic_cast<Geom::CubicBezier const*>(&*cit)) {
+ std::vector<Geom::Point> points = cubic->controlPoints();
+ for (unsigned i = 1; i <= 3; i++) {
+ if (fabs(points[i][X])<1.0) points[i][X] = 0.0; // Why is this needed? Shouldn't we just round all numbers then?
+ if (fabs(points[i][Y])<1.0) points[i][Y] = 0.0;
+ }
+ outs.printf("C %.3f %.3f %.3f %.3f %.3f %.3f ", points[1][X],points[1][Y], points[2][X],points[2][Y], points[3][X],points[3][Y]);
+ }
+ else {
+ g_error ("logical error, because pathv_to_linear_and_cubic_beziers was used");
+ }
+
+ nrPoints++;
+ }
+
+ if (pit.closed()) {
+ outs.printf("Z");
+ }
+ }
+
+ return nrPoints;
+}
+
+bool OdfOutput::processStyle(SPItem *item, const Glib::ustring &id, const Glib::ustring &gradientNameFill, const Glib::ustring &gradientNameStroke, Glib::ustring& output)
+{
+ output.clear();
+ if (!item)
+ {
+ return false;
+ }
+
+ SPStyle *style = item->style;
+ if (!style)
+ {
+ return false;
+ }
+
+ StyleInfo si;
+
+ // FILL
+ if (style->fill.isColor())
+ {
+ guint32 fillCol = style->fill.value.color.toRGBA32( 0 );
+ char buf[16];
+ int r = (fillCol >> 24) & 0xff;
+ int g = (fillCol >> 16) & 0xff;
+ int b = (fillCol >> 8) & 0xff;
+ snprintf(buf, 15, "#%02x%02x%02x", r, g, b);
+ si.fillColor = buf;
+ si.fill = "solid";
+ double opacityPercent = 100.0 *
+ (SP_SCALE24_TO_FLOAT(style->fill_opacity.value));
+ snprintf(buf, 15, "%.3f%%", opacityPercent);
+ si.fillOpacity = buf;
+ }
+ else if (style->fill.isPaintserver())
+ {
+ SPGradient *gradient = SP_GRADIENT(SP_STYLE_FILL_SERVER(style));
+ if (gradient)
+ {
+ si.fill = "gradient";
+ }
+ }
+
+ // STROKE
+ if (style->stroke.isColor())
+ {
+ guint32 strokeCol = style->stroke.value.color.toRGBA32( 0 );
+ char buf[16];
+ int r = (strokeCol >> 24) & 0xff;
+ int g = (strokeCol >> 16) & 0xff;
+ int b = (strokeCol >> 8) & 0xff;
+ snprintf(buf, 15, "#%02x%02x%02x", r, g, b);
+ si.strokeColor = buf;
+ snprintf(buf, 15, "%.3fpt", style->stroke_width.value);
+ si.strokeWidth = buf;
+ si.stroke = "solid";
+ double opacityPercent = 100.0 *
+ (SP_SCALE24_TO_FLOAT(style->stroke_opacity.value));
+ snprintf(buf, 15, "%.3f%%", opacityPercent);
+ si.strokeOpacity = buf;
+ }
+ else if (style->stroke.isPaintserver())
+ {
+ SPGradient *gradient = SP_GRADIENT(SP_STYLE_STROKE_SERVER(style));
+ if (gradient)
+ {
+ si.stroke = "gradient";
+ }
+ }
+
+ //Look for existing identical style;
+ bool styleMatch = false;
+ std::vector<StyleInfo>::iterator iter;
+ for (iter=styleTable.begin() ; iter!=styleTable.end() ; ++iter)
+ {
+ if (si.equals(*iter))
+ {
+ //map to existing styleTable entry
+ Glib::ustring styleName = iter->name;
+ styleLookupTable[id] = styleName;
+ styleMatch = true;
+ break;
+ }
+ }
+
+ // Don't need a new style
+ if (styleMatch)
+ {
+ return false;
+ }
+
+ Glib::ustring styleName = Glib::ustring::compose("style%1", styleTable.size());
+ si.name = styleName;
+ styleTable.push_back(si);
+ styleLookupTable[id] = styleName;
+
+ output = Glib::ustring::compose ("<style:style style:name=\"%1\" style:family=\"graphic\" style:parent-style-name=\"standard\">\n", si.name);
+ output += "<style:graphic-properties";
+ if (si.fill == "gradient")
+ {
+ output += Glib::ustring::compose (" draw:fill=\"gradient\" draw:fill-gradient-name=\"%1\"", gradientNameFill);
+ }
+ else
+ {
+ output += Glib::ustring(" draw:fill=\"") + si.fill + "\"";
+ if(si.fill != "none")
+ {
+ output += Glib::ustring::compose(" draw:fill-color=\"%1\"", si.fillColor);
+ }
+ }
+ if (si.stroke == "gradient")
+ {
+ //does not seem to be supported by Open Office.org
+ output += Glib::ustring::compose (" draw:stroke=\"gradient\" draw:stroke-gradient-name=\"%1\"", gradientNameStroke);
+ }
+ else
+ {
+ output += Glib::ustring(" draw:stroke=\"") + si.stroke + "\"";
+ if (si.stroke != "none")
+ {
+ output += Glib::ustring::compose (" svg:stroke-width=\"%1\" svg:stroke-color=\"%2\" ", si.strokeWidth, si.strokeColor);
+ }
+ }
+ output += "/>\n</style:style>\n";
+
+ return true;
+}
+
+bool OdfOutput::processGradient(SPItem *item,
+ const Glib::ustring &id, Geom::Affine &/*tf*/,
+ Glib::ustring& gradientName, Glib::ustring& output, bool checkFillGradient)
+{
+ output.clear();
+ if (!item)
+ {
+ return false;
+ }
+
+ SPStyle *style = item->style;
+ if (!style)
+ {
+ return false;
+ }
+
+ if ((checkFillGradient? (!style->fill.isPaintserver()) : (!style->stroke.isPaintserver())))
+ {
+ return false;
+ }
+
+ //## Gradient
+ SPGradient *gradient = SP_GRADIENT((checkFillGradient?(SP_STYLE_FILL_SERVER(style)) :(SP_STYLE_STROKE_SERVER(style))));
+
+ if (gradient == nullptr)
+ {
+ return false;
+ }
+ GradientInfo gi;
+ SPGradient *grvec = gradient->getVector(FALSE);
+ for (SPStop *stop = grvec->getFirstStop();
+ stop ; stop = stop->getNextStop())
+ {
+ unsigned long rgba = stop->get_rgba32();
+ unsigned long rgb = (rgba >> 8) & 0xffffff;
+ double opacity = (static_cast<double>(rgba & 0xff)) / 256.0;
+ GradientStop gs(rgb, opacity);
+ gi.stops.push_back(gs);
+ }
+
+ Glib::ustring gradientName2;
+ if (SP_IS_LINEARGRADIENT(gradient))
+ {
+ gi.style = "linear";
+ SPLinearGradient *linGrad = SP_LINEARGRADIENT(gradient);
+ gi.x1 = linGrad->x1.value;
+ gi.y1 = linGrad->y1.value;
+ gi.x2 = linGrad->x2.value;
+ gi.y2 = linGrad->y2.value;
+ gradientName2 = Glib::ustring::compose("ImportedLinearGradient%1", gradientTable.size());
+ }
+ else if (SP_IS_RADIALGRADIENT(gradient))
+ {
+ gi.style = "radial";
+ SPRadialGradient *radGrad = SP_RADIALGRADIENT(gradient);
+ Geom::OptRect bbox = item->documentVisualBounds();
+ gi.cx = (radGrad->cx.value-bbox->left())/bbox->width();
+ gi.cy = (radGrad->cy.value-bbox->top())/bbox->height();
+ gradientName2 = Glib::ustring::compose("ImportedRadialGradient%1", gradientTable.size());
+ }
+ else
+ {
+ g_warning("not a supported gradient type");
+ return false;
+ }
+
+ //Look for existing identical style;
+ bool gradientMatch = false;
+ std::vector<GradientInfo>::iterator iter;
+ for (iter=gradientTable.begin() ; iter!=gradientTable.end() ; ++iter)
+ {
+ if (gi.equals(*iter))
+ {
+ //map to existing gradientTable entry
+ gradientName = iter->name;
+ gradientLookupTable[id] = gradientName;
+ gradientMatch = true;
+ break;
+ }
+ }
+
+ if (gradientMatch)
+ {
+ return true;
+ }
+
+ // No match, let us write a new entry
+ gradientName = gradientName2;
+ gi.name = gradientName;
+ gradientTable.push_back(gi);
+ gradientLookupTable[id] = gradientName;
+
+ // int gradientCount = gradientTable.size();
+ char buf[128];
+ if (gi.style == "linear")
+ {
+ /*
+ ===================================================================
+ LINEAR gradient. We need something that looks like this:
+ <draw:gradient draw:name="Gradient_20_7"
+ draw:display-name="Gradient 7"
+ draw:style="linear"
+ draw:start-color="#008080" draw:end-color="#993366"
+ draw:start-intensity="100%" draw:end-intensity="100%"
+ draw:angle="150" draw:border="0%"/>
+ ===================================================================
+ */
+ if (gi.stops.size() < 2)
+ {
+ g_warning("Need at least 2 stops for a linear gradient");
+ return false;
+ }
+ output += Glib::ustring::compose("<draw:gradient draw:name=\"%1\"", gi.name);
+ output += Glib::ustring::compose(" draw:display-name=\"%1\"", gi.name);
+ output += " draw:style=\"linear\"";
+ snprintf(buf, 127, " draw:start-color=\"#%06lx\" draw:end-color=\"#%06lx\"", gi.stops[0].rgb, gi.stops[1].rgb);
+ output += buf;
+ //TODO: apply maths, to define begin of gradient, taking gradient begin and end, as well as object boundary into account
+ double angle = (gi.y2-gi.y1);
+ angle = (angle != 0.) ? (atan((gi.x2-gi.x1)/(gi.y2-gi.y1))* 180. / M_PI) : 90;
+ angle = (angle < 0)?(180+angle):angle;
+ angle = angle * 10; //why do we need this: precision?????????????
+ output += Glib::ustring::compose(" draw:start-intensity=\"%1\" draw:end-intensity=\"%2\" draw:angle=\"%3\"/>\n",
+ gi.stops[0].opacity * 100.0, gi.stops[1].opacity * 100.0, angle);// draw:border=\"0%%\"
+ }
+ else if (gi.style == "radial")
+ {
+ /*
+ ===================================================================
+ RADIAL gradient. We need something that looks like this:
+ <!-- radial gradient, light gray to white, centered, 0% border -->
+ <draw:gradient draw:name="radial_20_borderless"
+ draw:display-name="radial borderless"
+ draw:style="radial"
+ draw:cx="50%" draw:cy="50%"
+ draw:start-color="#999999" draw:end-color="#ffffff"
+ draw:border="0%"/>
+ ===================================================================
+ */
+ if (gi.stops.size() < 2)
+ {
+ g_warning("Need at least 2 stops for a radial gradient");
+ return false;
+ }
+ output += Glib::ustring::compose("<draw:gradient draw:name=\"%1\" draw:display-name=\"%1\" ", gi.name);
+ snprintf(buf, 127, "draw:cx=\"%05.3f\" draw:cy=\"%05.3f\" ", gi.cx*100, gi.cy*100);
+ output += Glib::ustring("draw:style=\"radial\" ") + buf;
+ snprintf(buf, 127, "draw:start-color=\"#%06lx\" draw:end-color=\"#%06lx\" ", gi.stops[0].rgb, gi.stops[1].rgb);
+ output += buf;
+ snprintf(buf, 127, "draw:start-intensity=\"%f%%\" draw:end-intensity=\"%f%%\" ", gi.stops[0].opacity*100.0, gi.stops[1].opacity*100.0);
+ output += buf;
+ output += "/>\n";//draw:border=\"0%\"
+ }
+ else
+ {
+ g_warning("unsupported gradient style '%s'", gi.style.c_str());
+ return false;
+ }
+ return true;
+}
+
+
+/**
+ * SECOND PASS.
+ * This is the main SPObject tree output to ODF.
+ */
+bool OdfOutput::writeTree(Writer &couts, Writer &souts,
+ SPDocument *doc,
+ Inkscape::XML::Node *node)
+{
+ //# Get the SPItem, if applicable
+ SPObject *reprobj = doc->getObjectByRepr(node);
+ if (!reprobj)
+ {
+ return true;
+ }
+ if (!SP_IS_ITEM(reprobj))
+ {
+ return true;
+ }
+ SPItem *item = SP_ITEM(reprobj);
+
+ Glib::ustring nodeName = node->name();
+ Glib::ustring id = getAttribute(node, "id");
+ Geom::Affine tf = getODFTransform(item);//Get SVG-to-ODF transform
+ Geom::OptRect bbox = getODFBoundingBox(item);//Get ODF bounding box params for item
+ if (!bbox) {
+ return true;
+ }
+
+ double bbox_x = bbox->min()[Geom::X];
+ double bbox_y = bbox->min()[Geom::Y];
+ double bbox_width = (*bbox)[Geom::X].extent();
+ double bbox_height = (*bbox)[Geom::Y].extent();
+
+ double rotate;
+ double xskew;
+ double yskew;
+ double xscale;
+ double yscale;
+ analyzeTransform(tf, rotate, xskew, yskew, xscale, yscale);
+
+ //# Do our stuff
+
+ if (nodeName == "svg" || nodeName == "svg:svg")
+ {
+ //# Iterate through the children
+ for (Inkscape::XML::Node *child = node->firstChild() ;
+ child ; child = child->next())
+ {
+ if (!writeTree(couts, souts, doc, child))
+ {
+ return false;
+ }
+ }
+ return true;
+ }
+ else if (nodeName == "g" || nodeName == "svg:g")
+ {
+ if (!id.empty())
+ {
+ couts.printf("<draw:g id=\"%s\">\n", id.c_str());
+ }
+ else
+ {
+ couts.printf("<draw:g>\n");
+ }
+ //# Iterate through the children
+ for (Inkscape::XML::Node *child = node->firstChild() ;
+ child ; child = child->next())
+ {
+ if (!writeTree(couts, souts, doc, child))
+ {
+ return false;
+ }
+ }
+ if (!id.empty())
+ {
+ couts.printf("</draw:g> <!-- id=\"%s\" -->\n", id.c_str());
+ }
+ else
+ {
+ couts.printf("</draw:g>\n");
+ }
+ return true;
+ }
+
+ //# GRADIENT
+ Glib::ustring gradientNameFill;
+ Glib::ustring gradientNameStroke;
+ Glib::ustring outputFill;
+ Glib::ustring outputStroke;
+ Glib::ustring outputStyle;
+
+ processGradient(item, id, tf, gradientNameFill, outputFill, true);
+ processGradient(item, id, tf, gradientNameStroke, outputStroke, false);
+ souts.writeUString(outputFill);
+ souts.writeUString(outputStroke);
+
+ //# STYLE
+ processStyle(item, id, gradientNameFill, gradientNameStroke, outputStyle);
+ souts.writeUString(outputStyle);
+
+ //# ITEM DATA
+ if (nodeName == "image" || nodeName == "svg:image")
+ {
+ if (!SP_IS_IMAGE(item))
+ {
+ g_warning("<image> is not an SPImage.");
+ return false;
+ }
+
+ SPImage *img = SP_IMAGE(item);
+ double ix = img->x.value;
+ double iy = img->y.value;
+ double iwidth = img->width.value;
+ double iheight = img->height.value;
+
+ Geom::Point ibbox_min = Geom::Point(ix, iy) * tf;
+ ix = ibbox_min.x();
+ iy = ibbox_min.y();
+ iwidth = xscale * iwidth;
+ iheight = yscale * iheight;
+
+ Geom::Affine itemTransform = getODFItemTransform(item);
+
+ Glib::ustring itemTransformString = formatTransform(itemTransform);
+
+ Glib::ustring href = getAttribute(node, "xlink:href");
+ std::map<Glib::ustring, Glib::ustring>::iterator iter = imageTable.find(href);
+ if (iter == imageTable.end())
+ {
+ g_warning("image '%s' not in table", href.c_str());
+ return false;
+ }
+ Glib::ustring newName = iter->second;
+
+ couts.printf("<draw:frame ");
+ if (!id.empty())
+ {
+ couts.printf("id=\"%s\" ", id.c_str());
+ }
+ couts.printf("draw:style-name=\"gr1\" draw:text-style-name=\"P1\" draw:layer=\"layout\" ");
+ //no x or y. make them the translate transform, last one
+ couts.printf("svg:width=\"%.3fcm\" svg:height=\"%.3fcm\" ",
+ iwidth, iheight);
+ if (!itemTransformString.empty())
+ {
+ couts.printf("draw:transform=\"%s translate(%.3fcm, %.3fcm)\" ",
+ itemTransformString.c_str(), ix, iy);
+ }
+ else
+ {
+ couts.printf("draw:transform=\"translate(%.3fcm, %.3fcm)\" ", ix, iy);
+ }
+
+ couts.writeString(">\n");
+ couts.printf(" <draw:image xlink:href=\"%s\" xlink:type=\"simple\"\n",
+ newName.c_str());
+ couts.writeString(" xlink:show=\"embed\" xlink:actuate=\"onLoad\">\n");
+ couts.writeString(" <text:p/>\n");
+ couts.writeString(" </draw:image>\n");
+ couts.writeString("</draw:frame>\n");
+ return true;
+ }
+
+ std::unique_ptr<SPCurve> curve;
+
+ if (auto shape = dynamic_cast<SPShape const *>(item)) {
+ curve = SPCurve::copy(shape->curve());
+ } else if (SP_IS_TEXT(item) || SP_IS_FLOWTEXT(item)) {
+ curve = te_get_layout(item)->convertToCurves();
+ }
+
+ if (curve)
+ {
+ //### Default <path> output
+ couts.writeString("<draw:path ");
+ if (!id.empty())
+ {
+ couts.printf("id=\"%s\" ", id.c_str());
+ }
+
+ std::map<Glib::ustring, Glib::ustring>::iterator siter;
+ siter = styleLookupTable.find(id);
+ if (siter != styleLookupTable.end())
+ {
+ Glib::ustring styleName = siter->second;
+ couts.printf("draw:style-name=\"%s\" ", styleName.c_str());
+ }
+
+ couts.printf("draw:layer=\"layout\" svg:x=\"%.3fcm\" svg:y=\"%.3fcm\" ",
+ bbox_x, bbox_y);
+ couts.printf("svg:width=\"%.3fcm\" svg:height=\"%.3fcm\" ",
+ bbox_width, bbox_height);
+ couts.printf("svg:viewBox=\"0.0 0.0 %.3f %.3f\"",
+ bbox_width * 1000.0, bbox_height * 1000.0);
+
+ couts.printf(" svg:d=\"");
+ int nrPoints = writePath(couts, curve->get_pathvector(),
+ tf, bbox_x, bbox_y);
+ couts.writeString("\"");
+
+ couts.writeString(">\n");
+ couts.printf(" <!-- %d nodes -->\n", nrPoints);
+ couts.writeString("</draw:path>\n\n");
+ }
+
+ return true;
+}
+
+
+/**
+ * Write the header for the content.xml file
+ */
+bool OdfOutput::writeStyleHeader(Writer &outs)
+{
+ time_t tim;
+ time(&tim);
+
+ outs.writeString("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
+ outs.writeString("\n");
+ outs.writeString("<!--\n");
+ outs.writeString("*************************************************************************\n");
+ outs.writeString(" file: styles.xml\n");
+ outs.printf (" Generated by Inkscape: %s", ctime(&tim)); //ctime has its own <cr>
+ outs.writeString(" http://www.inkscape.org\n");
+ outs.writeString("*************************************************************************\n");
+ outs.writeString("-->\n");
+ outs.writeString("\n");
+ outs.writeString("<office:document-styles\n");
+ outs.writeString(" xmlns:office=\"urn:oasis:names:tc:opendocument:xmlns:office:1.0\"\n");
+ outs.writeString(" xmlns:style=\"urn:oasis:names:tc:opendocument:xmlns:style:1.0\"\n");
+ outs.writeString(" xmlns:text=\"urn:oasis:names:tc:opendocument:xmlns:text:1.0\"\n");
+ outs.writeString(" xmlns:table=\"urn:oasis:names:tc:opendocument:xmlns:table:1.0\"\n");
+ outs.writeString(" xmlns:draw=\"urn:oasis:names:tc:opendocument:xmlns:drawing:1.0\"\n");
+ outs.writeString(" xmlns:fo=\"urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0\"\n");
+ outs.writeString(" xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n");
+ outs.writeString(" xmlns:dc=\"http://purl.org/dc/elements/1.1/\"\n");
+ outs.writeString(" xmlns:meta=\"urn:oasis:names:tc:opendocument:xmlns:meta:1.0\"\n");
+ outs.writeString(" xmlns:number=\"urn:oasis:names:tc:opendocument:xmlns:datastyle:1.0\"\n");
+ outs.writeString(" xmlns:presentation=\"urn:oasis:names:tc:opendocument:xmlns:presentation:1.0\"\n");
+ outs.writeString(" xmlns:svg=\"urn:oasis:names:tc:opendocument:xmlns:svg-compatible:1.0\"\n");
+ outs.writeString(" xmlns:chart=\"urn:oasis:names:tc:opendocument:xmlns:chart:1.0\"\n");
+ outs.writeString(" xmlns:dr3d=\"urn:oasis:names:tc:opendocument:xmlns:dr3d:1.0\"\n");
+ outs.writeString(" xmlns:math=\"http://www.w3.org/1998/Math/MathML\"\n");
+ outs.writeString(" xmlns:form=\"urn:oasis:names:tc:opendocument:xmlns:form:1.0\"\n");
+ outs.writeString(" xmlns:script=\"urn:oasis:names:tc:opendocument:xmlns:script:1.0\"\n");
+ outs.writeString(" xmlns:ooo=\"http://openoffice.org/2004/office\"\n");
+ outs.writeString(" xmlns:ooow=\"http://openoffice.org/2004/writer\"\n");
+ outs.writeString(" xmlns:oooc=\"http://openoffice.org/2004/calc\"\n");
+ outs.writeString(" xmlns:dom=\"http://www.w3.org/2001/xml-events\"\n");
+ outs.writeString(" xmlns:xforms=\"http://www.w3.org/2002/xforms\"\n");
+ outs.writeString(" xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"\n");
+ outs.writeString(" xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n");
+ outs.writeString(" xmlns:smil=\"urn:oasis:names:tc:opendocument:xmlns:smil-compatible:1.0\"\n");
+ outs.writeString(" xmlns:anim=\"urn:oasis:names:tc:opendocument:xmlns:animation:1.0\"\n");
+ outs.writeString(" office:version=\"1.0\">\n");
+ outs.writeString("\n");
+ outs.writeString("<!--\n");
+ outs.writeString("*************************************************************************\n");
+ outs.writeString(" S T Y L E S\n");
+ outs.writeString(" Style entries have been pulled from the svg style and\n");
+ outs.writeString(" representation attributes in the SVG tree. The tree elements\n");
+ outs.writeString(" then refer to them by name, in the ODF manner\n");
+ outs.writeString("*************************************************************************\n");
+ outs.writeString("-->\n");
+ outs.writeString("\n");
+ outs.writeString("<office:styles>\n");
+ outs.writeString("\n");
+
+ return true;
+}
+
+
+/**
+ * Write the footer for the style.xml file
+ */
+bool OdfOutput::writeStyleFooter(Writer &outs)
+{
+ outs.writeString("\n");
+ outs.writeString("</office:styles>\n");
+ outs.writeString("\n");
+ outs.writeString("<office:automatic-styles>\n");
+ outs.writeString("<!-- ####### 'Standard' styles ####### -->\n");
+ outs.writeString("<style:style style:name=\"dp1\" style:family=\"drawing-page\"/>\n");
+ outs.writeString("<style:style style:name=\"standard\" style:family=\"graphic\">\n");
+
+///TODO: add default document style here
+
+ outs.writeString("</style:style>\n");
+ outs.writeString("<style:style style:name=\"gr1\" style:family=\"graphic\" style:parent-style-name=\"standard\">\n");
+ outs.writeString(" <style:graphic-properties draw:stroke=\"none\" draw:fill=\"none\"\n");
+ outs.writeString(" draw:textarea-horizontal-align=\"center\"\n");
+ outs.writeString(" draw:textarea-vertical-align=\"middle\" draw:color-mode=\"standard\"\n");
+ outs.writeString(" draw:luminance=\"0%\" draw:contrast=\"0%\" draw:gamma=\"100%\" draw:red=\"0%\"\n");
+ outs.writeString(" draw:green=\"0%\" draw:blue=\"0%\" fo:clip=\"rect(0cm 0cm 0cm 0cm)\"\n");
+ outs.writeString(" draw:image-opacity=\"100%\" style:mirror=\"none\"/>\n");
+ outs.writeString("</style:style>\n");
+ outs.writeString("<style:style style:name=\"P1\" style:family=\"paragraph\">\n");
+ outs.writeString(" <style:paragraph-properties fo:text-align=\"center\"/>\n");
+ outs.writeString("</style:style>\n");
+ outs.writeString("</office:automatic-styles>\n");
+ outs.writeString("\n");
+ outs.writeString("<office:master-styles>\n");
+ outs.writeString("<draw:layer-set>\n");
+ outs.writeString(" <draw:layer draw:name=\"layout\"/>\n");
+ outs.writeString(" <draw:layer draw:name=\"background\"/>\n");
+ outs.writeString(" <draw:layer draw:name=\"backgroundobjects\"/>\n");
+ outs.writeString(" <draw:layer draw:name=\"controls\"/>\n");
+ outs.writeString(" <draw:layer draw:name=\"measurelines\"/>\n");
+ outs.writeString("</draw:layer-set>\n");
+ outs.writeString("\n");
+ outs.writeString("<style:master-page style:name=\"Default\"\n");
+ outs.writeString(" style:page-master-name=\"PM1\" draw:style-name=\"dp1\"/>\n");
+ outs.writeString("</office:master-styles>\n");
+ outs.writeString("\n");
+ outs.writeString("</office:document-styles>\n");
+
+ return true;
+}
+
+
+/**
+ * Write the header for the content.xml file
+ */
+bool OdfOutput::writeContentHeader(Writer &outs)
+{
+ time_t tim;
+ time(&tim);
+
+ outs.writeString("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
+ outs.writeString("\n");
+ outs.writeString("<!--\n");
+ outs.writeString("*************************************************************************\n");
+ outs.writeString(" file: content.xml\n");
+ outs.printf (" Generated by Inkscape: %s", ctime(&tim)); //ctime has its own <cr>
+ outs.writeString(" http://www.inkscape.org\n");
+ outs.writeString("*************************************************************************\n");
+ outs.writeString("-->\n");
+ outs.writeString("\n");
+ outs.writeString("<office:document-content\n");
+ outs.writeString(" xmlns:office=\"urn:oasis:names:tc:opendocument:xmlns:office:1.0\"\n");
+ outs.writeString(" xmlns:style=\"urn:oasis:names:tc:opendocument:xmlns:style:1.0\"\n");
+ outs.writeString(" xmlns:text=\"urn:oasis:names:tc:opendocument:xmlns:text:1.0\"\n");
+ outs.writeString(" xmlns:table=\"urn:oasis:names:tc:opendocument:xmlns:table:1.0\"\n");
+ outs.writeString(" xmlns:draw=\"urn:oasis:names:tc:opendocument:xmlns:drawing:1.0\"\n");
+ outs.writeString(" xmlns:fo=\"urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0\"\n");
+ outs.writeString(" xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n");
+ outs.writeString(" xmlns:dc=\"http://purl.org/dc/elements/1.1/\"\n");
+ outs.writeString(" xmlns:meta=\"urn:oasis:names:tc:opendocument:xmlns:meta:1.0\"\n");
+ outs.writeString(" xmlns:number=\"urn:oasis:names:tc:opendocument:xmlns:datastyle:1.0\"\n");
+ outs.writeString(" xmlns:presentation=\"urn:oasis:names:tc:opendocument:xmlns:presentation:1.0\"\n");
+ outs.writeString(" xmlns:svg=\"urn:oasis:names:tc:opendocument:xmlns:svg-compatible:1.0\"\n");
+ outs.writeString(" xmlns:chart=\"urn:oasis:names:tc:opendocument:xmlns:chart:1.0\"\n");
+ outs.writeString(" xmlns:dr3d=\"urn:oasis:names:tc:opendocument:xmlns:dr3d:1.0\"\n");
+ outs.writeString(" xmlns:math=\"http://www.w3.org/1998/Math/MathML\"\n");
+ outs.writeString(" xmlns:form=\"urn:oasis:names:tc:opendocument:xmlns:form:1.0\"\n");
+ outs.writeString(" xmlns:script=\"urn:oasis:names:tc:opendocument:xmlns:script:1.0\"\n");
+ outs.writeString(" xmlns:ooo=\"http://openoffice.org/2004/office\"\n");
+ outs.writeString(" xmlns:ooow=\"http://openoffice.org/2004/writer\"\n");
+ outs.writeString(" xmlns:oooc=\"http://openoffice.org/2004/calc\"\n");
+ outs.writeString(" xmlns:dom=\"http://www.w3.org/2001/xml-events\"\n");
+ outs.writeString(" xmlns:xforms=\"http://www.w3.org/2002/xforms\"\n");
+ outs.writeString(" xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"\n");
+ outs.writeString(" xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n");
+ outs.writeString(" xmlns:smil=\"urn:oasis:names:tc:opendocument:xmlns:smil-compatible:1.0\"\n");
+ outs.writeString(" xmlns:anim=\"urn:oasis:names:tc:opendocument:xmlns:animation:1.0\"\n");
+ outs.writeString(" office:version=\"1.0\">\n");
+ outs.writeString("<office:scripts/>\n");
+ outs.writeString("\n");
+ outs.writeString("<!--\n");
+ outs.writeString("*************************************************************************\n");
+ outs.writeString(" D R A W I N G\n");
+ outs.writeString(" This section is the heart of SVG-ODF conversion. We are\n");
+ outs.writeString(" starting with simple conversions, and will slowly evolve\n");
+ outs.writeString(" into a 'smarter' translation as time progresses. Any help\n");
+ outs.writeString(" in improving .odg export is welcome.\n");
+ outs.writeString("*************************************************************************\n");
+ outs.writeString("-->\n");
+ outs.writeString("\n");
+ outs.writeString("<office:body>\n");
+ outs.writeString("<office:drawing>\n");
+ outs.writeString("<draw:page draw:name=\"page1\" draw:style-name=\"dp1\"\n");
+ outs.writeString(" draw:master-page-name=\"Default\">\n");
+ outs.writeString("\n");
+ return true;
+}
+
+
+/**
+ * Write the footer for the content.xml file
+ */
+bool OdfOutput::writeContentFooter(Writer &outs)
+{
+ outs.writeString("\n");
+ outs.writeString("</draw:page>\n");
+ outs.writeString("</office:drawing>\n");
+ outs.writeString("\n");
+ outs.writeString("<!-- ######### CONVERSION FROM SVG ENDS ######## -->\n");
+ outs.writeString("\n");
+ outs.writeString("</office:body>\n");
+ outs.writeString("</office:document-content>\n");
+ return true;
+}
+
+
+/**
+ * Write the content.xml file. Writes the namespace headers, then
+ * calls writeTree().
+ */
+bool OdfOutput::writeContent(ZipFile &zf, SPDocument *doc)
+{
+ //Content.xml stream
+ BufferOutputStream cbouts;
+ OutputStreamWriter couts(cbouts);
+
+ if (!writeContentHeader(couts))
+ {
+ return false;
+ }
+
+ //Style.xml stream
+ BufferOutputStream sbouts;
+ OutputStreamWriter souts(sbouts);
+
+ if (!writeStyleHeader(souts))
+ {
+ return false;
+ }
+
+ //# Descend into the tree, doing all of our conversions
+ //# to both files at the same time
+ char *oldlocale = g_strdup (setlocale (LC_NUMERIC, nullptr));
+ setlocale (LC_NUMERIC, "C");
+ if (!writeTree(couts, souts, doc, doc->getReprRoot()))
+ {
+ g_warning("Failed to convert SVG tree");
+ setlocale (LC_NUMERIC, oldlocale);
+ g_free (oldlocale);
+ return false;
+ }
+ setlocale (LC_NUMERIC, oldlocale);
+ g_free (oldlocale);
+
+ //# Finish content file
+ if (!writeContentFooter(couts))
+ {
+ return false;
+ }
+
+ ZipEntry *ze = zf.newEntry("content.xml", "ODF master content file");
+ ze->setUncompressedData(cbouts.getBuffer());
+ ze->finish();
+
+ //# Finish style file
+ if (!writeStyleFooter(souts))
+ {
+ return false;
+ }
+
+ ze = zf.newEntry("styles.xml", "ODF style file");
+ ze->setUncompressedData(sbouts.getBuffer());
+ ze->finish();
+
+ return true;
+}
+
+
+/**
+ * Resets class to its pristine condition, ready to use again
+ */
+void OdfOutput::reset()
+{
+ metadata.clear();
+ styleTable.clear();
+ styleLookupTable.clear();
+ gradientTable.clear();
+ gradientLookupTable.clear();
+ imageTable.clear();
+}
+
+
+/**
+ * Descends into the SVG tree, mapping things to ODF when appropriate
+ */
+void OdfOutput::save(Inkscape::Extension::Output */*mod*/, SPDocument *doc, gchar const *filename)
+{
+ reset();
+
+ docBaseUri = Inkscape::URI::from_dirname(doc->getDocumentBase()).str();
+
+ ZipFile zf;
+ preprocess(zf, doc, doc->getReprRoot());
+
+ if (!writeManifest(zf))
+ {
+ g_warning("Failed to write manifest");
+ return;
+ }
+
+ if (!writeContent(zf, doc))
+ {
+ g_warning("Failed to write content");
+ return;
+ }
+
+ if (!writeMeta(zf))
+ {
+ g_warning("Failed to write metafile");
+ return;
+ }
+
+ if (!zf.writeFile(filename))
+ {
+ return;
+ }
+}
+
+
+/**
+ * This is the definition of PovRay output. This function just
+ * calls the extension system with the memory allocated XML that
+ * describes the data.
+*/
+void OdfOutput::init()
+{
+ // clang-format off
+ Inkscape::Extension::build_from_mem(
+ "<inkscape-extension xmlns=\"" INKSCAPE_EXTENSION_URI "\">\n"
+ "<name>" N_("OpenDocument Drawing Output") "</name>\n"
+ "<id>org.inkscape.output.odf</id>\n"
+ "<output>\n"
+ "<extension>.odg</extension>\n"
+ "<mimetype>text/x-povray-script</mimetype>\n"
+ "<filetypename>" N_("OpenDocument drawing (*.odg)") "</filetypename>\n"
+ "<filetypetooltip>" N_("OpenDocument drawing file") "</filetypetooltip>\n"
+ "</output>\n"
+ "</inkscape-extension>",
+ new OdfOutput());
+ // clang-format on
+}
+
+/**
+ * Make sure that we are in the database
+ */
+bool OdfOutput::check (Inkscape::Extension::Extension */*module*/)
+{
+ /* We don't need a Key
+ if (NULL == Inkscape::Extension::db.get(SP_MODULE_KEY_OUTPUT_POV))
+ return FALSE;
+ */
+
+ return TRUE;
+}
+
+} //namespace Internal
+} //namespace Extension
+} //namespace Inkscape
+
+
+//########################################################################
+//# E N D O F F I L E
+//########################################################################
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :