summaryrefslogtreecommitdiffstats
path: root/src/extension/internal/polyfill/mesh.js
diff options
context:
space:
mode:
Diffstat (limited to 'src/extension/internal/polyfill/mesh.js')
-rw-r--r--src/extension/internal/polyfill/mesh.js1192
1 files changed, 1192 insertions, 0 deletions
diff --git a/src/extension/internal/polyfill/mesh.js b/src/extension/internal/polyfill/mesh.js
new file mode 100644
index 0000000..bcce389
--- /dev/null
+++ b/src/extension/internal/polyfill/mesh.js
@@ -0,0 +1,1192 @@
+// SPDX-License-Identifier: CC0
+/** @file
+ * Use Canvas to render a mesh gradient, passing the rendering to an image via a data stream.
+ *//*
+ * Authors:
+ * - Tavmjong Bah 2018
+ * - Valentin Ionita (2019)
+ * License: CC0 / Public Domain
+ */
+
+(function () {
+ // Name spaces -----------------------------------
+ const svgNS = 'http://www.w3.org/2000/svg';
+ const xlinkNS = 'http://www.w3.org/1999/xlink';
+ const xhtmlNS = 'http://www.w3.org/1999/xhtml';
+ /*
+ * Maximum threshold for Bezier step size
+ * Larger values leave holes, smaller take longer to render.
+ */
+ const maxBezierStep = 2.0;
+
+ // Test if mesh gradients are supported.
+ if (document.createElementNS(svgNS, 'meshgradient').x) {
+ return;
+ }
+
+ /*
+ * Utility functions -----------------------------
+ */
+ // Split Bezier using de Casteljau's method.
+ const splitBezier = (p0, p1, p2, p3) => {
+ let tmp = new Point((p1.x + p2.x) * 0.5, (p1.y + p2.y) * 0.5);
+ let p01 = new Point((p0.x + p1.x) * 0.5, (p0.y + p1.y) * 0.5);
+ let p12 = new Point((p2.x + p3.x) * 0.5, (p2.y + p3.y) * 0.5);
+ let p02 = new Point((tmp.x + p01.x) * 0.5, (tmp.y + p01.y) * 0.5);
+ let p11 = new Point((tmp.x + p12.x) * 0.5, (tmp.y + p12.y) * 0.5);
+ let p03 = new Point((p02.x + p11.x) * 0.5, (p02.y + p11.y) * 0.5);
+
+ return ([
+ [p0, p01, p02, p03],
+ [p03, p11, p12, p3]
+ ]);
+ };
+
+ // See Cairo: cairo-mesh-pattern-rasterizer.c
+ const bezierStepsSquared = (points) => {
+ let tmp0 = points[0].distSquared(points[1]);
+ let tmp1 = points[2].distSquared(points[3]);
+ let tmp2 = points[0].distSquared(points[2]) * 0.25;
+ let tmp3 = points[1].distSquared(points[3]) * 0.25;
+
+ let max1 = tmp0 > tmp1 ? tmp0 : tmp1;
+
+ let max2 = tmp2 > tmp3 ? tmp2 : tmp3;
+
+ let max = max1 > max2 ? max1 : max2;
+
+ return max * 18;
+ };
+
+ // Euclidean distance
+ const distance = (p0, p1) => Math.sqrt(p0.distSquared(p1));
+
+ // Weighted average to find Bezier points for linear sides.
+ const wAvg = (p0, p1) => p0.scale(2.0 / 3.0).add(p1.scale(1.0 / 3.0));
+
+ // Browsers return a string rather than a transform list for gradientTransform!
+ const parseTransform = (t) => {
+ let affine = new Affine();
+ let trans, scale, radian, tan, skewx, skewy, rotate;
+ let transforms = t.match(/(\w+\(\s*[^)]+\))+/g);
+
+ transforms.forEach((i) => {
+ let c = i.match(/[\w.-]+/g);
+ let type = c.shift();
+
+ switch (type) {
+ case 'translate':
+ if (c.length === 2) {
+ trans = new Affine(1, 0, 0, 1, c[0], c[1]);
+ } else {
+ console.error('mesh.js: translate does not have 2 arguments!');
+ trans = new Affine(1, 0, 0, 1, 0, 0);
+ }
+ affine = affine.append(trans);
+ break;
+
+ case 'scale':
+ if (c.length === 1) {
+ scale = new Affine(c[0], 0, 0, c[0], 0, 0);
+ } else if (c.length === 2) {
+ scale = new Affine(c[0], 0, 0, c[1], 0, 0);
+ } else {
+ console.error('mesh.js: scale does not have 1 or 2 arguments!');
+ scale = new Affine(1, 0, 0, 1, 0, 0);
+ }
+ affine = affine.append(scale);
+ break;
+
+ case 'rotate':
+ if (c.length === 3) {
+ trans = new Affine(1, 0, 0, 1, c[1], c[2]);
+ affine = affine.append(trans);
+ }
+ if (c[0]) {
+ radian = c[0] * Math.PI / 180.0;
+ let cos = Math.cos(radian);
+ let sin = Math.sin(radian);
+ if (Math.abs(cos) < 1e-16) { // I hate rounding errors...
+ cos = 0;
+ }
+ if (Math.abs(sin) < 1e-16) { // I hate rounding errors...
+ sin = 0;
+ }
+ rotate = new Affine(cos, sin, -sin, cos, 0, 0);
+ affine = affine.append(rotate);
+ } else {
+ console.error('math.js: No argument to rotate transform!');
+ }
+ if (c.length === 3) {
+ trans = new Affine(1, 0, 0, 1, -c[1], -c[2]);
+ affine = affine.append(trans);
+ }
+ break;
+
+ case 'skewX':
+ if (c[0]) {
+ radian = c[0] * Math.PI / 180.0;
+ tan = Math.tan(radian);
+ skewx = new Affine(1, 0, tan, 1, 0, 0);
+ affine = affine.append(skewx);
+ } else {
+ console.error('math.js: No argument to skewX transform!');
+ }
+ break;
+
+ case 'skewY':
+ if (c[0]) {
+ radian = c[0] * Math.PI / 180.0;
+ tan = Math.tan(radian);
+ skewy = new Affine(1, tan, 0, 1, 0, 0);
+ affine = affine.append(skewy);
+ } else {
+ console.error('math.js: No argument to skewY transform!');
+ }
+ break;
+
+ case 'matrix':
+ if (c.length === 6) {
+ affine = affine.append(new Affine(...c));
+ } else {
+ console.error('math.js: Incorrect number of arguments for matrix!');
+ }
+ break;
+
+ default:
+ console.error('mesh.js: Unhandled transform type: ' + type);
+ break;
+ }
+ });
+
+ return affine;
+ };
+
+ const parsePoints = (s) => {
+ let points = [];
+ let values = s.split(/[ ,]+/);
+ for (let i = 0, imax = values.length - 1; i < imax; i += 2) {
+ points.push(new Point(parseFloat(values[i]), parseFloat(values[i + 1])));
+ }
+ return points;
+ };
+
+ // Set multiple attributes to an element
+ const setAttributes = (el, attrs) => {
+ for (let key in attrs) {
+ el.setAttribute(key, attrs[key]);
+ }
+ };
+
+ // Find the slope of point p_k by the values in p_k-1 and p_k+1
+ const finiteDifferences = (c0, c1, c2, d01, d12) => {
+ let slope = [0, 0, 0, 0];
+ let slow, shigh;
+
+ for (let k = 0; k < 3; ++k) {
+ if ((c1[k] < c0[k] && c1[k] < c2[k]) || (c0[k] < c1[k] && c2[k] < c1[k])) {
+ slope[k] = 0;
+ } else {
+ slope[k] = 0.5 * ((c1[k] - c0[k]) / d01 + (c2[k] - c1[k]) / d12);
+ slow = Math.abs(3.0 * (c1[k] - c0[k]) / d01);
+ shigh = Math.abs(3.0 * (c2[k] - c1[k]) / d12);
+
+ if (slope[k] > slow) {
+ slope[k] = slow;
+ } else if (slope[k] > shigh) {
+ slope[k] = shigh;
+ }
+ }
+ }
+
+ return slope;
+ };
+
+ // Coefficient matrix used for solving linear system
+ const A = [
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
+ [-3, 3, 0, 0, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
+ [2, -2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0, 0, -2, -1, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 1, 1, 0, 0],
+ [-3, 0, 3, 0, 0, 0, 0, 0, -2, 0, -1, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, -3, 0, 3, 0, 0, 0, 0, 0, -2, 0, -1, 0],
+ [9, -9, -9, 9, 6, 3, -6, -3, 6, -6, 3, -3, 4, 2, 2, 1],
+ [-6, 6, 6, -6, -3, -3, 3, 3, -4, 4, -2, 2, -2, -2, -1, -1],
+ [2, 0, -2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 2, 0, -2, 0, 0, 0, 0, 0, 1, 0, 1, 0],
+ [-6, 6, 6, -6, -4, -2, 4, 2, -3, 3, -3, 3, -2, -1, -2, -1],
+ [4, -4, -4, 4, 2, 2, -2, -2, 2, -2, 2, -2, 1, 1, 1, 1]
+ ];
+
+ // Solve the linear system for bicubic interpolation
+ const solveLinearSystem = (v) => {
+ let alpha = [];
+
+ for (let i = 0; i < 16; ++i) {
+ alpha[i] = 0;
+ for (let j = 0; j < 16; ++j) {
+ alpha[i] += A[i][j] * v[j];
+ }
+ }
+
+ return alpha;
+ };
+
+ // Evaluate the interpolation parameters at (y, x)
+ const evaluateSolution = (alpha, x, y) => {
+ const xx = x * x;
+ const yy = y * y;
+ const xxx = x * x * x;
+ const yyy = y * y * y;
+
+ let result =
+ alpha[0] +
+ alpha[1] * x +
+ alpha[2] * xx +
+ alpha[3] * xxx +
+ alpha[4] * y +
+ alpha[5] * y * x +
+ alpha[6] * y * xx +
+ alpha[7] * y * xxx +
+ alpha[8] * yy +
+ alpha[9] * yy * x +
+ alpha[10] * yy * xx +
+ alpha[11] * yy * xxx +
+ alpha[12] * yyy +
+ alpha[13] * yyy * x +
+ alpha[14] * yyy * xx +
+ alpha[15] * yyy * xxx;
+
+ return result;
+ };
+
+ // Split a patch into 8x8 smaller patches
+ const splitPatch = (patch) => {
+ let yPatches = [];
+ let xPatches = [];
+ let patches = [];
+
+ // Horizontal splitting
+ for (let i = 0; i < 4; ++i) {
+ yPatches[i] = [];
+ yPatches[i][0] = splitBezier(
+ patch[0][i], patch[1][i],
+ patch[2][i], patch[3][i]
+ );
+
+ yPatches[i][1] = [];
+ yPatches[i][1].push(...splitBezier(...yPatches[i][0][0]));
+ yPatches[i][1].push(...splitBezier(...yPatches[i][0][1]));
+
+ yPatches[i][2] = [];
+ yPatches[i][2].push(...splitBezier(...yPatches[i][1][0]));
+ yPatches[i][2].push(...splitBezier(...yPatches[i][1][1]));
+ yPatches[i][2].push(...splitBezier(...yPatches[i][1][2]));
+ yPatches[i][2].push(...splitBezier(...yPatches[i][1][3]));
+ }
+
+ // Vertical splitting
+ for (let i = 0; i < 8; ++i) {
+ xPatches[i] = [];
+
+ for (let j = 0; j < 4; ++j) {
+ xPatches[i][j] = [];
+ xPatches[i][j][0] = splitBezier(
+ yPatches[0][2][i][j], yPatches[1][2][i][j],
+ yPatches[2][2][i][j], yPatches[3][2][i][j]
+ );
+
+ xPatches[i][j][1] = [];
+ xPatches[i][j][1].push(...splitBezier(...xPatches[i][j][0][0]));
+ xPatches[i][j][1].push(...splitBezier(...xPatches[i][j][0][1]));
+
+ xPatches[i][j][2] = [];
+ xPatches[i][j][2].push(...splitBezier(...xPatches[i][j][1][0]));
+ xPatches[i][j][2].push(...splitBezier(...xPatches[i][j][1][1]));
+ xPatches[i][j][2].push(...splitBezier(...xPatches[i][j][1][2]));
+ xPatches[i][j][2].push(...splitBezier(...xPatches[i][j][1][3]));
+ }
+ }
+
+ for (let i = 0; i < 8; ++i) {
+ patches[i] = [];
+
+ for (let j = 0; j < 8; ++j) {
+ patches[i][j] = [];
+
+ patches[i][j][0] = xPatches[i][0][2][j];
+ patches[i][j][1] = xPatches[i][1][2][j];
+ patches[i][j][2] = xPatches[i][2][2][j];
+ patches[i][j][3] = xPatches[i][3][2][j];
+ }
+ }
+
+ return patches;
+ };
+
+ // Point class -----------------------------------
+ class Point {
+ constructor (x, y) {
+ this.x = x || 0;
+ this.y = y || 0;
+ }
+
+ toString () {
+ return `(x=${this.x}, y=${this.y})`;
+ }
+
+ clone () {
+ return new Point(this.x, this.y);
+ }
+
+ add (v) {
+ return new Point(this.x + v.x, this.y + v.y);
+ }
+
+ scale (v) {
+ if (v.x === undefined) {
+ return new Point(this.x * v, this.y * v);
+ }
+ return new Point(this.x * v.x, this.y * v.y);
+ }
+
+ distSquared (v) {
+ let x = this.x - v.x;
+ let y = this.y - v.y;
+ return (x * x + y * y);
+ }
+
+ // Transform by affine
+ transform (affine) {
+ let x = this.x * affine.a + this.y * affine.c + affine.e;
+ let y = this.x * affine.b + this.y * affine.d + affine.f;
+ return new Point(x, y);
+ }
+ }
+
+ /*
+ * Affine class -------------------------------------
+ *
+ * As defined in the SVG spec
+ * | a c e |
+ * | b d f |
+ * | 0 0 1 |
+ *
+ */
+
+ class Affine {
+ constructor (a, b, c, d, e, f) {
+ if (a === undefined) {
+ this.a = 1;
+ this.b = 0;
+ this.c = 0;
+ this.d = 1;
+ this.e = 0;
+ this.f = 0;
+ } else {
+ this.a = a;
+ this.b = b;
+ this.c = c;
+ this.d = d;
+ this.e = e;
+ this.f = f;
+ }
+ }
+
+ toString () {
+ return `affine: ${this.a} ${this.c} ${this.e} \n\
+ ${this.b} ${this.d} ${this.f}`;
+ }
+
+ append (v) {
+ if (!(v instanceof Affine)) {
+ console.error(`mesh.js: argument to Affine.append is not affine!`);
+ }
+ let a = this.a * v.a + this.c * v.b;
+ let b = this.b * v.a + this.d * v.b;
+ let c = this.a * v.c + this.c * v.d;
+ let d = this.b * v.c + this.d * v.d;
+ let e = this.a * v.e + this.c * v.f + this.e;
+ let f = this.b * v.e + this.d * v.f + this.f;
+ return new Affine(a, b, c, d, e, f);
+ }
+ }
+
+ // Curve class --------------------------------------
+ class Curve {
+ constructor (nodes, colors) {
+ this.nodes = nodes; // 4 Bezier points
+ this.colors = colors; // 2 x 4 colors (two ends x R+G+B+A)
+ }
+
+ /*
+ * Paint a Bezier curve
+ * w is canvas.width
+ * h is canvas.height
+ */
+ paintCurve (v, w) {
+ // If inside, see if we need to split
+ if (bezierStepsSquared(this.nodes) > maxBezierStep) {
+ const beziers = splitBezier(...this.nodes);
+ // ([start][end])
+ let colors0 = [[], []];
+ let colors1 = [[], []];
+
+ /*
+ * Linear horizontal interpolation of the middle value for every
+ * patch exceeding thereshold
+ */
+ for (let i = 0; i < 4; ++i) {
+ colors0[0][i] = this.colors[0][i];
+ colors0[1][i] = (this.colors[0][i] + this.colors[1][i]) / 2;
+ colors1[0][i] = colors0[1][i];
+ colors1[1][i] = this.colors[1][i];
+ }
+ let curve0 = new Curve(beziers[0], colors0);
+ let curve1 = new Curve(beziers[1], colors1);
+ curve0.paintCurve(v, w);
+ curve1.paintCurve(v, w);
+ } else {
+ // Directly write data
+ let x = Math.round(this.nodes[0].x);
+ if (x >= 0 && x < w) {
+ let index = (~~this.nodes[0].y * w + x) * 4;
+ v[index] = Math.round(this.colors[0][0]);
+ v[index + 1] = Math.round(this.colors[0][1]);
+ v[index + 2] = Math.round(this.colors[0][2]);
+ v[index + 3] = Math.round(this.colors[0][3]); // Alpha
+ }
+ }
+ }
+ }
+
+ // Patch class -------------------------------------
+ class Patch {
+ constructor (nodes, colors) {
+ this.nodes = nodes; // 4x4 array of points
+ this.colors = colors; // 2x2x4 colors (four corners x R+G+B+A)
+ }
+
+ // Split patch horizontally into two patches.
+ split () {
+ let nodes0 = [[], [], [], []];
+ let nodes1 = [[], [], [], []];
+ let colors0 = [
+ [[], []],
+ [[], []]
+ ];
+ let colors1 = [
+ [[], []],
+ [[], []]
+ ];
+
+ for (let i = 0; i < 4; ++i) {
+ const beziers = splitBezier(
+ this.nodes[0][i], this.nodes[1][i],
+ this.nodes[2][i], this.nodes[3][i]
+ );
+
+ nodes0[0][i] = beziers[0][0];
+ nodes0[1][i] = beziers[0][1];
+ nodes0[2][i] = beziers[0][2];
+ nodes0[3][i] = beziers[0][3];
+ nodes1[0][i] = beziers[1][0];
+ nodes1[1][i] = beziers[1][1];
+ nodes1[2][i] = beziers[1][2];
+ nodes1[3][i] = beziers[1][3];
+ }
+
+ /*
+ * Linear vertical interpolation of the middle value for every
+ * patch exceeding thereshold
+ */
+ for (let i = 0; i < 4; ++i) {
+ colors0[0][0][i] = this.colors[0][0][i];
+ colors0[0][1][i] = this.colors[0][1][i];
+ colors0[1][0][i] = (this.colors[0][0][i] + this.colors[1][0][i]) / 2;
+ colors0[1][1][i] = (this.colors[0][1][i] + this.colors[1][1][i]) / 2;
+ colors1[0][0][i] = colors0[1][0][i];
+ colors1[0][1][i] = colors0[1][1][i];
+ colors1[1][0][i] = this.colors[1][0][i];
+ colors1[1][1][i] = this.colors[1][1][i];
+ }
+
+ return ([new Patch(nodes0, colors0), new Patch(nodes1, colors1)]);
+ }
+
+ paint (v, w) {
+ // Check if we need to split
+ let larger = false;
+ let step;
+ for (let i = 0; i < 4; ++i) {
+ step = bezierStepsSquared([
+ this.nodes[0][i], this.nodes[1][i],
+ this.nodes[2][i], this.nodes[3][i]
+ ]);
+
+ if (step > maxBezierStep) {
+ larger = true;
+ break;
+ }
+ }
+
+ if (larger) {
+ let patches = this.split();
+ patches[0].paint(v, w);
+ patches[1].paint(v, w);
+ } else {
+ /*
+ * Paint a Bezier curve using just the top of the patch. If
+ * the patch is thin enough this should work. We leave this
+ * function here in case we want to do something more fancy.
+ */
+ let curve = new Curve([...this.nodes[0]], [...this.colors[0]]);
+ curve.paintCurve(v, w);
+ }
+ }
+ }
+
+ // Mesh class ---------------------------------------
+ class Mesh {
+ constructor (mesh) {
+ this.readMesh(mesh);
+ this.type = mesh.getAttribute('type') || 'bilinear';
+ }
+
+ // Function to parse an SVG mesh and set the nodes (points) and colors
+ readMesh (mesh) {
+ let nodes = [[]];
+ let colors = [[]];
+
+ let x = Number(mesh.getAttribute('x'));
+ let y = Number(mesh.getAttribute('y'));
+ nodes[0][0] = new Point(x, y);
+
+ let rows = mesh.children;
+ for (let i = 0, imax = rows.length; i < imax; ++i) {
+ // Need to validate if meshrow...
+ nodes[3 * i + 1] = []; // Need three extra rows for each meshrow.
+ nodes[3 * i + 2] = [];
+ nodes[3 * i + 3] = [];
+ colors[i + 1] = []; // Need one more row than number of meshrows.
+
+ let patches = rows[i].children;
+ for (let j = 0, jmax = patches.length; j < jmax; ++j) {
+ let stops = patches[j].children;
+ for (let k = 0, kmax = stops.length; k < kmax; ++k) {
+ let l = k;
+ if (i !== 0) {
+ ++l; // There is no top if row isn't first row.
+ }
+ let path = stops[k].getAttribute('path');
+ let parts;
+
+ let type = 'l'; // We need to still find mid-points even if no path.
+ if (path != null) {
+ parts = path.match(/\s*([lLcC])\s*(.*)/);
+ type = parts[1];
+ }
+ let stopNodes = parsePoints(parts[2]);
+
+ switch (type) {
+ case 'l':
+ if (l === 0) { // Top
+ nodes[3 * i][3 * j + 3] = stopNodes[0].add(nodes[3 * i][3 * j]);
+ nodes[3 * i][3 * j + 1] = wAvg(nodes[3 * i][3 * j], nodes[3 * i][3 * j + 3]);
+ nodes[3 * i][3 * j + 2] = wAvg(nodes[3 * i][3 * j + 3], nodes[3 * i][3 * j]);
+ } else if (l === 1) { // Right
+ nodes[3 * i + 3][3 * j + 3] = stopNodes[0].add(nodes[3 * i][3 * j + 3]);
+ nodes[3 * i + 1][3 * j + 3] = wAvg(nodes[3 * i][3 * j + 3], nodes[3 * i + 3][3 * j + 3]);
+ nodes[3 * i + 2][3 * j + 3] = wAvg(nodes[3 * i + 3][3 * j + 3], nodes[3 * i][3 * j + 3]);
+ } else if (l === 2) { // Bottom
+ if (j === 0) {
+ nodes[3 * i + 3][3 * j + 0] = stopNodes[0].add(nodes[3 * i + 3][3 * j + 3]);
+ }
+ nodes[3 * i + 3][3 * j + 1] = wAvg(nodes[3 * i + 3][3 * j], nodes[3 * i + 3][3 * j + 3]);
+ nodes[3 * i + 3][3 * j + 2] = wAvg(nodes[3 * i + 3][3 * j + 3], nodes[3 * i + 3][3 * j]);
+ } else { // Left
+ nodes[3 * i + 1][3 * j] = wAvg(nodes[3 * i][3 * j], nodes[3 * i + 3][3 * j]);
+ nodes[3 * i + 2][3 * j] = wAvg(nodes[3 * i + 3][3 * j], nodes[3 * i][3 * j]);
+ }
+ break;
+ case 'L':
+ if (l === 0) { // Top
+ nodes[3 * i][3 * j + 3] = stopNodes[0];
+ nodes[3 * i][3 * j + 1] = wAvg(nodes[3 * i][3 * j], nodes[3 * i][3 * j + 3]);
+ nodes[3 * i][3 * j + 2] = wAvg(nodes[3 * i][3 * j + 3], nodes[3 * i][3 * j]);
+ } else if (l === 1) { // Right
+ nodes[3 * i + 3][3 * j + 3] = stopNodes[0];
+ nodes[3 * i + 1][3 * j + 3] = wAvg(nodes[3 * i][3 * j + 3], nodes[3 * i + 3][3 * j + 3]);
+ nodes[3 * i + 2][3 * j + 3] = wAvg(nodes[3 * i + 3][3 * j + 3], nodes[3 * i][3 * j + 3]);
+ } else if (l === 2) { // Bottom
+ if (j === 0) {
+ nodes[3 * i + 3][3 * j + 0] = stopNodes[0];
+ }
+ nodes[3 * i + 3][3 * j + 1] = wAvg(nodes[3 * i + 3][3 * j], nodes[3 * i + 3][3 * j + 3]);
+ nodes[3 * i + 3][3 * j + 2] = wAvg(nodes[3 * i + 3][3 * j + 3], nodes[3 * i + 3][3 * j]);
+ } else { // Left
+ nodes[3 * i + 1][3 * j] = wAvg(nodes[3 * i][3 * j], nodes[3 * i + 3][3 * j]);
+ nodes[3 * i + 2][3 * j] = wAvg(nodes[3 * i + 3][3 * j], nodes[3 * i][3 * j]);
+ }
+ break;
+ case 'c':
+ if (l === 0) { // Top
+ nodes[3 * i][3 * j + 1] = stopNodes[0].add(nodes[3 * i][3 * j]);
+ nodes[3 * i][3 * j + 2] = stopNodes[1].add(nodes[3 * i][3 * j]);
+ nodes[3 * i][3 * j + 3] = stopNodes[2].add(nodes[3 * i][3 * j]);
+ } else if (l === 1) { // Right
+ nodes[3 * i + 1][3 * j + 3] = stopNodes[0].add(nodes[3 * i][3 * j + 3]);
+ nodes[3 * i + 2][3 * j + 3] = stopNodes[1].add(nodes[3 * i][3 * j + 3]);
+ nodes[3 * i + 3][3 * j + 3] = stopNodes[2].add(nodes[3 * i][3 * j + 3]);
+ } else if (l === 2) { // Bottom
+ nodes[3 * i + 3][3 * j + 2] = stopNodes[0].add(nodes[3 * i + 3][3 * j + 3]);
+ nodes[3 * i + 3][3 * j + 1] = stopNodes[1].add(nodes[3 * i + 3][3 * j + 3]);
+ if (j === 0) {
+ nodes[3 * i + 3][3 * j + 0] = stopNodes[2].add(nodes[3 * i + 3][3 * j + 3]);
+ }
+ } else { // Left
+ nodes[3 * i + 2][3 * j] = stopNodes[0].add(nodes[3 * i + 3][3 * j]);
+ nodes[3 * i + 1][3 * j] = stopNodes[1].add(nodes[3 * i + 3][3 * j]);
+ }
+ break;
+ case 'C':
+ if (l === 0) { // Top
+ nodes[3 * i][3 * j + 1] = stopNodes[0];
+ nodes[3 * i][3 * j + 2] = stopNodes[1];
+ nodes[3 * i][3 * j + 3] = stopNodes[2];
+ } else if (l === 1) { // Right
+ nodes[3 * i + 1][3 * j + 3] = stopNodes[0];
+ nodes[3 * i + 2][3 * j + 3] = stopNodes[1];
+ nodes[3 * i + 3][3 * j + 3] = stopNodes[2];
+ } else if (l === 2) { // Bottom
+ nodes[3 * i + 3][3 * j + 2] = stopNodes[0];
+ nodes[3 * i + 3][3 * j + 1] = stopNodes[1];
+ if (j === 0) {
+ nodes[3 * i + 3][3 * j + 0] = stopNodes[2];
+ }
+ } else { // Left
+ nodes[3 * i + 2][3 * j] = stopNodes[0];
+ nodes[3 * i + 1][3 * j] = stopNodes[1];
+ }
+ break;
+ default:
+ console.error('mesh.js: ' + type + ' invalid path type.');
+ }
+
+ if ((i === 0 && j === 0) || k > 0) {
+ let colorRaw = window.getComputedStyle(stops[k]).stopColor
+ .match(/^rgb\s*\(\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\)$/i);
+ let alphaRaw = window.getComputedStyle(stops[k]).stopOpacity;
+ let alpha = 255;
+ if (alphaRaw) {
+ alpha = Math.floor(alphaRaw * 255);
+ }
+
+ if (colorRaw) {
+ if (l === 0) { // upper left corner
+ colors[i][j] = [];
+ colors[i][j][0] = Math.floor(colorRaw[1]);
+ colors[i][j][1] = Math.floor(colorRaw[2]);
+ colors[i][j][2] = Math.floor(colorRaw[3]);
+ colors[i][j][3] = alpha; // Alpha
+ } else if (l === 1) { // upper right corner
+ colors[i][j + 1] = [];
+ colors[i][j + 1][0] = Math.floor(colorRaw[1]);
+ colors[i][j + 1][1] = Math.floor(colorRaw[2]);
+ colors[i][j + 1][2] = Math.floor(colorRaw[3]);
+ colors[i][j + 1][3] = alpha; // Alpha
+ } else if (l === 2) { // lower right corner
+ colors[i + 1][j + 1] = [];
+ colors[i + 1][j + 1][0] = Math.floor(colorRaw[1]);
+ colors[i + 1][j + 1][1] = Math.floor(colorRaw[2]);
+ colors[i + 1][j + 1][2] = Math.floor(colorRaw[3]);
+ colors[i + 1][j + 1][3] = alpha; // Alpha
+ } else if (l === 3) { // lower left corner
+ colors[i + 1][j] = [];
+ colors[i + 1][j][0] = Math.floor(colorRaw[1]);
+ colors[i + 1][j][1] = Math.floor(colorRaw[2]);
+ colors[i + 1][j][2] = Math.floor(colorRaw[3]);
+ colors[i + 1][j][3] = alpha; // Alpha
+ }
+ }
+ }
+ }
+
+ // SVG doesn't use tensor points but we need them for rendering.
+ nodes[3 * i + 1][3 * j + 1] = new Point();
+ nodes[3 * i + 1][3 * j + 2] = new Point();
+ nodes[3 * i + 2][3 * j + 1] = new Point();
+ nodes[3 * i + 2][3 * j + 2] = new Point();
+
+ nodes[3 * i + 1][3 * j + 1].x =
+ (-4.0 * nodes[3 * i][3 * j].x +
+ 6.0 * (nodes[3 * i][3 * j + 1].x + nodes[3 * i + 1][3 * j].x) +
+ -2.0 * (nodes[3 * i][3 * j + 3].x + nodes[3 * i + 3][3 * j].x) +
+ 3.0 * (nodes[3 * i + 3][3 * j + 1].x + nodes[3 * i + 1][3 * j + 3].x) +
+ -1.0 * nodes[3 * i + 3][3 * j + 3].x) / 9.0;
+ nodes[3 * i + 1][3 * j + 2].x =
+ (-4.0 * nodes[3 * i][3 * j + 3].x +
+ 6.0 * (nodes[3 * i][3 * j + 2].x + nodes[3 * i + 1][3 * j + 3].x) +
+ -2.0 * (nodes[3 * i][3 * j].x + nodes[3 * i + 3][3 * j + 3].x) +
+ 3.0 * (nodes[3 * i + 3][3 * j + 2].x + nodes[3 * i + 1][3 * j].x) +
+ -1.0 * nodes[3 * i + 3][3 * j].x) / 9.0;
+ nodes[3 * i + 2][3 * j + 1].x =
+ (-4.0 * nodes[3 * i + 3][3 * j].x +
+ 6.0 * (nodes[3 * i + 3][3 * j + 1].x + nodes[3 * i + 2][3 * j].x) +
+ -2.0 * (nodes[3 * i + 3][3 * j + 3].x + nodes[3 * i][3 * j].x) +
+ 3.0 * (nodes[3 * i][3 * j + 1].x + nodes[3 * i + 2][3 * j + 3].x) +
+ -1.0 * nodes[3 * i][3 * j + 3].x) / 9.0;
+ nodes[3 * i + 2][3 * j + 2].x =
+ (-4.0 * nodes[3 * i + 3][3 * j + 3].x +
+ 6.0 * (nodes[3 * i + 3][3 * j + 2].x + nodes[3 * i + 2][3 * j + 3].x) +
+ -2.0 * (nodes[3 * i + 3][3 * j].x + nodes[3 * i][3 * j + 3].x) +
+ 3.0 * (nodes[3 * i][3 * j + 2].x + nodes[3 * i + 2][3 * j].x) +
+ -1.0 * nodes[3 * i][3 * j].x) / 9.0;
+
+ nodes[3 * i + 1][3 * j + 1].y =
+ (-4.0 * nodes[3 * i][3 * j].y +
+ 6.0 * (nodes[3 * i][3 * j + 1].y + nodes[3 * i + 1][3 * j].y) +
+ -2.0 * (nodes[3 * i][3 * j + 3].y + nodes[3 * i + 3][3 * j].y) +
+ 3.0 * (nodes[3 * i + 3][3 * j + 1].y + nodes[3 * i + 1][3 * j + 3].y) +
+ -1.0 * nodes[3 * i + 3][3 * j + 3].y) / 9.0;
+ nodes[3 * i + 1][3 * j + 2].y =
+ (-4.0 * nodes[3 * i][3 * j + 3].y +
+ 6.0 * (nodes[3 * i][3 * j + 2].y + nodes[3 * i + 1][3 * j + 3].y) +
+ -2.0 * (nodes[3 * i][3 * j].y + nodes[3 * i + 3][3 * j + 3].y) +
+ 3.0 * (nodes[3 * i + 3][3 * j + 2].y + nodes[3 * i + 1][3 * j].y) +
+ -1.0 * nodes[3 * i + 3][3 * j].y) / 9.0;
+ nodes[3 * i + 2][3 * j + 1].y =
+ (-4.0 * nodes[3 * i + 3][3 * j].y +
+ 6.0 * (nodes[3 * i + 3][3 * j + 1].y + nodes[3 * i + 2][3 * j].y) +
+ -2.0 * (nodes[3 * i + 3][3 * j + 3].y + nodes[3 * i][3 * j].y) +
+ 3.0 * (nodes[3 * i][3 * j + 1].y + nodes[3 * i + 2][3 * j + 3].y) +
+ -1.0 * nodes[3 * i][3 * j + 3].y) / 9.0;
+ nodes[3 * i + 2][3 * j + 2].y =
+ (-4.0 * nodes[3 * i + 3][3 * j + 3].y +
+ 6.0 * (nodes[3 * i + 3][3 * j + 2].y + nodes[3 * i + 2][3 * j + 3].y) +
+ -2.0 * (nodes[3 * i + 3][3 * j].y + nodes[3 * i][3 * j + 3].y) +
+ 3.0 * (nodes[3 * i][3 * j + 2].y + nodes[3 * i + 2][3 * j].y) +
+ -1.0 * nodes[3 * i][3 * j].y) / 9.0;
+ }
+ }
+
+ this.nodes = nodes; // (m*3+1) x (n*3+1) points
+ this.colors = colors; // (m+1) x (n+1) x 4 colors (R+G+B+A)
+ }
+
+ // Extracts out each patch and then paints it
+ paintMesh (v, w) {
+ let imax = (this.nodes.length - 1) / 3;
+ let jmax = (this.nodes[0].length - 1) / 3;
+
+ if (this.type === 'bilinear' || imax < 2 || jmax < 2) {
+ let patch;
+
+ for (let i = 0; i < imax; ++i) {
+ for (let j = 0; j < jmax; ++j) {
+ let sliceNodes = [];
+ for (let k = i * 3, kmax = (i * 3) + 4; k < kmax; ++k) {
+ sliceNodes.push(this.nodes[k].slice(j * 3, (j * 3) + 4));
+ }
+
+ let sliceColors = [];
+ sliceColors.push(this.colors[i].slice(j, j + 2));
+ sliceColors.push(this.colors[i + 1].slice(j, j + 2));
+
+ patch = new Patch(sliceNodes, sliceColors);
+ patch.paint(v, w);
+ }
+ }
+ } else {
+ // Reference:
+ // https://en.wikipedia.org/wiki/Bicubic_interpolation#Computation
+ let d01, d12, patch, sliceNodes, nodes, f, alpha;
+ const ilast = imax;
+ const jlast = jmax;
+ imax++;
+ jmax++;
+
+ /*
+ * d = the interpolation data
+ * d[i][j] = a node record (Point, color_array, color_dx, color_dy)
+ * d[i][j][0] : Point
+ * d[i][j][1] : [RGBA]
+ * d[i][j][2] = dx [RGBA]
+ * d[i][j][3] = dy [RGBA]
+ * d[i][j][][k] : color channel k
+ */
+ let d = new Array(imax);
+
+ // Setting the node and the colors
+ for (let i = 0; i < imax; ++i) {
+ d[i] = new Array(jmax);
+ for (let j = 0; j < jmax; ++j) {
+ d[i][j] = [];
+ d[i][j][0] = this.nodes[3 * i][3 * j];
+ d[i][j][1] = this.colors[i][j];
+ }
+ }
+
+ // Calculate the inner derivatives
+ for (let i = 0; i < imax; ++i) {
+ for (let j = 0; j < jmax; ++j) {
+ // dx
+ if (i !== 0 && i !== ilast) {
+ d01 = distance(d[i - 1][j][0], d[i][j][0]);
+ d12 = distance(d[i + 1][j][0], d[i][j][0]);
+ d[i][j][2] = finiteDifferences(d[i - 1][j][1], d[i][j][1],
+ d[i + 1][j][1], d01, d12);
+ }
+
+ // dy
+ if (j !== 0 && j !== jlast) {
+ d01 = distance(d[i][j - 1][0], d[i][j][0]);
+ d12 = distance(d[i][j + 1][0], d[i][j][0]);
+ d[i][j][3] = finiteDifferences(d[i][j - 1][1], d[i][j][1],
+ d[i][j + 1][1], d01, d12);
+ }
+
+ // dxy is, by standard, set to 0
+ }
+ }
+
+ /*
+ * Calculate the exterior derivatives
+ * We fit the exterior derivatives onto parabolas generated by
+ * the point and the interior derivatives.
+ */
+ for (let j = 0; j < jmax; ++j) {
+ d[0][j][2] = [];
+ d[ilast][j][2] = [];
+
+ for (let k = 0; k < 4; ++k) {
+ d01 = distance(d[1][j][0], d[0][j][0]);
+ d12 = distance(d[ilast][j][0], d[ilast - 1][j][0]);
+
+ if (d01 > 0) {
+ d[0][j][2][k] = 2.0 * (d[1][j][1][k] - d[0][j][1][k]) / d01 -
+ d[1][j][2][k];
+ } else {
+ console.log(`0 was 0! (j: ${j}, k: ${k})`);
+ d[0][j][2][k] = 0;
+ }
+
+ if (d12 > 0) {
+ d[ilast][j][2][k] = 2.0 * (d[ilast][j][1][k] - d[ilast - 1][j][1][k]) /
+ d12 - d[ilast - 1][j][2][k];
+ } else {
+ console.log(`last was 0! (j: ${j}, k: ${k})`);
+ d[ilast][j][2][k] = 0;
+ }
+ }
+ }
+
+ for (let i = 0; i < imax; ++i) {
+ d[i][0][3] = [];
+ d[i][jlast][3] = [];
+
+ for (let k = 0; k < 4; ++k) {
+ d01 = distance(d[i][1][0], d[i][0][0]);
+ d12 = distance(d[i][jlast][0], d[i][jlast - 1][0]);
+
+ if (d01 > 0) {
+ d[i][0][3][k] = 2.0 * (d[i][1][1][k] - d[i][0][1][k]) / d01 -
+ d[i][1][3][k];
+ } else {
+ console.log(`0 was 0! (i: ${i}, k: ${k})`);
+ d[i][0][3][k] = 0;
+ }
+
+ if (d12 > 0) {
+ d[i][jlast][3][k] = 2.0 * (d[i][jlast][1][k] - d[i][jlast - 1][1][k]) /
+ d12 - d[i][jlast - 1][3][k];
+ } else {
+ console.log(`last was 0! (i: ${i}, k: ${k})`);
+ d[i][jlast][3][k] = 0;
+ }
+ }
+ }
+
+ // Fill patches
+ for (let i = 0; i < ilast; ++i) {
+ for (let j = 0; j < jlast; ++j) {
+ let dLeft = distance(d[i][j][0], d[i + 1][j][0]);
+ let dRight = distance(d[i][j + 1][0], d[i + 1][j + 1][0]);
+ let dTop = distance(d[i][j][0], d[i][j + 1][0]);
+ let dBottom = distance(d[i + 1][j][0], d[i + 1][j + 1][0]);
+ let r = [[], [], [], []];
+
+ for (let k = 0; k < 4; ++k) {
+ f = [];
+
+ f[0] = d[i][j][1][k];
+ f[1] = d[i + 1][j][1][k];
+ f[2] = d[i][j + 1][1][k];
+ f[3] = d[i + 1][j + 1][1][k];
+ f[4] = d[i][j][2][k] * dLeft;
+ f[5] = d[i + 1][j][2][k] * dLeft;
+ f[6] = d[i][j + 1][2][k] * dRight;
+ f[7] = d[i + 1][j + 1][2][k] * dRight;
+ f[8] = d[i][j][3][k] * dTop;
+ f[9] = d[i + 1][j][3][k] * dBottom;
+ f[10] = d[i][j + 1][3][k] * dTop;
+ f[11] = d[i + 1][j + 1][3][k] * dBottom;
+ f[12] = 0; // dxy
+ f[13] = 0; // dxy
+ f[14] = 0; // dxy
+ f[15] = 0; // dxy
+
+ // get alpha values
+ alpha = solveLinearSystem(f);
+
+ for (let l = 0; l < 9; ++l) {
+ r[k][l] = [];
+
+ for (let m = 0; m < 9; ++m) {
+ // evaluation
+ r[k][l][m] = evaluateSolution(alpha, l / 8, m / 8);
+
+ if (r[k][l][m] > 255) {
+ r[k][l][m] = 255;
+ } else if (r[k][l][m] < 0.0) {
+ r[k][l][m] = 0.0;
+ }
+ }
+ }
+ }
+
+ // split the bezier patch into 8x8 patches
+ sliceNodes = [];
+ for (let k = i * 3, kmax = (i * 3) + 4; k < kmax; ++k) {
+ sliceNodes.push(this.nodes[k].slice(j * 3, (j * 3) + 4));
+ }
+
+ nodes = splitPatch(sliceNodes);
+
+ // Create patches and paint the bilinearliy
+ for (let l = 0; l < 8; ++l) {
+ for (let m = 0; m < 8; ++m) {
+ patch = new Patch(
+ nodes[l][m],
+ [[
+ [r[0][l][m], r[1][l][m], r[2][l][m], r[3][l][m]],
+ [r[0][l][m + 1], r[1][l][m + 1], r[2][l][m + 1], r[3][l][m + 1]]
+ ], [
+ [r[0][l + 1][m], r[1][l + 1][m], r[2][l + 1][m], r[3][l + 1][m]],
+ [r[0][l + 1][m + 1], r[1][l + 1][m + 1], r[2][l + 1][m + 1], r[3][l + 1][m + 1]]
+ ]]
+ );
+
+ patch.paint(v, w);
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // Transforms mesh into coordinate space of canvas (t is either Point or Affine).
+ transform (t) {
+ if (t instanceof Point) {
+ for (let i = 0, imax = this.nodes.length; i < imax; ++i) {
+ for (let j = 0, jmax = this.nodes[0].length; j < jmax; ++j) {
+ this.nodes[i][j] = this.nodes[i][j].add(t);
+ }
+ }
+ } else if (t instanceof Affine) {
+ for (let i = 0, imax = this.nodes.length; i < imax; ++i) {
+ for (let j = 0, jmax = this.nodes[0].length; j < jmax; ++j) {
+ this.nodes[i][j] = this.nodes[i][j].transform(t);
+ }
+ }
+ }
+ }
+
+ // Scale mesh into coordinate space of canvas (t is a Point).
+ scale (t) {
+ for (let i = 0, imax = this.nodes.length; i < imax; ++i) {
+ for (let j = 0, jmax = this.nodes[0].length; j < jmax; ++j) {
+ this.nodes[i][j] = this.nodes[i][j].scale(t);
+ }
+ }
+ }
+ }
+
+ // Start of document processing ---------------------
+ const shapes = document.querySelectorAll('rect,circle,ellipse,path,text');
+
+ shapes.forEach((shape, i) => {
+ // Get id. If no id, create one.
+ let shapeId = shape.getAttribute('id');
+ if (!shapeId) {
+ shapeId = 'patchjs_shape' + i;
+ shape.setAttribute('id', shapeId);
+ }
+
+ const fillURL = shape.style.fill.match(/^url\(\s*"?\s*#([^\s"]+)"?\s*\)/);
+ const strokeURL = shape.style.stroke.match(/^url\(\s*"?\s*#([^\s"]+)"?\s*\)/);
+
+ if (fillURL && fillURL[1]) {
+ const mesh = document.getElementById(fillURL[1]);
+
+ if (mesh && mesh.nodeName === 'meshgradient') {
+ const bbox = shape.getBBox();
+
+ // Create temporary canvas
+ let myCanvas = document.createElementNS(xhtmlNS, 'canvas');
+ setAttributes(myCanvas, {
+ 'width': bbox.width,
+ 'height': bbox.height
+ });
+
+ const myContext = myCanvas.getContext('2d');
+ let myCanvasImage = myContext.createImageData(bbox.width, bbox.height);
+
+ // Draw a mesh
+ const myMesh = new Mesh(mesh);
+
+ // Adjust for bounding box if necessary.
+ if (mesh.getAttribute('gradientUnits') === 'objectBoundingBox') {
+ myMesh.scale(new Point(bbox.width, bbox.height));
+ }
+
+ // Apply gradient transform.
+ const gradientTransform = mesh.getAttribute('gradientTransform');
+ if (gradientTransform != null) {
+ myMesh.transform(parseTransform(gradientTransform));
+ }
+
+ // Position to Canvas coordinate.
+ if (mesh.getAttribute('gradientUnits') === 'userSpaceOnUse') {
+ myMesh.transform(new Point(-bbox.x, -bbox.y));
+ }
+
+ // Paint
+ myMesh.paintMesh(myCanvasImage.data, myCanvas.width);
+ myContext.putImageData(myCanvasImage, 0, 0);
+
+ // Create image element of correct size
+ const myImage = document.createElementNS(svgNS, 'image');
+ setAttributes(myImage, {
+ 'width': bbox.width,
+ 'height': bbox.height,
+ 'x': bbox.x,
+ 'y': bbox.y
+ });
+
+ // Set image to data url
+ let myPNG = myCanvas.toDataURL();
+ myImage.setAttributeNS(xlinkNS, 'xlink:href', myPNG);
+
+ // Insert image into document
+ shape.parentNode.insertBefore(myImage, shape);
+ shape.style.fill = 'none';
+
+ // Create clip referencing shape and insert into document
+ const use = document.createElementNS(svgNS, 'use');
+ use.setAttributeNS(xlinkNS, 'xlink:href', '#' + shapeId);
+
+ const clipId = 'patchjs_clip' + i;
+ const clip = document.createElementNS(svgNS, 'clipPath');
+ clip.setAttribute('id', clipId);
+ clip.appendChild(use);
+ shape.parentElement.insertBefore(clip, shape);
+ myImage.setAttribute('clip-path', 'url(#' + clipId + ')');
+
+ // Force the Garbage Collector to free the space
+ myCanvasImage = null;
+ myCanvas = null;
+ myPNG = null;
+ }
+ }
+
+ if (strokeURL && strokeURL[1]) {
+ const mesh = document.getElementById(strokeURL[1]);
+
+ if (mesh && mesh.nodeName === 'meshgradient') {
+ const strokeWidth = parseFloat(shape.style.strokeWidth.slice(0, -2));
+ const strokeMiterlimit = parseFloat(shape.style.strokeMiterlimit) ||
+ parseFloat(shape.getAttribute('stroke-miterlimit')) || 1;
+ const phase = strokeWidth * strokeMiterlimit;
+
+ const bbox = shape.getBBox();
+ const boxWidth = Math.trunc(bbox.width + phase);
+ const boxHeight = Math.trunc(bbox.height + phase);
+ const boxX = Math.trunc(bbox.x - phase / 2);
+ const boxY = Math.trunc(bbox.y - phase / 2);
+
+ // Create temporary canvas
+ let myCanvas = document.createElementNS(xhtmlNS, 'canvas');
+ setAttributes(myCanvas, {
+ 'width': boxWidth,
+ 'height': boxHeight
+ });
+
+ const myContext = myCanvas.getContext('2d');
+ let myCanvasImage = myContext.createImageData(boxWidth, boxHeight);
+
+ // Draw a mesh
+ const myMesh = new Mesh(mesh);
+
+ // Adjust for bounding box if necessary.
+ if (mesh.getAttribute('gradientUnits') === 'objectBoundingBox') {
+ myMesh.scale(new Point(boxWidth, boxHeight));
+ }
+
+ // Apply gradient transform.
+ const gradientTransform = mesh.getAttribute('gradientTransform');
+ if (gradientTransform != null) {
+ myMesh.transform(parseTransform(gradientTransform));
+ }
+
+ // Position to Canvas coordinate.
+ if (mesh.getAttribute('gradientUnits') === 'userSpaceOnUse') {
+ myMesh.transform(new Point(-boxX, -boxY));
+ }
+
+ // Paint
+ myMesh.paintMesh(myCanvasImage.data, myCanvas.width);
+ myContext.putImageData(myCanvasImage, 0, 0);
+
+ // Create image element of correct size
+ const myImage = document.createElementNS(svgNS, 'image');
+ setAttributes(myImage, {
+ 'width': boxWidth,
+ 'height': boxHeight,
+ 'x': 0,
+ 'y': 0
+ });
+
+ // Set image to data url
+ let myPNG = myCanvas.toDataURL();
+ myImage.setAttributeNS(xlinkNS, 'xlink:href', myPNG);
+
+ // Create pattern to hold the stroke image
+ const patternId = 'pattern_clip' + i;
+ const myPattern = document.createElementNS(svgNS, 'pattern');
+ setAttributes(myPattern, {
+ 'id': patternId,
+ 'patternUnits': 'userSpaceOnUse',
+ 'width': boxWidth,
+ 'height': boxHeight,
+ 'x': boxX,
+ 'y': boxY
+ });
+ myPattern.appendChild(myImage);
+
+ // Insert image into document
+ mesh.parentNode.appendChild(myPattern);
+ shape.style.stroke = 'url(#' + patternId + ')';
+
+ // Force the Garbage Collector to free the space
+ myCanvasImage = null;
+ myCanvas = null;
+ myPNG = null;
+ }
+ }
+ });
+})();