summaryrefslogtreecommitdiffstats
path: root/share/extensions/inkex/transforms.py
blob: 3a37a38d134ecdd15cc807c29a1ffe8abb79393e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
# coding=utf-8
#
# Copyright (C) 2006 Jean-Francois Barraud, barraud@math.univ-lille1.fr
# Copyright (C) 2010 Alvin Penner, penner@vaxxine.com
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
# barraud@math.univ-lille1.fr
#
# This code defines several functions to make handling of transform
# attribute easier.
#
"""
Provide transformation parsing to extensions
"""
from __future__ import annotations
import re
from decimal import Decimal
from math import cos, radians, sin, sqrt, tan, fabs, atan2, hypot, pi, isfinite
from typing import (
    overload,
    cast,
    Callable,
    Generator,
    Iterator,
    Tuple,
    Union,
    Optional,
    List,
)


from .utils import strargs, KeyDict


VectorLike = Union[
    "ImmutableVector2d", Tuple[float, float]
]  # pylint: disable=invalid-name
MatrixLike = Union[
    str,
    Tuple[Tuple[float, float, float], Tuple[float, float, float]],
    Tuple[float, float, float, float, float, float],
    "Transform",
]
BoundingIntervalArgs = Union[
    "BoundingInterval", Tuple[float, float], float
]  # pylint: disable=invalid-name

# All the names that get added to the inkex API itself.
__all__ = (
    "BoundingBox",
    "DirectedLineSegment",
    "ImmutableVector2d",
    "Transform",
    "Vector2d",
)


# Old settings, supported because users click 'ok' without looking.
XAN = KeyDict({"l": "left", "r": "right", "m": "center_x"})
YAN = KeyDict({"t": "top", "b": "bottom", "m": "center_y"})
# Anchoring objects with given directions (see inx options)
CUSTOM_DIRECTION = {270: "tb", 90: "bt", 0: "lr", 360: "lr", 180: "rl"}
DIRECTION = ["tb", "bt", "lr", "rl", "ro", "ri"]


class ImmutableVector2d:
    """Represents an immutable element of 2-dimensional Euclidean space"""

    _x = 0.0
    _y = 0.0

    x = property(lambda self: self._x)
    y = property(lambda self: self._y)

    @overload
    def __init__(self):
        # type: () -> None
        pass

    @overload
    def __init__(self, v, fallback=None):
        # type: (Union[VectorLike, str], Optional[Union[VectorLike, str]]) -> None
        pass

    @overload
    def __init__(self, x, y):
        # type: (float, float) -> None
        pass

    def __init__(self, *args, fallback=None):
        try:
            if len(args) == 0:
                x, y = 0.0, 0.0
            elif len(args) == 1:
                x, y = self._parse(args[0])
            elif len(args) == 2:
                x, y = map(float, args)
            else:
                raise ValueError("too many arguments")
        except (ValueError, TypeError) as error:
            if fallback is None:
                raise ValueError("Cannot parse vector and no fallback given") from error
            x, y = ImmutableVector2d(fallback)
        self._x, self._y = float(x), float(y)

    @staticmethod
    def _parse(point):
        # type: (Union[VectorLike, str]) -> Tuple[float, float]
        if isinstance(point, ImmutableVector2d):
            x, y = point.x, point.y
        elif isinstance(point, (tuple, list)) and len(point) == 2:
            x, y = map(float, point)
        elif isinstance(point, str) and point.count(",") == 1:
            x, y = map(float, point.split(","))
        else:
            raise ValueError(f"Can't parse {repr(point)}")
        return x, y

    def __add__(self, other):
        # type: (VectorLike) -> Vector2d
        other = Vector2d(other)
        return Vector2d(self.x + other.x, self.y + other.y)

    def __radd__(self, other):
        # type: (VectorLike) -> Vector2d
        other = Vector2d(other)
        return Vector2d(self.x + other.x, self.y + other.y)

    def __sub__(self, other):
        # type: (VectorLike) -> Vector2d
        other = Vector2d(other)
        return Vector2d(self.x - other.x, self.y - other.y)

    def __rsub__(self, other):
        # type: (VectorLike) -> Vector2d
        other = Vector2d(other)
        return Vector2d(-self.x + other.x, -self.y + other.y)

    def __neg__(self):
        # type: () -> Vector2d
        return Vector2d(-self.x, -self.y)

    def __pos__(self):
        # type: () -> Vector2d
        return Vector2d(self.x, self.y)

    def __floordiv__(self, factor):
        # type: (float) -> Vector2d
        return Vector2d(self.x / float(factor), self.y / float(factor))

    def __truediv__(self, factor):
        # type: (float) -> Vector2d
        return Vector2d(self.x / float(factor), self.y / float(factor))

    def __div__(self, factor):
        # type: (float) -> Vector2d
        return Vector2d(self.x / float(factor), self.y / float(factor))

    def __mul__(self, factor):
        # type: (float) -> Vector2d
        return Vector2d(self.x * factor, self.y * factor)

    def __abs__(self):
        # type: () -> float
        return self.length

    def __rmul__(self, factor):
        # type: (float) -> VectorLike
        return Vector2d(self.x * factor, self.y * factor)

    def __repr__(self):
        # type: () -> str
        return f"Vector2d({self.x:.6g}, {self.y:.6g})"

    def __str__(self):
        # type: () -> str
        return f"{self.x:.6g}, {self.y:.6g}"

    def __iter__(self) -> Generator[float, None, None]:
        yield self.x
        yield self.y

    def __len__(self):
        # type: () -> int
        return 2

    def __getitem__(self, item):
        # type: (int) -> float
        return (self.x, self.y)[item]

    def to_tuple(self) -> Tuple[float, float]:
        """A tuple of the vector's components"""
        return cast(Tuple[float, float], tuple(self))

    def to_polar_tuple(self):
        # type: () -> Tuple[float, Optional[float]]
        """A tuple of the vector's magnitude and direction

        .. versionadded:: 1.1"""
        return self.length, self.angle

    def dot(self, other: VectorLike) -> float:
        """Multiply Vectors component-wise"""
        other = Vector2d(other)
        return self.x * other.x + self.y * other.y

    def cross(self, other):
        # type: (VectorLike) -> float
        """Z component of the cross product of the vectors extended into 3D

        .. versionadded:: 1.1"""
        other = Vector2d(other)
        return self.x * other.y - self.y * other.x

    def is_close(
        self,
        other: Union[VectorLike, str, Tuple[float, float]],
        rtol: float = 1e-5,
        atol: float = 1e-8,
    ) -> float:
        """Checks if two vectors are (almost) identical, up to both absolute and
        relative tolerance."""
        other = Vector2d(other)
        delta = (self - other).length
        return delta < (atol + rtol * other.length)

    @property
    def length(self) -> float:
        """Returns the length of the vector"""
        return sqrt(self.dot(self))

    @property
    def angle(self):
        # type: () -> Optional[float]
        """The angle of the vector when represented in polar coordinates

        .. versionadded:: 1.1"""
        if self.x == 0 and self.y == 0:
            return None
        return atan2(self.y, self.x)


class Vector2d(ImmutableVector2d):
    """Represents an element of 2-dimensional Euclidean space"""

    @staticmethod
    def from_polar(radius, theta):
        # type: (float, Optional[float]) -> Optional[Vector2d]
        """Creates a Vector2d from polar coordinates

        None is returned when theta is None and radius is not zero.

        .. versionadded:: 1.1
        """
        if radius == 0.0:
            return Vector2d(0.0, 0.0)
        if theta is not None:
            return Vector2d(radius * cos(theta), radius * sin(theta))
        # A vector with a radius but no direction is invalid
        return None

    @ImmutableVector2d.x.setter
    def x(self, value):
        # type: (Union[float, int, str]) -> None
        self._x = float(value)

    @ImmutableVector2d.y.setter
    def y(self, value):
        # type: (Union[float, int, str]) -> None
        self._y = float(value)

    def __iadd__(self, other):
        # type: (VectorLike) -> Vector2d
        other = Vector2d(other)
        self.x += other.x
        self.y += other.y
        return self

    def __isub__(self, other):
        # type: (VectorLike) -> Vector2d
        other = Vector2d(other)
        self.x -= other.x
        self.y -= other.y
        return self

    def __imul__(self, factor):
        # type: (float) -> Vector2d
        self.x *= factor
        self.y *= factor
        return self

    def __idiv__(self, factor):
        # type: (float) -> Vector2d
        self.x /= factor
        self.y /= factor
        return self

    def __itruediv__(self, factor):
        # type: (float) -> Vector2d
        self.x /= factor
        self.y /= factor
        return self

    def __ifloordiv__(self, factor):
        # type: (float) -> Vector2d
        self.x /= factor
        self.y /= factor
        return self

    @overload
    def assign(self, x, y):
        # type: (float, float) -> VectorLike
        pass

    @overload
    def assign(self, other):
        # type: (VectorLike, str) -> VectorLike
        pass

    def assign(self, *args):
        """Assigns a different vector in place"""
        self.x, self.y = Vector2d(*args)
        return self


class Transform:
    """A transformation object which will always reduce to a matrix and can
    then be used in combination with other transformations for reducing
    finding a point and printing svg ready output.

    Use with svg transform attribute input:

      tr = Transform("scale(45, 32)")

    Use with triad matrix input (internal representation):

      tr = Transform(((1.0, 0.0, 0.0), (0.0, 1.0, 0.0)))

    Use with hexad matrix input (i.e. svg matrix(...)):

      tr = Transform((1.0, 0.0, 0.0, 1.0, 0.0, 0.0))

    Once you have a transformation you can operate tr * tr to compose,
    any of the above inputs are also valid operators for composing.
    """

    TRM = re.compile(r"(translate|scale|rotate|skewX|skewY|matrix)\s*\(([^)]*)\)\s*,?")
    absolute_tolerance = 1e-5  # type: float

    def __init__(
        self,
        matrix=None,  # type: Optional[MatrixLike]
        callback=None,  # type: Optional[Callable[[Transform], Transform]]
        **extra,
    ):
        # type: (...) -> None
        self.callback = None
        self.matrix = ((1.0, 0.0, 0.0), (0.0, 1.0, 0.0))
        if matrix is not None:
            self._set_matrix(matrix)

        self.add_kwargs(**extra)
        # Set callback last, so it doesn't kick off just setting up the internal value
        self.callback = callback

    def _set_matrix(self, matrix):
        # type: (MatrixLike) -> None
        """Parse a given string as an svg transformation instruction.

        .. versionadded:: 1.1"""
        if isinstance(matrix, str):
            for func, values in self.TRM.findall(matrix.strip()):
                getattr(self, "add_" + func.lower())(*strargs(values))
        elif isinstance(matrix, Transform):
            self.matrix = matrix.matrix
        elif isinstance(matrix, (tuple, list)) and len(matrix) == 2:
            row1 = matrix[0]
            row2 = matrix[1]
            if isinstance(row1, (tuple, list)) and isinstance(row2, (tuple, list)):
                if len(row1) == 3 and len(row2) == 3:
                    row1 = cast(Tuple[float, float, float], tuple(map(float, row1)))
                    row2 = cast(Tuple[float, float, float], tuple(map(float, row2)))
                    self.matrix = row1, row2
                else:
                    raise ValueError(
                        f"Matrix '{matrix}' is not a valid transformation matrix"
                    )
            else:
                raise ValueError(
                    f"Matrix '{matrix}' is not a valid transformation matrix"
                )
        elif isinstance(matrix, (list, tuple)) and len(matrix) == 6:
            tmatrix = cast(
                Union[List[float], Tuple[float, float, float, float, float, float]],
                matrix,
            )
            row1 = (float(tmatrix[0]), float(tmatrix[2]), float(tmatrix[4]))
            row2 = (float(tmatrix[1]), float(tmatrix[3]), float(tmatrix[5]))
            self.matrix = row1, row2
        elif not isinstance(matrix, (list, tuple)):
            raise ValueError(f"Invalid transform type: {type(matrix).__name__}")
        else:
            raise ValueError(f"Matrix '{matrix}' is not a valid transformation matrix")

    # These provide quick access to the svg matrix:
    #
    # [ a, c, e ]
    # [ b, d, f ]
    #
    a = property(lambda self: self.matrix[0][0])  # pylint: disable=invalid-name
    b = property(lambda self: self.matrix[1][0])  # pylint: disable=invalid-name
    c = property(lambda self: self.matrix[0][1])  # pylint: disable=invalid-name
    d = property(lambda self: self.matrix[1][1])  # pylint: disable=invalid-name
    e = property(lambda self: self.matrix[0][2])  # pylint: disable=invalid-name
    f = property(lambda self: self.matrix[1][2])  # pylint: disable=invalid-name

    def __bool__(self):
        # type: () -> bool
        return not self.__eq__(Transform())

    __nonzero__ = __bool__

    @overload
    def add_matrix(self, a):
        # type: (MatrixLike) -> Transform
        pass

    @overload
    def add_matrix(  # pylint: disable=too-many-arguments
        self, a: float, b: float, c: float, d: float, e: float, f: float
    ) -> Transform:
        pass

    @overload
    def add_matrix(self, a, b):
        # type: (Tuple[float, float, float], Tuple[float, float, float]) -> Transform
        pass

    def add_matrix(self, *args):
        """Add matrix in order they appear in the svg hexad"""
        if len(args) == 1:
            self.__imatmul__(Transform(args[0]))
        elif len(args) == 2 or len(args) == 6:
            self.__imatmul__(Transform(args))
        else:
            raise ValueError(f"Invalid number of arguments {args}")
        return self

    def add_kwargs(self, **kwargs):
        """Add translations, scales, rotations etc using key word arguments"""
        for key, value in reversed(list(kwargs.items())):
            func = getattr(self, "add_" + key)
            if isinstance(value, tuple):
                func(*value)
            elif value is not None:
                func(value)
        return self

    @overload
    def add_translate(self, dr):
        # type: (VectorLike) -> Transform
        pass

    @overload
    def add_translate(self, tr_x, tr_y=0.0):
        # type: (float, Optional[float]) -> Transform
        pass

    def add_translate(self, *args):
        """Add translate to this transformation"""
        if len(args) == 1 and isinstance(args[0], (int, float)):
            tr_x, tr_y = args[0], 0.0
        else:
            tr_x, tr_y = Vector2d(*args)
        self.__imatmul__(((1.0, 0.0, tr_x), (0.0, 1.0, tr_y)))
        return self

    def add_scale(self, sc_x, sc_y=None):
        """Add scale to this transformation"""
        sc_y = sc_x if sc_y is None else sc_y
        self.__imatmul__(((sc_x, 0.0, 0.0), (0.0, sc_y, 0.0)))
        return self

    @overload
    def add_rotate(self, deg, center):
        # type: (float, VectorLike) -> Transform
        pass

    @overload
    def add_rotate(self, deg, center_x, center_y):
        # type: (float, float, float) -> Transform
        pass

    @overload
    def add_rotate(self, deg):
        # type: (float) -> Transform
        pass

    @overload
    def add_rotate(self, deg, a):
        # type: (float, Union[VectorLike, str]) -> Transform
        pass

    @overload
    def add_rotate(self, deg, a, b):
        # type: (float, float, float) -> Transform
        pass

    def add_rotate(self, deg, *args):
        """Add rotation to this transformation"""
        center_x, center_y = Vector2d(*args)
        _cos, _sin = cos(radians(deg)), sin(radians(deg))
        self.__imatmul__(((_cos, -_sin, center_x), (_sin, _cos, center_y)))
        self.__imatmul__(((1.0, 0.0, -center_x), (0.0, 1.0, -center_y)))
        return self

    def add_skewx(self, deg):
        # type: (float) -> Transform
        """Add skew x to this transformation"""
        self.__imatmul__(((1.0, tan(radians(deg)), 0.0), (0.0, 1.0, 0.0)))
        return self

    def add_skewy(self, deg):
        # type: (float) -> Transform
        """Add skew y to this transformation"""
        self.__imatmul__(((1.0, 0.0, 0.0), (tan(radians(deg)), 1.0, 0.0)))
        return self

    def to_hexad(self):
        # type: () -> Iterator[float]
        """Returns the transform as a hexad matrix (used in svg)"""
        return (val for lst in zip(*self.matrix) for val in lst)

    def is_translate(self, exactly=False):
        # type: (bool) -> bool
        """Returns True if this transformation is ONLY translate"""
        tol = self.absolute_tolerance if not exactly else 0.0
        return (
            fabs(self.a - 1) <= tol
            and abs(self.d - 1) <= tol
            and fabs(self.b) <= tol
            and fabs(self.c) <= tol
        )

    def is_scale(self, exactly=False):
        # type: (bool) -> bool
        """Returns True if this transformation is ONLY scale"""
        tol = self.absolute_tolerance if not exactly else 0.0
        return (
            fabs(self.e) <= tol
            and fabs(self.f) <= tol
            and fabs(self.b) <= tol
            and fabs(self.c) <= tol
        )

    def is_rotate(self, exactly=False):
        # type: (bool) -> bool
        """Returns True if this transformation is ONLY rotate"""
        tol = self.absolute_tolerance if not exactly else 0.0
        return (
            self._is_URT(exactly=exactly)
            and fabs(self.e) <= tol
            and fabs(self.f) <= tol
            and fabs(self.a**2 + self.b**2 - 1) <= tol
        )

    def rotation_degrees(self):
        # type: () -> float
        """Return the amount of rotation in this transform"""
        if not self._is_URT(exactly=False):
            raise ValueError(
                "Rotation angle is undefined for non-uniformly scaled or skewed "
                "matrices"
            )
        return atan2(self.b, self.a) * 180 / pi

    def __str__(self):
        # type: () -> str
        """Format the given matrix into a string representation for svg"""
        hexad = tuple(self.to_hexad())
        if self.is_translate():
            if not self:
                return ""
            return f"translate({self.e:.6g}, {self.f:.6g})"
        if self.is_scale():
            return f"scale({self.a:.6g}, {self.d:.6g})"
        if self.is_rotate():
            return f"rotate({self.rotation_degrees():.6g})"
        return f"matrix({' '.join(f'{var:.6g}' for var in hexad)})"

    def __repr__(self) -> str:
        """String representation of this object"""
        return (
            f"{type(self).__name__}(("
            f"({', '.join(f'{var:.6g}' for var in self.matrix[0])}), "
            f"({', '.join(f'{var:.6g}' for var in self.matrix[1])})))"
        )

    def __eq__(self, matrix):
        # typing this requires writing a proof for mypy that matrix is really
        # MatrixLike
        """Test if this transformation is equal to the given matrix"""
        if isinstance(matrix, (str, tuple, list, Transform)):
            val = all(
                fabs(l - r) <= self.absolute_tolerance
                for l, r in zip(self.to_hexad(), Transform(matrix).to_hexad())
            )
        else:
            val = False
        return val

    def __matmul__(self, matrix):
        # type: (MatrixLike) -> Transform
        """Combine this transform's internal matrix with the given matrix"""
        # Conform the input to a known quantity (and convert if needed)
        other = Transform(matrix)
        # Return a transformation as the combined result
        return Transform(
            (
                self.a * other.a + self.c * other.b,
                self.b * other.a + self.d * other.b,
                self.a * other.c + self.c * other.d,
                self.b * other.c + self.d * other.d,
                self.a * other.e + self.c * other.f + self.e,
                self.b * other.e + self.d * other.f + self.f,
            )
        )

    def __imatmul__(self, matrix):
        # type: (MatrixLike) -> Transform
        """In place multiplication of transform matrices"""
        self.matrix = (self @ matrix).matrix
        if self.callback is not None:
            self.callback(self)
        return self

    def __neg__(self):
        # type: () -> Transform
        """Returns an inverted transformation"""
        det = (self.a * self.d) - (self.c * self.b)
        # invert the rotation/scaling part
        new_a = self.d / det
        new_d = self.a / det
        new_c = -self.c / det
        new_b = -self.b / det
        # invert the translational part
        new_e = -(new_a * self.e + new_c * self.f)
        new_f = -(new_b * self.e + new_d * self.f)
        return Transform((new_a, new_b, new_c, new_d, new_e, new_f))

    def apply_to_point(self, point):
        # type: (VectorLike) -> Vector2d
        """Transform a tuple (X, Y)"""
        if isinstance(point, str):
            raise ValueError(f"Will not transform string '{point}'")
        point = Vector2d(point)
        return Vector2d(
            self.a * point.x + self.c * point.y + self.e,
            self.b * point.x + self.d * point.y + self.f,
        )

    def _is_URT(self, exactly=False):
        # type: (bool) -> bool
        """
        Checks that transformation can be decomposed into product of
        Uniform scale (U), Rotation around origin (R) and translation (T)

        :return: decomposition as U*R*T is possible
        """
        tol = self.absolute_tolerance if not exactly else 0.0
        return (fabs(self.a - self.d) <= tol) and (fabs(self.b + self.c) <= tol)

    def interpolate(self, other, fraction):
        # type: (Transform, float) -> Transform
        """Interpolate with another Transform.

        .. versionadded:: 1.1
        """
        from .tween import TransformInterpolator

        return TransformInterpolator(self, other).interpolate(fraction)


class BoundingInterval:  # pylint: disable=too-few-public-methods
    """A pair of numbers that represent the minimum and maximum values."""

    @overload
    def __init__(self, other=None):
        # type: (Optional[BoundingInterval]) -> None
        pass

    @overload
    def __init__(self, pair):
        # type: (Tuple[float, float]) -> None
        pass

    @overload
    def __init__(self, value):
        # type: (float) -> None
        pass

    @overload
    def __init__(self, x, y):
        # type: (float, float) -> None
        pass

    def __init__(self, x=None, y=None):
        self.x: Union[int, float, Decimal]
        self.y: Union[int, float, Decimal]
        self.minimum: float
        self.maximum: float
        if y is not None:
            if isinstance(x, (int, float, Decimal)) and isinstance(
                y, (int, float, Decimal)
            ):
                self.minimum = float(x)
                self.maximum = float(y)
            else:
                raise ValueError(
                    f"Not a number for scaling: {str((x, y))} "
                    f"({type(x).__name__},{type(y).__name__})"
                )

        else:
            value = x
            if value is None:
                # identity for addition, zero for intersection
                self.minimum, self.maximum = float("+inf"), float("-inf")
            elif isinstance(value, BoundingInterval):
                self.minimum = value.minimum
                self.maximum = value.maximum
            elif isinstance(value, (tuple, list)) and len(value) == 2:
                self.minimum, self.maximum = min(value), max(value)
            elif isinstance(value, (int, float, Decimal)):
                self.minimum = self.maximum = float(value)
            else:
                raise ValueError(
                    f"Not a number for scaling: {str(value)} ({type(value).__name__})"
                )

    def __bool__(self):
        # type: () -> bool
        return isfinite(self.minimum) and isfinite(self.maximum)

    __nonzero__ = __bool__

    def __neg__(self):
        # type: () -> BoundingInterval
        return BoundingInterval((-1 * self.maximum, -1 * self.minimum))

    def __add__(self, other):
        # type: (BoundingInterval) -> BoundingInterval
        """Calculate the bounding interval that covers both given bounding intervals"""
        new = BoundingInterval(self)
        if other is not None:
            new += other
        return new

    def __iadd__(self, other):
        # type: (BoundingInterval) -> BoundingInterval
        other = BoundingInterval(other)
        self.minimum = min((self.minimum, other.minimum))
        self.maximum = max((self.maximum, other.maximum))
        return self

    def __radd__(self, other):
        # type: (BoundingInterval) -> BoundingInterval
        if other is None:
            return BoundingInterval(self)
        return self + other

    def __and__(self, other: BoundingInterval) -> BoundingInterval:
        """Calculate the bounding interval where both given bounding intervals
        overlap"""
        new = BoundingInterval(self)
        if other is not None:
            new &= other
        return new

    def __iand__(self, other):
        # type: (BoundingInterval) -> BoundingInterval
        other = BoundingInterval(other)
        self.minimum = max((self.minimum, other.minimum))
        self.maximum = min((self.maximum, other.maximum))
        if self.minimum > self.maximum:
            self.minimum, self.maximum = float("+inf"), float("-inf")
        return self

    def __rand__(self, other):
        # type: (BoundingInterval) -> BoundingInterval
        if other is None:
            return BoundingInterval(self)
        return self & other

    def __mul__(self, other: float) -> BoundingInterval:
        new = BoundingInterval(self)
        if other is not None:
            new *= other
        return new

    def __imul__(self, other: float) -> BoundingInterval:
        self.minimum *= other
        self.maximum *= other
        return self

    def __iter__(self) -> Generator[float, None, None]:
        yield self.minimum
        yield self.maximum

    def __eq__(self, other) -> bool:
        return tuple(self) == tuple(BoundingInterval(other))

    def __contains__(self, value: float) -> bool:
        return self.minimum <= value <= self.maximum

    def __repr__(self) -> str:
        return f"BoundingInterval({self.minimum}, {self.maximum})"

    @property
    def center(self):
        # type: () -> float
        """Pick the middle of the line"""
        return self.minimum + ((self.maximum - self.minimum) / 2)

    @property
    def size(self):
        # type: () -> float
        """Return the size difference minimum and maximum"""
        return self.maximum - self.minimum


class BoundingBox:  # pylint: disable=too-few-public-methods
    """
    Some functions to compute a rough bbox of a given list of objects.

    BoundingBox(other)
    BoundingBox(x, y)
    BoundingBox((x1, x2), (y1, y2))
    """

    width = property(lambda self: self.x.size)
    height = property(lambda self: self.y.size)
    top = property(lambda self: self.y.minimum)
    left = property(lambda self: self.x.minimum)
    bottom = property(lambda self: self.y.maximum)
    right = property(lambda self: self.x.maximum)
    center_x = property(lambda self: self.x.center)
    center_y = property(lambda self: self.y.center)

    @overload
    def __init__(self, other=None):
        # type: (Optional[BoundingBox]) -> None
        pass

    @overload
    def __init__(self, x, y):
        # type: (BoundingIntervalArgs, BoundingIntervalArgs) -> None
        pass

    def __init__(self, x=None, y=None):
        if y is None:
            if x is None:
                # identity for addition, zero for intersection
                pass
            elif isinstance(x, BoundingBox):
                x, y = x.x, x.y
            else:
                raise ValueError(
                    f"Not a number for scaling: {str(x)} ({type(x).__name__})"
                )
        self.x = BoundingInterval(x)
        self.y = BoundingInterval(y)

    @staticmethod
    def new_xywh(x: float, y: float, width: float, height: float) -> BoundingBox:
        """Create a bounding box using x, y, width and height

        .. versionadded:: 1.2"""
        return BoundingBox((x, x + width), (y, y + height))

    def __bool__(self):
        # type: () -> bool
        return bool(self.x) and bool(self.y)

    __nonzero__ = __bool__

    def __neg__(self):
        # type: () -> BoundingBox
        return BoundingBox(-self.x, -self.y)

    def __add__(self, other):
        # type: (Optional[BoundingBox]) -> BoundingBox
        """Calculate the bounding box that covers both given bounding boxes"""
        new = BoundingBox(self)
        new += BoundingBox(other)
        return new

    def __iadd__(self, other):
        # type: (Optional[BoundingBox]) -> BoundingBox
        other = BoundingBox(other)
        self.x += other.x
        self.y += other.y
        return self

    def __radd__(self, other):
        # type: (Optional[BoundingBox]) -> BoundingBox
        return self + other

    def __and__(self, other):
        # type: (Optional[BoundingBox]) -> BoundingBox
        """Calculate the bounding box where both given bounding boxes overlap"""
        new = BoundingBox(self)
        new &= BoundingBox(other)
        return new

    def __iand__(self, other: Optional[BoundingBox]) -> BoundingBox:
        other = BoundingBox(other)
        self.x = self.x & other.x
        self.y = self.y & other.y
        if not self.x or not self.y:
            self.x, self.y = BoundingInterval(), BoundingInterval()
        return self

    def __rand__(self, other):
        # type: (Optional[BoundingBox]) -> BoundingBox
        return self & other

    def __mul__(self, factor):
        # type: (float) -> BoundingBox
        new = BoundingBox(self)
        new *= factor
        return new

    def __imul__(self, factor):
        # type: (float) -> BoundingBox
        self.x *= factor
        self.y *= factor
        return self

    def __eq__(self, other):
        # type (object) -> bool
        if isinstance(other, BoundingBox):
            return tuple(self) == tuple(other)
        return False

    def __iter__(self) -> Generator[BoundingBox, None, None]:
        yield self.x
        yield self.y

    @property
    def area(self):
        """Return area of the bounding box

        .. versionadded:: 1.2"""
        return self.width * self.height

    @property
    def minimum(self):
        # type: () -> Vector2d
        """Return the minimum x,y coords"""
        return Vector2d(self.x.minimum, self.y.minimum)

    @property
    def maximum(self):
        # type: () -> Vector2d
        """Return the maximum x,y coords"""
        return Vector2d(self.x.maximum, self.y.maximum)

    def __repr__(self):
        # type: () -> str
        return f"BoundingBox({tuple(self.x)},{tuple(self.y)})"

    @property
    def center(self):
        # type: () -> Vector2d
        """Returns the middle of the bounding box"""
        return Vector2d(self.x.center, self.y.center)

    @property
    def size(self):
        """Returns a vector containing width and height of the bounding box

        .. versionadded:: 1.2"""
        return Vector2d(self.x.size, self.y.size)

    def get_anchor(self, xanchor, yanchor, direction=0, selbox=None):
        # type: (str, str, Union[int, str], Optional[BoundingBox]) -> float
        """Calls get_distance with the given anchor options"""
        return self.anchor_distance(
            getattr(self, XAN[xanchor]),
            getattr(self, YAN[yanchor]),
            direction=direction,
            selbox=selbox,
        )

    @staticmethod
    def anchor_distance(
        x: float,
        y: float,
        direction: Union[int, str] = 0,
        selbox: Optional[BoundingBox] = None,
    ) -> float:
        """Using the x,y returns a single sortable value based on direction and angle

        Args:
            x (float): input x coordinate
            y (float): input y coordinate
            direction (Union[int, str], optional): int/float (custom angle),
                tb/bt (top/bottom), lr/rl (left/right), ri/ro (radial). Defaults to 0.
            selbox (Optional[BoundingBox], optional): The bounding box of the whole
                selection for radial anchors. Defaults to None.

        Raises:
            ValueError: if radial distance is requested without the optional selbox
                parameter.

        Returns:
            float: the anchor distance with respect to the direction.
        """

        rot = 0.0
        if isinstance(direction, (int, float)):  # Angle
            if direction not in CUSTOM_DIRECTION:
                return hypot(x, y) * (cos(radians(-direction) - atan2(y, x)))
            direction = CUSTOM_DIRECTION[direction]

        if direction in ("ro", "ri"):
            if selbox is None:
                raise ValueError(
                    "Radial distance not available without selection bounding box"
                )
            rot = hypot(selbox.x.center - x, selbox.y.center - y)

        return [y, -y, x, -x, rot, -rot][DIRECTION.index(direction)]

    def resize(self, delta_x: float, delta_y: Optional[float] = None) -> BoundingBox:
        """Enlarges / shrinks a bounding box by a constant value. If only delta_x
        is given, each side is moved by the same amount; if delta_y is given,
        different deltas are applied to horizontal and vertical intervals.

        .. versionadded:: 1.2"""
        delta_y = delta_y or delta_x
        return BoundingBox(
            (self.x.minimum - delta_x, self.x.maximum + delta_x),
            (self.y.minimum - delta_y, self.y.maximum + delta_y),
        )


class DirectedLineSegment:
    """
    A directed line segment

    DirectedLineSegment(((x0, y0), (x1, y1)))
    """

    start = Vector2d()  # start point of segment
    end = Vector2d()  # end point of segment

    x0 = property(lambda self: self.start.x)  # pylint: disable=invalid-name
    y0 = property(lambda self: self.start.y)  # pylint: disable=invalid-name
    x1 = property(lambda self: self.end.x)
    y1 = property(lambda self: self.end.y)
    dx = property(lambda self: self.vector.x)  # pylint: disable=invalid-name
    dy = property(lambda self: self.vector.y)  # pylint: disable=invalid-name

    @overload
    def __init__(self):
        # type: () -> None
        pass

    @overload
    def __init__(self, other):
        # type: (DirectedLineSegment) -> None
        pass

    @overload
    def __init__(self, start, end):
        # type: (VectorLike, VectorLike) -> None
        pass

    def __init__(self, *args):
        if not args:  # overload 0
            start, end = Vector2d(), Vector2d()
        elif len(args) == 1:  # overload 1
            (other,) = args
            start, end = other.start, other.end
        elif len(args) == 2:  # overload 2
            start, end = args
        else:
            raise ValueError(f"DirectedLineSegment() can't be constructed from {args}")

        self.start = Vector2d(start)
        self.end = Vector2d(end)

    def __eq__(self, other):
        # type: (object) -> bool
        if isinstance(other, (tuple, DirectedLineSegment)):
            return tuple(self) == tuple(other)
        return False

    def __iter__(self):
        # type: () -> Generator[DirectedLineSegment, None, None]
        yield self.x0
        yield self.x1
        yield self.y0
        yield self.y1

    @property
    def vector(self):
        # type: () -> Vector2d
        """The vector of the directed line segment.

        The vector of the directed line segment represents the length
        and direction of segment, but not the starting point.

        .. versionadded:: 1.1
        """
        return self.end - self.start

    @property
    def length(self):
        # type: () -> float
        """Get the length of the line segment"""
        return self.vector.length

    @property
    def angle(self):
        # type: () -> float
        """Get the angle of the line created by this segment"""
        return atan2(self.dy, self.dx)

    def distance_to_point(self, x, y):
        # type: (float, float) -> Union[DirectedLineSegment, Optional[float]]
        """Get the distance to the given point (x, y)"""
        segment2 = DirectedLineSegment(self.start, (x, y))
        dot2 = segment2.dot(self)
        if dot2 <= 0:
            return DirectedLineSegment((x, y), self.start).length
        if self.dot(self) <= dot2:
            return DirectedLineSegment((x, y), self.end).length
        return self.perp_distance(x, y)

    def perp_distance(self, x, y):
        # type: (float, float) -> Optional[float]
        """Perpendicular distance to the given point"""
        if self.length == 0:
            return None
        return fabs((self.dx * (self.y0 - y)) - ((self.x0 - x) * self.dy)) / self.length

    def dot(self, other):
        # type: (DirectedLineSegment) -> float
        """Get the dot product with the segment with another"""
        return self.vector.dot(other.vector)

    def point_at_ratio(self, ratio):
        # type: (float) -> Tuple[float, float]
        """Get the point at the given ratio along the line"""
        return self.x0 + ratio * self.dx, self.y0 + ratio * self.dy

    def point_at_length(self, length):
        # type: (float) -> Tuple[float, float]
        """Get the point as the length along the line"""
        return self.point_at_ratio(length / self.length)

    def parallel(self, x, y):
        # type: (float, float) -> DirectedLineSegment
        """Create parallel Segment"""
        return DirectedLineSegment((x + self.dx, y + self.dy), (x, y))

    def intersect(self, other):
        # type: (DirectedLineSegment) -> Optional[Vector2d]
        """Get the intersection between two segments"""
        other = DirectedLineSegment(other)
        denom = self.vector.cross(other.vector)
        num = other.vector.cross(self.start - other.start)

        if denom != 0:
            return Vector2d(self.point_at_ratio(num / denom))
        return None

    def __repr__(self):
        # type: () -> str
        return f"DirectedLineSegment(({self.start}), ({self.end}))"


def cubic_extrema(py0, py1, py2, py3):
    # type: (float, float, float, float) -> Tuple[float, float]
    """Returns the extreme value, given a set of bezier coordinates"""

    atol = 1e-9
    cmin, cmax = min(py0, py3), max(py0, py3)
    pd1 = py1 - py0
    pd2 = py2 - py1
    pd3 = py3 - py2

    def _is_bigger(point):
        if 0 < point < 1:
            pyx = (
                py0 * (1 - point) * (1 - point) * (1 - point)
                + 3 * py1 * point * (1 - point) * (1 - point)
                + 3 * py2 * point * point * (1 - point)
                + py3 * point * point * point
            )
            return min(cmin, pyx), max(cmax, pyx)
        return cmin, cmax

    if fabs(pd1 - 2 * pd2 + pd3) > atol:
        if pd2 * pd2 > pd1 * pd3:
            pds = sqrt(pd2 * pd2 - pd1 * pd3)
            cmin, cmax = _is_bigger((pd1 - pd2 + pds) / (pd1 - 2 * pd2 + pd3))
            cmin, cmax = _is_bigger((pd1 - pd2 - pds) / (pd1 - 2 * pd2 + pd3))

    elif fabs(pd2 - pd1) > atol:
        cmin, cmax = _is_bigger(-pd1 / (2 * (pd2 - pd1)))

    return cmin, cmax


def quadratic_extrema(py0, py1, py2):
    # type: (float, float, float) -> Tuple[float, float]
    """Returns the extreme value, given a set of quadratic bezier coordinates"""
    atol = 1e-9
    cmin, cmax = min(py0, py2), max(py0, py2)

    def _is_bigger(point):
        if 0 < point < 1:
            pyx = (
                py0 * (1 - point) * (1 - point)
                + 2 * py1 * point * (1 - point)
                + py2 * point * point
            )
            return min(cmin, pyx), max(cmax, pyx)
        return cmin, cmax

    if fabs(py0 + py2 - 2 * py1) > atol:
        cmin, cmax = _is_bigger((py0 - py1) / (py0 + py2 - 2 * py1))

    return cmin, cmax