1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
|
# coding=utf-8
"""
Test Inkex path parsing functionality.
"""
import re
from inkex.paths import (
InvalidPath,
Path,
PathCommand,
CubicSuperPath,
line,
move,
curve,
smooth,
quadratic,
tepidQuadratic,
arc,
vert,
horz,
zoneClose,
Line,
Move,
Horz,
Vert,
Curve,
Smooth,
Quadratic,
TepidQuadratic,
Arc,
ZoneClose,
)
from inkex.transforms import Transform, Vector2d
from inkex.tester import TestCase
# pylint: disable=too-many-public-methods
class SegmentTest(TestCase):
"""
Test specific segment functionality.
"""
def get_random_cmd(self, Cmd):
import random
return Cmd(*[random.randint(0, 10) for i in range(Cmd.nargs)])
def test_equals(self):
"""Segments should be equalitive"""
self.assertEqual(Move(10, 10), Move(10, 10))
self.assertEqual(Line(10, 10), Line(10, 10))
self.assertEqual(line(10, 10), line(10, 10))
self.assertNotEqual(line(10, 10), Line(10, 10))
self.assertEqual(Horz(10), Line(10, 0))
self.assertEqual(Vert(10), Line(0, 10))
self.assertNotEqual(Vert(10), Horz(10))
def test_to_curves(self):
"""Segments can become curves"""
self.assertRaises(ValueError, Move(0, 0).to_curve, None)
self.assertEqual(
Line(10, 10).to_curve(Vector2d(10, 5)), (10, 5, 10, 10, 10, 10)
)
self.assertEqual(Horz(10).to_curve(Vector2d(10, 5)), (10, 5, 10, 5, 10, 5))
self.assertEqual(Vert(10).to_curve(Vector2d(5, 10)), (5, 10, 5, 10, 5, 10))
self.assertEqual(
Curve(5, 5, 10, 10, 4, 4).to_curve(Vector2d(0, 0)), (5, 5, 10, 10, 4, 4)
)
self.assertEqual(
Smooth(10, 10, 4, 4).to_curve(Vector2d(4, 4), Vector2d(10, 10)),
(-2, -2, 10, 10, 4, 4),
)
self.assertAlmostTuple(
Quadratic(10, 10, 4, 4).to_curve(Vector2d(0, 0)).args,
(6.666666666666666, 6.666666666666666, 8, 8, 4, 4),
)
self.assertAlmostTuple(
TepidQuadratic(4, 4).to_curve(Vector2d(14, 19), Vector2d(11, 12)).args,
# (20.666666666666664, 30, 17.333333333333332, 25, 4, 4),
(
15.999999999999998,
23.666666666666664,
12.666666666666666,
18.666666666666664,
4,
4,
),
)
curves = list(Arc(50, 50, 0, 0, 1, 85, 85).to_curves(Vector2d(0, 0)))
self.assertEqual(len(curves), 3)
self.assertAlmostTuple(
curves[0].args,
(
19.77590700610636,
-5.4865851247611115,
38.18634924829132,
-10.4196482558544,
55.44095225512604,
-5.796291314453416,
),
)
self.assertAlmostTuple(
curves[1].args,
(
72.69555526196076,
-1.172934373052433,
86.17293437305243,
12.30444473803924,
90.79629131445341,
29.559047744873958,
),
)
self.assertAlmostTuple(
curves[2].args,
(
95.41964825585441,
46.81365075170867,
90.4865851247611,
65.22409299389365,
77.85533905932738,
77.85533905932738,
),
)
def apply_to_curve(obj):
obj.to_curve(Vector2d())
def apply_to_curves(obj):
obj.to_curve(Vector2d())
self.assertRaises(ValueError, apply_to_curve, ZoneClose())
self.assertRaises(ValueError, apply_to_curves, zoneClose())
self.assertRaises(ValueError, apply_to_curve, Move(0, 0))
self.assertRaises(ValueError, apply_to_curves, move(0, 0))
def test_transformation(self):
t = Transform(matrix=((1, 2, 3), (4, 5, 6)))
first = Vector2d()
prev = Vector2d(31, 97)
prev_prev = Vector2d(5, 7)
for Cmd in (Line, Move, Curve, Smooth, Quadratic, TepidQuadratic, Arc):
random_seg = self.get_random_cmd(Cmd)
self.assertTrue(
random_seg.transform(t) is not random_seg
) # transform returns copy
self.assertEqual(
random_seg.transform(t).name, Cmd.name
) # transform does not change Command type
T = Transform()
T.add_translate(10, 20)
A = [
T.apply_to_point(p)
for p in random_seg.control_points(first, prev, prev_prev)
]
first2, prev2, prev_prev2 = (
T.apply_to_point(p) for p in (first, prev, prev_prev)
)
B = list(
random_seg.translate(Vector2d(10, 20)).control_points(
first2, prev2, prev_prev2
)
)
self.assertAlmostTuple(A, B)
T = Transform()
T.add_scale(10, 20)
A = [
T.apply_to_point(p)
for p in random_seg.control_points(first, prev, prev_prev)
]
first2, prev2, prev_prev2 = (
T.apply_to_point(p) for p in (first, prev, prev_prev)
)
B = list(
random_seg.scale((10, 20)).control_points(first2, prev2, prev_prev2)
)
self.assertAlmostTuple(A, B)
T = Transform()
T.add_rotate(35, 15, 28)
A = [
T.apply_to_point(p)
for p in random_seg.control_points(first, prev, prev_prev)
]
first2, prev2, prev_prev2 = (
T.apply_to_point(p) for p in (first, prev, prev_prev)
)
B = list(
random_seg.rotate(35, Vector2d(15, 28)).control_points(
first2, prev2, prev_prev2
)
)
self.assertAlmostTuple(A, B)
def test_absolute_relative(self):
absolutes = (
Line,
Move,
Curve,
Smooth,
Quadratic,
TepidQuadratic,
Arc,
Vert,
Horz,
ZoneClose,
)
relatives = (
line,
move,
curve,
smooth,
quadratic,
tepidQuadratic,
arc,
vert,
horz,
zoneClose,
)
zero = Vector2d()
for R, A in zip(relatives, absolutes):
rel = self.get_random_cmd(R)
ab = self.get_random_cmd(A)
self.assertTrue(rel.is_relative)
self.assertTrue(ab.is_absolute)
self.assertFalse(rel.is_absolute)
self.assertFalse(ab.is_relative)
self.assertEqual(type(rel.to_absolute(zero)), A)
self.assertEqual(type(ab.to_relative(zero)), R)
self.assertTrue(rel.to_relative(zero) is not rel)
self.assertTrue(ab.to_absolute(zero) is not ab)
def test_to_line(self):
self.assertEqual(Vert(3).to_line(Vector2d(5, 11)), Line(5, 3))
self.assertEqual(Horz(3).to_line(Vector2d(5, 11)), Line(3, 11))
self.assertEqual(vert(3).to_line(Vector2d(5, 11)), Line(5, 14))
self.assertEqual(horz(3).to_line(Vector2d(5, 11)), Line(8, 11))
def test_args(self):
commands = (
Line,
Move,
Curve,
Smooth,
Quadratic,
TepidQuadratic,
Arc,
Vert,
Horz,
ZoneClose,
line,
move,
curve,
smooth,
quadratic,
tepidQuadratic,
arc,
vert,
horz,
zoneClose,
)
for Cmd in commands:
cmd = self.get_random_cmd(Cmd)
self.assertEqual(len(cmd.args), cmd.nargs)
self.assertEqual(Cmd(*cmd.args), cmd)
class PathTest(TestCase):
"""Test path API and calculations"""
def _assertPath(self, path, want_string):
"""Test a normalized path string against a good value"""
return self.assertEqual(re.sub("\\s+", " ", str(path)), want_string)
def test_new_empty(self):
"""Create a path from a path string"""
self.assertEqual(str(Path()), "")
def test_invalid(self):
"""Load an invalid path"""
self._assertPath(Path("& 10 10 M 20 20"), "M 20 20")
self.assertRaises(
TypeError,
Line,
[
40,
],
)
def test_copy(self):
"""Make a copy of a path"""
self.assertEqual(str(Path("M 10 10").copy()), "M 10 10")
def test_repr(self):
"""Path representation"""
self._assertPath(repr(Path("M 10 10 10 10")), "[Move(10, 10), Line(10, 10)]")
def test_list(self):
"""Path of previous commands"""
path = Path(Path("M 10 10 20 20 30 30 Z")[1:-1])
self._assertPath(path, "L 20 20 L 30 30")
def test_passthrough(self):
"""Create a path and test the re-rendering of the commands"""
for path in (
"M 50,50 L 10,10 m 10 10 l 2.1,2",
"m 150 150 c 10 10 6 6 20 10 L 10 10",
):
self._assertPath(Path(path), path.replace(",", " "))
def test_chained_conversion(self):
"""Paths always extrapolate chained commands"""
for path, ret in (
("M 100 100 20 20", "M 100 100 L 20 20"),
("M 100 100 Z 20 20", "M 100 100 Z M 20 20"),
("M 100 100 L 20 20 40 40 30 10 Z", "M 100 100 L 20 20 L 40 40 L 30 10 Z"),
("m 50 50 l 20 20 40 40", "m 50 50 l 20 20 l 40 40"),
("m 50 50 20 20", "m 50 50 l 20 20"),
((("m", (50, 50)), ("l", (20, 20))), "m 50 50 l 20 20"),
):
self._assertPath(Path(path), ret)
def test_create_from_points(self):
"""Paths can be made of simple list of tuples"""
arg = ((10, 10), (4, 5), (16, -9), (20, 20))
self.assertEqual(str(Path(arg)), "L 10 10 L 4 5 L 16 -9 L 20 20")
def test_control_points(self):
"""Test how x,y points are extracted"""
for path, ret in (
("M 100 100", ((100, 100),)),
("L 100 100", ((100, 100),)),
("H 133", ((133, 0),)),
("V 144", ((0, 144),)),
(
"Q 40 20 12 99 T 100 100",
(
(40, 20),
(12, 99),
(-16, 178),
(100, 100),
),
),
("C 12 12 15 15 20 20", ((12, 12), (15, 15), (20, 20))),
(
"S 50 90 30 10",
(
(0, 0),
(50, 90),
(30, 10),
),
),
(
"Q 40 20 12 99",
(
(40, 20),
(12, 99),
),
),
("A 1,2,3,0,0,10,20", ((10, 20),)),
("Z", ((0, 0),)),
):
points = list(Path(path).control_points)
self.assertEqual(len(points), len(ret), msg=path)
self.assertTrue(all(p.is_close(r) for p, r in zip(points, ret)), msg=path)
def test_bounding_box_lines(self):
"""
Test the bounding box calculations
A diagonal line from 20,20 to 90,90 then to +10,+10 "\"
"""
self.assertEqual(
(20, 100), (20, 100), Path("M 20,20 L 90,90 l 10,10 Z").bounding_box()
)
self.assertEqual(
(10, 90), (10, 90), Path("M 20,20 L 90,90 L 10,10 Z").bounding_box()
)
def test_bounding_box_curves(self):
"""
Test the bounding box calculations of a curve
"""
path = Path(
"M 85,14 C 104.63953,33.639531 104.71989,65.441157"
" 85,85 65.441157,104.71989 33.558843,104.71989 14,85"
" -5.7198883,65.441157 -5.6395306,33.639531 14,14"
" 33.639531,-5.6395306 65.360469,-5.6395306 85,14 Z"
)
bb_tuple = path.bounding_box()
expected = (-0.760, -0.760 + 100.520), (-0.730, -0.730 + 100.520)
precision = 3
self.assertDeepAlmostEqual(tuple(bb_tuple.x), expected[0], places=precision)
self.assertDeepAlmostEqual(tuple(bb_tuple.y), expected[1], places=precision)
def test_bounding_box_arcs(self):
"""
Test the bounding box calculations with arcs (currently is rough only)
Bounding box around a circle with a radius of 50
it should be from 0,0 -> 100, 100
"""
path = Path(
"M 85.355333,14.644651 "
"A 50,50 0 0 1 85.355333,85.355341"
" 50,50 0 0 1 14.644657,85.355341"
" 50,50 0 0 1 14.644676,14.644651"
" 50,50 0 0 1 85.355333,14.644651 Z"
)
bb_tuple = path.bounding_box()
expected = (0, 100), (0, 100)
precision = 4
self.assertDeepAlmostEqual(tuple(bb_tuple.x), expected[0], places=precision)
self.assertDeepAlmostEqual(tuple(bb_tuple.y), expected[1], places=precision)
# self.assertEqual(('ERROR'), Path('M 10 10 S 100 100 300 0').bounding_box())
# self.assertEqual(('ERRPR'), Path('M 10 10 Q 100 100 300 0').bounding_box())
def test_adding_to_path(self):
"""Paths can be translated using addition"""
ret = Path("M 20,20 L 90,90 l 10,10 Z").translate(50, 50)
self._assertPath(ret, "M 70 70 L 140 140 l 10 10 Z")
def test_extending(self):
"""Paths can be extended using addition"""
ret = Path("M 20 20") + Path("L 40 40 9 10")
self.assertEqual(type(ret), Path)
self._assertPath(ret, "M 20 20 L 40 40 L 9 10")
ret = Path("M 20 20") + "C 40 40 9 10 10 10"
self.assertEqual(type(ret), Path)
self._assertPath(ret, "M 20 20 C 40 40 9 10 10 10")
def test_subtracting_from_path(self):
"""Paths can be translated using addition"""
ret = Path("M 20,20 L 90,90 l 10,10 Z").translate(-10, -10)
self._assertPath(ret, "M 10 10 L 80 80 l 10 10 Z")
def test_scale(self):
"""Paths can be scaled using the times operator"""
ret = Path("M 10,10 L 30,30 C 20 20 10 10 10 10 l 10 10").scale(2.5, 3)
self._assertPath(ret, "M 25 30 L 75 90 C 50 60 25 30 25 30 l 25 30")
ret = Path(
"M 29.867708,101.68274 A 14.867708,14.867708 0 0 1 15,116.55045 14.867708,"
"14.867708 0 0 1 0.13229179,101.68274 14.867708,14.867708 0 0 1 15,86.815031 "
"14.867708,14.867708 0 0 1 29.867708,101.68274 Z"
)
ret = ret.scale(1.2, 0.8)
self._assertPath(
ret,
"M 35.8412 81.3462 "
"A 17.8412 11.8942 0 0 1 18 93.2404 "
"A 17.8412 11.8942 0 0 1 0.15875 81.3462 "
"A 17.8412 11.8942 0 0 1 18 69.452 "
"A 17.8412 11.8942 0 0 1 35.8412 81.3462 Z",
)
def test_scale_relative_after_close(self):
"""Zone close moves current position correctly after transform"""
# expected positions:
# - before scale:
# M to (10,10), l by (+10,+10), Z back to (10,10), l by (+10,+10)
# <=> M to (10,10), L to (20,20), Z back to (10,10), L to (20,20)
# - after scale:
# M to (20,20), L to (40,40), Z back to (20,20), L to (40,40)
# <=> M to (20,20), l by (+20,+20), Z back to (20,20), l by (+20,+20)
ret = Path("M 10,10 l 10,10 Z l 10,10").scale(2, 2)
self._assertPath(ret, "M 20 20 l 20 20 Z l 20 20")
def test_scale_multiple_zones(self):
"""Zone close returns current position to start of zone (not start of path)"""
ret = Path("M 100 100 Z M 200 200 Z h 0").scale(1, 1)
self._assertPath(ret.to_absolute(), "M 100 100 Z M 200 200 Z L 200 200")
def test_absolute(self):
"""Paths can be converted to absolute"""
ret = Path("M 100 100 l 10 10 10 10 10 10")
self._assertPath(ret.to_absolute(), "M 100 100 L 110 110 L 120 120 L 130 130")
ret = Path("M 100 100 h 10 10 10 v 10 10 10")
self._assertPath(
ret.to_absolute(), "M 100 100 H 110 H 120 H 130 V 110 V 120 V 130"
)
ret = Path("M 150,150 a 76,55 0 1 1 283,128")
self._assertPath(ret.to_absolute(), "M 150 150 A 76 55 0 1 1 433 278")
ret = Path("m 5 5 h 5 v 5 h -5 z M 15 15 l 5 5 z m 10 10 h 5 v 5 h -5 z")
self._assertPath(
ret.to_absolute(),
"M 5 5 H 10 V 10 H 5 Z M 15 15 L 20 20 Z M 25 25 H 30 V 30 H 25 Z",
)
ret = Path("m 1 2 h 2 v 1 z m 4 0 h 2 v 1 z m 0 2 h 2 v 1 z")
self._assertPath(
ret.to_absolute(), "M 1 2 H 3 V 3 Z M 5 2 H 7 V 3 Z M 5 4 H 7 V 5 Z"
)
def test_relative(self):
"""Paths can be converted to relative"""
ret = Path("M 100 100 L 110 120 140 140 300 300")
self._assertPath(ret.to_relative(), "m 100 100 l 10 20 l 30 20 l 160 160")
ret = Path("M 150,150 A 76,55 0 1 1 433,278")
self._assertPath(ret.to_relative(), "m 150 150 a 76 55 0 1 1 283 128")
ret = Path("M 1 2 H 3 V 3 Z M 5 2 H 7 V 3 Z M 5 4 H 7 V 5 Z")
self._assertPath(
ret.to_relative(), "m 1 2 h 2 v 1 z m 4 0 h 2 v 1 z m 0 2 h 2 v 1 z"
)
def test_rotate(self):
"""Paths can be rotated"""
ret = Path("M 0.24999949,0.24999949 H 12.979167 V 12.979167 H 0.24999949 Z")
ret = ret.rotate(35, (0, 0))
self._assertPath(
ret,
"M 0.0613938 0.348181 L 10.4885 7.64933 L 3.18737 18.0765 L -7.23976 10.7753 Z",
)
ret = Path("M 0.24999949,0.24999949 H 12.979167 V 12.979167 H 0.24999949 Z")
ret = ret.rotate(-35, (0, 0))
self._assertPath(
ret,
"M 0.348181 0.0613938 L 10.7753 -7.23976 L 18.0765 3.18737 L 7.64933 10.4885 Z",
)
ret = Path("M 0.24999949,0.24999949 H 12.979167 V 12.979167 H 0.24999949 Z")
ret = ret.rotate(90, (10, -10))
self._assertPath(
ret,
"M -0.249999 -19.75 L -0.249999 -7.02083 L -12.9792 -7.02083 L -12.9792 -19.75 Z",
)
ret = Path("M 0.24999949,0.24999949 H 12.979167 V 12.979167 H 0.24999949 Z")
ret = ret.rotate(90)
self._assertPath(
ret,
"M 12.9792 0.249999 L 12.9792 12.9792 L 0.249999 12.9792 L 0.249999 0.249999 Z",
)
def test_to_arrays(self):
"""Return the full path as a bunch of arrays"""
ret = Path("M 100 100 L 110 120 H 20 C 120 0 6 10 10 2 Z").to_arrays()
self.assertEqual(len(ret), 5)
self.assertEqual(ret[0][0], "M")
self.assertEqual(ret[1][0], "L")
self.assertEqual(ret[2][0], "L")
self.assertEqual(ret[3][0], "C")
def test_transform(self):
"""Transform by a whole matrix"""
ret = Path("M 100 100 L 110 120 L 140 140 L 300 300")
ret = ret.transform(Transform(translate=(10, 10)))
self.assertEqual(str(ret), "M 110 110 L 120 130 L 150 150 L 310 310")
ret = ret.transform(Transform(translate=(-10, -10)))
self.assertEqual(str(ret), "M 100 100 L 110 120 L 140 140 L 300 300")
ret = Path("M 5 5 H 10 V 15")
ret = ret.transform(Transform(rotate=-10))
self.assertEqual(
"M 5.79228 4.0558 " "L 10.7163 3.18756 " "L 12.4528 13.0356", str(ret)
)
ret = Path("M 10 10 A 50,50 0 0 1 85.355333,85.355341 L 100 0")
ret = ret.transform(Transform(scale=10))
self.assertEqual(str(ret), "M 100 100 A 500 500 0 0 1 853.553 853.553 L 1000 0")
self.assertRaises(ValueError, Horz([10]).transform, Transform())
def test_inline_transformations(self):
path = Path()
self.assertTrue(path is not path.translate(10, 20))
self.assertTrue(path is not path.transform(Transform(scale=10)))
self.assertTrue(path is not path.rotate(10))
self.assertTrue(path is not path.scale(10, 20))
self.assertTrue(path is path.translate(10, 20, inplace=True))
self.assertTrue(path is path.transform(Transform(scale=10), inplace=True))
self.assertTrue(path is path.rotate(10, inplace=True))
self.assertTrue(path is path.scale(10, 20, inplace=True))
def test_transformation_preserve_type(self):
import re
paths = [
"M 10 10 A 100 100 0 1 0 100 100 C 10 15 20 20 5 5 Z",
"m 10 10 a 100 100 0 1 0 100 100 c 10 15 20 20 5 5 z",
"m 10 10 l 100 200 L 20 30 C 10 20 30 40 11 12",
"M 10 10 Q 12 13 14 15 T 11 32 T 32 11",
"m 10 10 q 12 13 14 15 t 11 32 t 32 11",
]
t = Transform(matrix=((1, 2, 3), (4, 5, 6)))
for path_str in paths:
path = Path(path_str)
new_path = path.transform(t)
cmds = "".join([cmd.letter for cmd in new_path])
expected = re.sub(r"\d|\s|,", "", path_str)
self.assertEqual(expected, cmds)
self.assertAlmostTuple(
[t.apply_to_point(p) for p in path.control_points],
list(new_path.control_points),
)
def test_arc_transformation(self):
cases = [
(
"M 10 10 A 100 100 0 1 0 100 100 Z",
((1, 0, 1), (0, 1, 0)),
"M 11 10 A 100 100 0 1 0 101 100 Z",
),
(
"M 10 10 A 100 100 0 1 0 100 100 Z",
((1, 0, 0), (0, 1, 1)),
"M 10 11 A 100 100 0 1 0 100 101 Z",
),
(
"M 10 10 A 100 100 0 1 0 100 100 Z",
((1, 0, 1), (0, 1, 1)),
"M 11 11 A 100 100 0 1 0 101 101 Z",
),
(
"M 10 10 A 100 100 0 1 0 100 100 Z",
((2, 0, 0), (0, 1, 0)),
"M 20 10 A 200 100 0 1 0 200 100 Z",
),
(
"M 10 10 A 100 100 0 1 0 100 100 Z",
((1, 0, 0), (0, 2, 0)),
"M 10 20 A 200 100 90 1 0 100 200 Z",
),
(
"M 10 10 A 100 100 0 1 0 100 100 Z",
((1, 0, 0), (0, -1, 0)),
"M 10 -10 A 100 100 0 1 1 100 -100 Z",
),
(
"M 10 10 A 100 100 0 1 0 100 100 Z",
((1, 2, 0), (0, 2, 0)),
"M 30 20 " "A 292.081 68.4742 41.4375 1 0 300 200 Z",
),
(
"M 10 10 " "A 100 100 0 1 0 100 100 " "A 300 200 0 1 0 50 20 Z",
((1, 2, 0), (5, 6, 0)),
"M 30,110 "
"A 810.90492,49.327608 74.368134 1 1 "
"300,1100 1981.2436,121.13604 75.800007 1 1 90,370 Z",
),
]
for path, transform, expected in cases:
expected = Path(expected)
result = Path(path).transform(Transform(matrix=transform))
self.assertDeepAlmostEqual(
expected.to_arrays(), result.to_arrays(), places=4
)
def test_single_point_transform(self):
from math import sqrt, sin, cos
self.assertAlmostTuple(
list(Path("M 10 10 30 20").control_points), ((10, 10), (30, 20))
)
self.assertAlmostTuple(
list(
Path("M 10 10 30 20")
.transform(Transform(translate=(10, 7)))
.control_points
),
((20, 17), (40, 27)),
)
self.assertAlmostTuple(
list(
Path("M 20 20 5 0 0 7 ").transform(Transform(scale=10)).control_points
),
((200, 200), (50, 0), (0, 70)),
)
self.assertAlmostTuple(
list(Path("M 20 20 1 0").transform(Transform(rotate=90)).control_points),
((-20, 20), (0, 1)),
)
self.assertAlmostTuple(
list(Path("M 20 20 1 0").transform(Transform(rotate=45)).control_points),
((0, sqrt(20**2 + 20**2)), (sqrt(2) / 2, sqrt(2) / 2)),
)
self.assertAlmostTuple(
list(Path("M 1 0 0 1").transform(Transform(rotate=30)).control_points),
((sqrt(3) / 2, 0.5), (-0.5, sqrt(3) / 2)),
)
def test_reverse(self):
"""Paths can be reversed"""
# Testing reverse() with relative coordinates, closed path
ret = Path(
"m 10 50 h 40 v -40 l 50 39.9998 c -22 2 -35 12 -50 25 l -40 -15 l 0 -10 z"
)
ret = ret.reverse()
self._assertPath(
ret,
"m 10 50 l 0 -0.0002 l -0 10 l 40 15 c 15 -13 28 -23 50 -25 l -50 -39.9998 v 40 z",
)
# Testing reverse() with relative coordinates, open path
ret = Path(
"m 10 50 h 40 v -40 l 50 39.9998 c -22 2 -35 12 -50 25 l -40 -15 l 0 -10"
)
ret = ret.reverse()
self._assertPath(
ret,
"m 10 49.9998 l -0 10 l 40 15 c 15 -13 28 -23 50 -25 l -50 -39.9998 v 40 h -40",
)
# Testing reverse() with absolute coordinates, closed path
ret = Path("M 100 35 L 100 25 L 60 10 C 45 23 32 33 10 35 L 60 75 L 60 35 Z")
ret = ret.reverse()
self._assertPath(
ret,
"M 100 35 L 60 35 L 60 75 L 10 35 C 32 33 45 23 60 10 L 100 25 Z",
)
# Testing reverse() with absolute coordinates, open path
ret = Path(
"M 100 35 L 100 25 L 60 10 C 45 23 32 33 10 35 L 60 75 L 60 35 L 100 35"
)
ret = ret.reverse()
self._assertPath(
ret,
"M 100 35 L 60 35 L 60 75 L 10 35 C 32 33 45 23 60 10 L 100 25 L 100 35",
)
ret = Path("M 100,250 q 250,100 400,250")
ret = ret.reverse()
self._assertPath(ret, "M 500 500 q -150 -150 -400 -250")
def test_reverse_multiple_subpaths(self):
"""Test for https://gitlab.com/inkscape/extensions/-/issues/445. First two
examples are from the issue"""
ret = Path("M 128,64 L 128,128 M 128,196 L 128,256").reverse()
self._assertPath(ret, "M 128 256 L 128 196 M 128 128 L 128 64")
ret = Path("M 128,64 L 128,128 m 128,196 L 128,256").reverse()
self._assertPath(ret, "M 128 256 L 256 324 m -128 -196 L 128 64")
# More complex example with absolute and relative move commands
ret = Path(
"m 58,88 c -10,2 3,13 10,4 z M 32,67 c 14,-5 23,-3 35,7 m 2,-21 c"
"10,11 20,19 34,11 M 24,43 c 23,-14 18,-5 39,4"
).reverse()
self._assertPath(
ret,
"m 63 47 c -21 -9 -16 -18 -39 -4 M 103 64 c -14 8 -24 0 -34 -11 "
"m -2 21 c -12 -10 -21 -12 -35 -7 M 58 88 l 10 4 c -7 9 -20 -2 -10 -4 z",
)
class SuperPathTest(TestCase):
"""Super path tests for testing the super path class"""
def test_closing(self):
"""Closing paths create two arrays"""
path = Path(
"M 0,0 C 1.505,0 2.727,-0.823 2.727,-1.841 V -4.348 C 2.727,-5.363"
" 1.505,-6.189 0,-6.189 H -8.3 V 0 Z m -10.713,1.991 h -0.211 V -8.178"
" H 0 c 2.954,0 5.345,1.716 5.345,3.83 v 2.507 C 5.345,0.271 2.954,1.991"
" 0,1.991 Z"
)
csp = path.to_superpath()
self.assertEqual(len(csp), 2)
def test_closing_without_z(self):
"""Closing paths without z create two arrays"""
path = Path(
"m 51.553104,253.58572 c -11.644086,-0.14509 -4.683516,-19.48876"
" 2.096523,-8.48973 1.722993,2.92995 0.781608,6.73867 -2.096523,8.48973"
" m -3.100522,-13.02176 c -18.971587,17.33811 15.454875,20.05577"
" 6.51412,3.75474 -1.362416,-2.30812 -3.856221,-3.74395 -6.51412,-3.75474"
)
csp = path.to_superpath()
self.assertEqual(len(csp), 2)
def test_from_arrays(self):
"""SuperPath from arrays"""
csp = CubicSuperPath(
[
[
[[14, 173], [14, 173], (14, 173)],
[(15, 171), (17, 168), (18, 168)],
],
[
[(18, 167), (18, 167), [20, 165]],
((21, 164), [22, 162], (23, 162)),
],
]
)
self.assertEqual(
str(csp.to_path()),
"M 14 173 C 14 173 15 171 17 168 M 18 167 C 20 165 21 164 22 162",
)
def test_is_line(self):
"""Test is super path segments can detect lines"""
path = Path(
"m 49,88 70,-1 c 18,17 1,59 1.7,59 "
"0,0 -48.7,18 -70.5,-1 18,-15 25,-32.4 -1.5,-57.2 z"
)
csp = path.to_superpath()
self.assertTrue(csp.is_line(csp[0][0], csp[0][1]), "Should be a line")
self.assertFalse(
csp.is_line(csp[0][3], csp[0][4]), "Both controls not detected"
)
self.assertFalse(
csp.is_line(csp[0][1], csp[0][2]), "Start control not detected"
)
self.assertFalse(csp.is_line(csp[0][2], csp[0][3]), "End control not detected")
# Also tests if zone close is applied correctly.
self.assertEqual(
str(csp.to_path()),
"M 49 88 L 119 87 C 137 104 120 146 120.7 146 "
"C 120.7 146 72 164 50.2 145 C 68.2 130 75.2 112.6 48.7 87.8 Z",
)
def test_is_line_simplify(self):
"""Test if super path segments can detect if a segment can be simplified to a line"""
path = Path("M 10 10 C 20,20 30,30 40,40 C 100, 100 50, 50 60, 60")
csp = path.to_superpath()
self.assertTrue(csp.is_line(csp[0][0], csp[0][1])) # line can be retracted
self.assertFalse(
csp.is_line(csp[0][1], csp[0][2])
) # is line, but shoots over endpoint
self.assertEqual(str(csp.to_path()), "M 10 10 L 40 40 C 100 100 50 50 60 60")
def test_is_line_collinear(self):
self.assertFalse(CubicSuperPath.collinear([1, 2], [2, 2.00001], [3, 2]))
self.assertTrue(CubicSuperPath.collinear([1, 2], [2, 2], [3, 2]))
self.assertTrue(CubicSuperPath.collinear([3, 2], [2, 2], [1, 2]))
def test_is_within(self):
self.assertTrue(CubicSuperPath.within(2, 1, 3))
self.assertTrue(CubicSuperPath.within(2, 3, 1))
self.assertTrue(CubicSuperPath.within(2, 2, 2))
self.assertTrue(CubicSuperPath.within(2, 3, 2))
self.assertFalse(CubicSuperPath.within(3, 2.9999, 2))
def test_is_stable(self):
"""Test for https://gitlab.com/inkscape/extensions/-/issues/374"""
path = Path("M 10 10 h 10 v 10 h -10 Z")
tempsub = path.to_superpath()
comparison = str(tempsub)
for _ in range(15):
tempsub = CubicSuperPath(tempsub[0])
self.assertEqual(comparison, str(tempsub))
def test_multiple_relative(self):
"""Test for https://gitlab.com/inkscape/extensions/-/issues/450"""
def compare_complex(current, epts):
for point, comp in zip(current.end_points, epts):
self.assertAlmostTuple(point, comp, msg=f"got {point}, expected {comp}")
for point, comp in zip(current.control_points, epts):
self.assertAlmostTuple(point, comp, msg=f"got {point}, expected {comp}")
# now reverse the path
p_rev = current.reverse()
for point, comp in zip(p_rev.end_points, epts[::-1]):
self.assertAlmostTuple(point, comp, msg=f"got {point}, expected {comp}")
# We expect to have the same amount of closed subpaths after the operation
self.assertEqual(
len(re.findall(r"[Zz]", str(p_rev))),
len(re.findall(r"[Zz]", str(current))),
)
# now check that transform works correctly
p_trans = current.transform(Transform("translate(10, 20)"))
for point, comp in zip(p_trans.end_points, epts):
comp = comp + Vector2d(10, 20)
self.assertAlmostTuple(point, comp, msg=f"got {point}, expected {comp}")
path = Path("m 50,20 v -10 h -10 z m 30,-20 v 20 h 20 z m -50,20 v -15 h -15 z")
path2 = Path(
"m 50,20 v -10 h -10 l 10, 10 m 30,-20 v 20 h 20 l -20,-20 m -50,20 v -15 h -15 z"
)
path3 = Path(
"m 50,20 v -10 h -10 z m 30,-20 v 20 h 20 l -20,-20 m -50,20 v -15 h -15 l 15 15"
)
pts = [
(50, 20),
(50, 10),
(40, 10),
(50, 20),
(80, 0),
(80, 20),
(100, 20),
(80, 0),
(30, 20),
(30, 5),
(15, 5),
(30, 20),
]
compare_complex(path, pts)
compare_complex(path2, pts)
compare_complex(path3, pts)
path4 = Path("m 50,20 v -10 h -10 z z z")
pts4 = [(50, 20), (50, 10), (40, 10), (50, 20), (50, 20), (50, 20)]
compare_complex(path4, pts4)
path5 = Path("m 50,20 z m 10, 10 m 20, 20 v -10 h -10 z")
pts5 = [(50, 20), (50, 20), (60, 30), (80, 50), (80, 40), (70, 40), (80, 50)]
compare_complex(path5, pts5)
class ProxyTest(TestCase):
def test_simple_path(self):
"""Check coordinate computation"""
path = Path("M 10 10 h 10 v 10 h -10 Z")
proxycommands = list(path.proxy_iterator())
self.assertAlmostTuple(list(proxycommands[1].previous_end_point), (10, 10))
self.assertAlmostTuple(list(proxycommands[1].end_point), (20, 10))
self.assertAlmostTuple(list(proxycommands[2].previous_end_point), (20, 10))
class TestPathErrorHandling(TestCase):
"""Path data error handling"""
def test_incorrect_parameter_amount(self):
"""Check that extra args (or rather, missing args of the next path) is
handled correctly, i.e. according to
https://www.w3.org/TR/SVG/paths.html#PathDataErrorHandling"""
path = Path("M 10,10 L 20,20,30")
self.assertEqual(str(path), "M 10 10 L 20 20")
|