summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/2geom/src/2geom/bezier-curve.cpp
blob: 2ea0dbed088cff8e792d605d815572a5e128d0e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
/* Bezier curve implementation
 *
 * Authors:
 *   MenTaLguY <mental@rydia.net>
 *   Marco Cecchetti <mrcekets at gmail.com>
 *   Krzysztof Kosiński <tweenk.pl@gmail.com>
 * 
 * Copyright 2007-2009 Authors
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 */

#include <2geom/bezier-curve.h>
#include <2geom/path-sink.h>
#include <2geom/basic-intersection.h>
#include <2geom/nearest-time.h>

namespace Geom 
{

/**
 * @class BezierCurve
 * @brief Two-dimensional Bezier curve of arbitrary order.
 *
 * Bezier curves are an expansion of the concept of linear interpolation to n points.
 * Linear segments in 2Geom are in fact Bezier curves of order 1.
 *
 * Let \f$\mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\ldots\mathbf{p}_n}\f$ denote a Bezier curve
 * of order \f$n\f$ defined by the points \f$\mathbf{p}_0, \mathbf{p}_1, \ldots, \mathbf{p}_n\f$.
 * Bezier curve of order 1 is a linear interpolation curve between two points, defined as
 * \f[ \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1}(t) = (1-t)\mathbf{p}_0 + t\mathbf{p}_1 \f]
 * If we now substitute points \f$\mathbf{p_0}\f$ and \f$\mathbf{p_1}\f$ in this definition
 * by linear interpolations, we get the definition of a Bezier curve of order 2, also called
 * a quadratic Bezier curve.
 * \f{align*}{ \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\mathbf{p}_2}(t)
       &= (1-t) \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1}(t) + t \mathbf{B}_{\mathbf{p}_1\mathbf{p}_2}(t) \\
     \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\mathbf{p}_2}(t)
       &= (1-t)^2\mathbf{p}_0 + 2(1-t)t\mathbf{p}_1 + t^2\mathbf{p}_2 \f}
 * By substituting points for quadratic Bezier curves in the original definition,
 * we get a Bezier curve of order 3, called a cubic Bezier curve.
 * \f{align*}{ \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\mathbf{p}_2\mathbf{p}_3}(t)
       &= (1-t) \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\mathbf{p}_2}(t)
       + t \mathbf{B}_{\mathbf{p}_1\mathbf{p}_2\mathbf{p}_3}(t) \\
     \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\mathbf{p}_2\mathbf{p}_3}(t)
       &= (1-t)^3\mathbf{p}_0+3(1-t)^2t\mathbf{p}_1+3(1-t)t^2\mathbf{p}_2+t^3\mathbf{p}_3 \f}
 * In general, a Bezier curve or order \f$n\f$ can be recursively defined as
 * \f[ \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\ldots\mathbf{p}_n}(t)
     = (1-t) \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\ldots\mathbf{p}_{n-1}}(t)
     + t \mathbf{B}_{\mathbf{p}_1\mathbf{p}_2\ldots\mathbf{p}_n}(t) \f]
 *
 * This substitution can be repeated an arbitrary number of times. To picture this, imagine
 * the evaluation of a point on the curve as follows: first, all control points are joined with
 * straight lines, and a point corresponding to the selected time value is marked on them.
 * Then, the marked points are joined with straight lines and the point corresponding to
 * the time value is marked. This is repeated until only one marked point remains, which is the
 * point at the selected time value.
 *
 * @image html bezier-curve-evaluation.png "Evaluation of the Bezier curve"
 *
 * An important property of the Bezier curves is that their parameters (control points)
 * have an intuitive geometric interpretation. Because of this, they are frequently used
 * in vector graphics editors.
 *
 * Every Bezier curve is contained in its control polygon (the convex polygon composed
 * of its control points). This fact is useful for sweepline algorithms and intersection.
 *
 * @par Implementation notes
 * The order of a Bezier curve is immuable once it has been created. Normally, you should
 * know the order at compile time and use the BezierCurveN template. If you need to determine
 * the order at runtime, use the BezierCurve::create() function. It will create a BezierCurveN
 * for orders 1, 2 and 3 (up to cubic Beziers), so you can later <tt>dynamic_cast</tt>
 * to those types, and for higher orders it will create an instance of BezierCurve.
 *
 * @relates BezierCurveN
 * @ingroup Curves
 */

/**
 * @class BezierCurveN
 * @brief Bezier curve with compile-time specified order.
 *
 * @tparam degree unsigned value indicating the order of the Bezier curve
 * 
 * @relates BezierCurve 
 * @ingroup Curves
 */


BezierCurve::BezierCurve(std::vector<Point> const &pts)
    : inner(pts)
{
    if (pts.size() < 2) {
        THROW_RANGEERROR("Bezier curve must have at least 2 control points");
    }
}

bool BezierCurve::isDegenerate() const
{
    for (unsigned d = 0; d < 2; ++d) {
        Coord ic = inner[d][0];
        for (unsigned i = 1; i < size(); ++i) {
            if (inner[d][i] != ic) return false;
        }
    }
    return true;
}

Coord BezierCurve::length(Coord tolerance) const
{
    switch (order())
    {
    case 0:
        return 0.0;
    case 1:
        return distance(initialPoint(), finalPoint());
    case 2:
        {
            std::vector<Point> pts = controlPoints();
            return bezier_length(pts[0], pts[1], pts[2], tolerance);
        }
    case 3:
        {
            std::vector<Point> pts = controlPoints();
            return bezier_length(pts[0], pts[1], pts[2], pts[3], tolerance);
        }
    default:
        return bezier_length(controlPoints(), tolerance);
    }
}

std::vector<CurveIntersection>
BezierCurve::intersect(Curve const &other, Coord eps) const
{
    std::vector<CurveIntersection> result;

    // in case we encounter an order-1 curve created from a vector
    // or a degenerate elliptical arc
    if (isLineSegment()) {
        LineSegment ls(initialPoint(), finalPoint());
        result = ls.intersect(other);
        return result;
    }

    // here we are sure that this curve is at least a quadratic Bezier
    BezierCurve const *bez = dynamic_cast<BezierCurve const *>(&other);
    if (bez) {
        std::vector<std::pair<double, double> > xs;
        find_intersections(xs, inner, bez->inner, eps);
        for (auto & i : xs) {
            CurveIntersection x(*this, other, i.first, i.second);
            result.push_back(x);
        }
        return result;
    }

    // pass other intersection types to the other curve
    result = other.intersect(*this, eps);
    transpose_in_place(result);
    return result;
}

bool BezierCurve::isNear(Curve const &c, Coord precision) const
{
    if (this == &c) return true;

    BezierCurve const *other = dynamic_cast<BezierCurve const *>(&c);
    if (!other) return false;

    if (!are_near(inner.at0(), other->inner.at0(), precision)) return false;
    if (!are_near(inner.at1(), other->inner.at1(), precision)) return false;

    if (size() == other->size()) {
        for (unsigned i = 1; i < order(); ++i) {
            if (!are_near(inner.point(i), other->inner.point(i), precision)) {
                return false;
            }
        }
        return true;
    } else {
        // TODO: comparison after degree elevation
        return false;
    }
}

bool BezierCurve::operator==(Curve const &c) const
{
    if (this == &c) return true;

    BezierCurve const *other = dynamic_cast<BezierCurve const *>(&c);
    if (!other) return false;
    if (size() != other->size()) return false;

    for (unsigned i = 0; i < size(); ++i) {
        if (controlPoint(i) != other->controlPoint(i)) return false;
    }
    return true;
}

Coord BezierCurve::nearestTime(Point const &p, Coord from, Coord to) const
{
    return nearest_time(p, inner, from, to);
}

void BezierCurve::feed(PathSink &sink, bool moveto_initial) const
{
    if (size() > 4) {
        Curve::feed(sink, moveto_initial);
        return;
    }

    Point ip = controlPoint(0);
    if (moveto_initial) {
        sink.moveTo(ip);
    }
    switch (size()) {
    case 2:
        sink.lineTo(controlPoint(1));
        break;
    case 3:
        sink.quadTo(controlPoint(1), controlPoint(2));
        break;
    case 4:
        sink.curveTo(controlPoint(1), controlPoint(2), controlPoint(3));
        break;
    default:
        // TODO: add a path sink method that accepts a vector of control points
        //       and converts to cubic spline by default
        assert(false);
        break;
    }
}

BezierCurve *BezierCurve::create(std::vector<Point> const &pts)
{
    switch (pts.size()) {
    case 0:
    case 1:
        THROW_LOGICALERROR("BezierCurve::create: too few points in vector");
        return NULL;
    case 2:
        return new LineSegment(pts[0], pts[1]);
    case 3:
        return new QuadraticBezier(pts[0], pts[1], pts[2]);
    case 4:
        return new CubicBezier(pts[0], pts[1], pts[2], pts[3]);
    default:
        return new BezierCurve(pts);
    }
}

// optimized specializations for LineSegment

template <>
Curve *BezierCurveN<1>::derivative() const {
    double dx = inner[X][1] - inner[X][0], dy = inner[Y][1] - inner[Y][0];
    return new BezierCurveN<1>(Point(dx,dy),Point(dx,dy));
}

template<>
Coord BezierCurveN<1>::nearestTime(Point const& p, Coord from, Coord to) const
{
    using std::swap;

    if ( from > to ) swap(from, to);
    Point ip = pointAt(from);
    Point fp = pointAt(to);
    Point v = fp - ip;
    Coord l2v = L2sq(v);
    if (l2v == 0) return 0;
    Coord t = dot( p - ip, v ) / l2v;
    if ( t <= 0 )  		return from;
    else if ( t >= 1 )  return to;
    else return from + t*(to-from);
}

template <>
std::vector<CurveIntersection> BezierCurveN<1>::intersect(Curve const &other, Coord eps) const
{
    std::vector<CurveIntersection> result;

    // only handle intersections with other LineSegments here
    if (other.isLineSegment()) {
        Line this_line(initialPoint(), finalPoint());
        Line other_line(other.initialPoint(), other.finalPoint());
        result = this_line.intersect(other_line);
        filter_line_segment_intersections(result, true, true);
        return result;
    }

    // pass all other types to the other curve
    result = other.intersect(*this, eps);
    transpose_in_place(result);
    return result;
}

template <>
int BezierCurveN<1>::winding(Point const &p) const
{
    Point ip = inner.at0(), fp = inner.at1();
    if (p[Y] == std::max(ip[Y], fp[Y])) return 0;

    Point v = fp - ip;
    assert(v[Y] != 0);
    Coord t = (p[Y] - ip[Y]) / v[Y];
    assert(t >= 0 && t <= 1);
    Coord xcross = lerp(t, ip[X], fp[X]);
    if (xcross > p[X]) {
        return v[Y] > 0 ? 1 : -1;
    }
    return 0;
}

template <>
void BezierCurveN<1>::feed(PathSink &sink, bool moveto_initial) const
{
    if (moveto_initial) {
        sink.moveTo(controlPoint(0));
    }
    sink.lineTo(controlPoint(1));
}

template <>
void BezierCurveN<2>::feed(PathSink &sink, bool moveto_initial) const
{
    if (moveto_initial) {
        sink.moveTo(controlPoint(0));
    }
    sink.quadTo(controlPoint(1), controlPoint(2));
}

template <>
void BezierCurveN<3>::feed(PathSink &sink, bool moveto_initial) const
{
    if (moveto_initial) {
        sink.moveTo(controlPoint(0));
    }
    sink.curveTo(controlPoint(1), controlPoint(2), controlPoint(3));
}


static Coord bezier_length_internal(std::vector<Point> &v1, Coord tolerance, int level)
{
    /* The Bezier length algorithm used in 2Geom utilizes a simple fact:
     * the Bezier curve is longer than the distance between its endpoints
     * but shorter than the length of the polyline formed by its control
     * points. When the difference between the two values is smaller than the
     * error tolerance, we can be sure that the true value is no further than
     * 0.5 * tolerance from their arithmetic mean. When it's larger, we recursively
     * subdivide the Bezier curve into two parts and add their lengths.
     * 
     * We cap the maximum number of subdivisions at 256, which corresponds to 8 levels.
     */
    Coord lower = distance(v1.front(), v1.back());
    Coord upper = 0.0;
    for (size_t i = 0; i < v1.size() - 1; ++i) {
        upper += distance(v1[i], v1[i+1]);
    }
    if (upper - lower <= 2*tolerance || level >= 8) {
        return (lower + upper) / 2;
    }
        

    std::vector<Point> v2 = v1;

    /* Compute the right subdivision directly in v1 and the left one in v2.
     * Explanation of the algorithm used:
     * We have to compute the left and right edges of this triangle in which
     * the top row are the control points of the Bezier curve, and each cell
     * is equal to the arithmetic mean of the cells directly above it
     * to the right and left. This corresponds to subdividing the Bezier curve
     * at time value 0.5: the left edge has the control points of the first
     * portion of the Bezier curve and the right edge - the second one.
     * In the example we subdivide a curve with 5 control points (order 4).
     *
     * Start:
     * 0 1 2 3 4
     *  ? ? ? ?
     *   ? ? ?
     *    ? ?
     *     ?
     * # means we have overwritten the value, ? means we don't know
     * the value yet. Numbers mean the value is at i-th position in the vector.
     *
     * After loop with i==1
     * # 1 2 3 4
     *  0 ? ? ? -> write 0 to v2[1]
     *   ? ? ?
     *    ? ?
     *     ?
     *
     * After loop with i==2
     * # # 2 3 4
     *  # 1 ? ?
     *   0 ? ? -> write 0 to v2[2]
     *    ? ?
     *     ?
     *
     * After loop with i==3
     * # # # 3 4
     *  # # 2 ?
     *   # 1 ?
     *    0 ? -> write 0 to v2[3]
     *     ?
     *
     * After loop with i==4, we have the right edge of the triangle in v1,
     * and we write the last value needed for the left edge in v2[4].
     */

    for (size_t i = 1; i < v1.size(); ++i) {
        for (size_t j = i; j > 0; --j) {
            v1[j-1] = 0.5 * (v1[j-1] + v1[j]);
        }
        v2[i] = v1[0];
    }

    return bezier_length_internal(v1, 0.5 * tolerance, level + 1) +
           bezier_length_internal(v2, 0.5 * tolerance, level + 1);
}

/** @brief Compute the length of a bezier curve given by a vector of its control points
 * @relatesalso BezierCurve */
Coord bezier_length(std::vector<Point> const &points, Coord tolerance)
{
    if (points.size() < 2) return 0.0;
    std::vector<Point> v1 = points;
    return bezier_length_internal(v1, tolerance, 0);
}

static Coord bezier_length_internal(Point a0, Point a1, Point a2, Coord tolerance, int level)
{
    Coord lower = distance(a0, a2);
    Coord upper = distance(a0, a1) + distance(a1, a2);

    if (upper - lower <= 2*tolerance || level >= 8) {
        return (lower + upper) / 2;
    }

    Point // Casteljau subdivision
        // b0 = a0,
        // c0 = a2,
        b1 = 0.5*(a0 + a1),
        c1 = 0.5*(a1 + a2),
        b2 = 0.5*(b1 + c1); // == c2
    return bezier_length_internal(a0, b1, b2, 0.5 * tolerance, level + 1) +
           bezier_length_internal(b2, c1, a2, 0.5 * tolerance, level + 1);
}

/** @brief Compute the length of a quadratic bezier curve given by its control points
 * @relatesalso QuadraticBezier */
Coord bezier_length(Point a0, Point a1, Point a2, Coord tolerance)
{
    return bezier_length_internal(a0, a1, a2, tolerance, 0);
}

static Coord bezier_length_internal(Point a0, Point a1, Point a2, Point a3, Coord tolerance, int level)
{
    Coord lower = distance(a0, a3);
    Coord upper = distance(a0, a1) + distance(a1, a2) + distance(a2, a3);

    if (upper - lower <= 2*tolerance || level >= 8) {
        return (lower + upper) / 2;
    }

    Point // Casteljau subdivision
        // b0 = a0,
        // c0 = a3,
        b1 = 0.5*(a0 + a1),
        t0 = 0.5*(a1 + a2),
        c1 = 0.5*(a2 + a3),
        b2 = 0.5*(b1 + t0),
        c2 = 0.5*(t0 + c1),
        b3 = 0.5*(b2 + c2); // == c3
    return bezier_length_internal(a0, b1, b2, b3, 0.5 * tolerance, level + 1) +
           bezier_length_internal(b3, c2, c1, a3, 0.5 * tolerance, level + 1);
}

/** @brief Compute the length of a cubic bezier curve given by its control points
 * @relatesalso CubicBezier */
Coord bezier_length(Point a0, Point a1, Point a2, Point a3, Coord tolerance)
{
    return bezier_length_internal(a0, a1, a2, a3, tolerance, 0);
}

} // end namespace Geom

/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :