summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/2geom/src/2geom/ellipse.cpp
blob: f076cfab5ad94ee2ed0cb34bde37f1d9f3d4649e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
/** @file
 * @brief Ellipse shape
 *//*
 * Authors:
 *   Marco Cecchetti <mrcekets at gmail.com>
 *   Krzysztof Kosiński <tweenk.pl@gmail.com>
 *
 * Copyright 2008-2014 Authors
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 */

#include <2geom/ellipse.h>
#include <2geom/elliptical-arc.h>
#include <2geom/numeric/fitting-tool.h>
#include <2geom/numeric/fitting-model.h>

namespace Geom {

Ellipse::Ellipse(Geom::Circle const &c)
    : _center(c.center())
    , _rays(c.radius(), c.radius())
    , _angle(0)
{}

void Ellipse::setCoefficients(double A, double B, double C, double D, double E, double F)
{
    double den = 4*A*C - B*B;
    if (den == 0) {
        THROW_RANGEERROR("den == 0, while computing ellipse centre");
    }
    _center[X] = (B*E - 2*C*D) / den;
    _center[Y] = (B*D - 2*A*E) / den;

    // evaluate the a coefficient of the ellipse equation in normal form
    // E(x,y) = a*(x-cx)^2 + b*(x-cx)*(y-cy) + c*(y-cy)^2 = 1
    // where b = a*B , c = a*C, (cx,cy) == centre
    double num =   A * sqr(_center[X])
                 + B * _center[X] * _center[Y]
                 + C * sqr(_center[Y])
                 - F;


    //evaluate ellipse rotation angle
    _angle = std::atan2( -B, -(A - C) )/2;

    // evaluate the length of the ellipse rays
    double sinrot, cosrot;
    sincos(_angle, sinrot, cosrot);
    double cos2 = cosrot * cosrot;
    double sin2 = sinrot * sinrot;
    double cossin = cosrot * sinrot;

    den = A * cos2 + B * cossin + C * sin2;
    if (den == 0) {
        THROW_RANGEERROR("den == 0, while computing 'rx' coefficient");
    }
    double rx2 = num / den;
    if (rx2 < 0) {
        THROW_RANGEERROR("rx2 < 0, while computing 'rx' coefficient");
    }
    _rays[X] = std::sqrt(rx2);

    den = C * cos2 - B * cossin + A * sin2;
    if (den == 0) {
        THROW_RANGEERROR("den == 0, while computing 'ry' coefficient");
    }
    double ry2 = num / den;
    if (ry2 < 0) {
        THROW_RANGEERROR("ry2 < 0, while computing 'rx' coefficient");
    }
    _rays[Y] = std::sqrt(ry2);

    // the solution is not unique so we choose always the ellipse
    // with a rotation angle between 0 and PI/2
    makeCanonical();
}

Point Ellipse::initialPoint() const
{
    Coord sinrot, cosrot;
    sincos(_angle, sinrot, cosrot);
    Point p(ray(X) * cosrot + center(X), ray(X) * sinrot + center(Y));
    return p;
}


Affine Ellipse::unitCircleTransform() const
{
    Affine ret = Scale(ray(X), ray(Y)) * Rotate(_angle);
    ret.setTranslation(center());
    return ret;
}

Affine Ellipse::inverseUnitCircleTransform() const
{
    if (ray(X) == 0 || ray(Y) == 0) {
        THROW_RANGEERROR("a degenerate ellipse doesn't have an inverse unit circle transform");
    }
    Affine ret = Translate(-center()) * Rotate(-_angle) * Scale(1/ray(X), 1/ray(Y));
    return ret;
}


LineSegment Ellipse::axis(Dim2 d) const
{
    Point a(0, 0), b(0, 0);
    a[d] = -1;
    b[d] = 1;
    LineSegment ls(a, b);
    ls.transform(unitCircleTransform());
    return ls;
}

LineSegment Ellipse::semiaxis(Dim2 d, int sign) const
{
    Point a(0, 0), b(0, 0);
    b[d] = sgn(sign);
    LineSegment ls(a, b);
    ls.transform(unitCircleTransform());
    return ls;
}

Rect Ellipse::boundsExact() const
{
    Angle extremes[2][2];
    double sinrot, cosrot;
    sincos(_angle, sinrot, cosrot);

    extremes[X][0] = std::atan2( -ray(Y) * sinrot, ray(X) * cosrot );
    extremes[X][1] = extremes[X][0] + M_PI;
    extremes[Y][0] = std::atan2( ray(Y) * cosrot, ray(X) * sinrot );
    extremes[Y][1] = extremes[Y][0] + M_PI;

    Rect result;
    for (unsigned d = 0; d < 2; ++d) {
        result[d] = Interval(valueAt(extremes[d][0], d ? Y : X),
                             valueAt(extremes[d][1], d ? Y : X));
    }
    return result;
}

std::vector<double> Ellipse::coefficients() const
{
    std::vector<double> c(6);
    coefficients(c[0], c[1], c[2], c[3], c[4], c[5]);
    return c;
}

void Ellipse::coefficients(Coord &A, Coord &B, Coord &C, Coord &D, Coord &E, Coord &F) const
{
    if (ray(X) == 0 || ray(Y) == 0) {
        THROW_RANGEERROR("a degenerate ellipse doesn't have an implicit form");
    }

    double cosrot, sinrot;
    sincos(_angle, sinrot, cosrot);
    double cos2 = cosrot * cosrot;
    double sin2 = sinrot * sinrot;
    double cossin = cosrot * sinrot;
    double invrx2 = 1 / (ray(X) * ray(X));
    double invry2 = 1 / (ray(Y) * ray(Y));

    A = invrx2 * cos2 + invry2 * sin2;
    B = 2 * (invrx2 - invry2) * cossin;
    C = invrx2 * sin2 + invry2 * cos2;
    D = -2 * A * center(X) - B * center(Y);
    E = -2 * C * center(Y) - B * center(X);
    F =   A * center(X) * center(X)
        + B * center(X) * center(Y)
        + C * center(Y) * center(Y)
        - 1;
}


void Ellipse::fit(std::vector<Point> const &points)
{
    size_t sz = points.size();
    if (sz < 5) {
        THROW_RANGEERROR("fitting error: too few points passed");
    }
    NL::LFMEllipse model;
    NL::least_squeares_fitter<NL::LFMEllipse> fitter(model, sz);

    for (size_t i = 0; i < sz; ++i) {
        fitter.append(points[i]);
    }
    fitter.update();

    NL::Vector z(sz, 0.0);
    model.instance(*this, fitter.result(z));
}


EllipticalArc *
Ellipse::arc(Point const &ip, Point const &inner, Point const &fp)
{
    // This is resistant to degenerate ellipses:
    // both flags evaluate to false in that case.

    bool large_arc_flag = false;
    bool sweep_flag = false;

    // Determination of large arc flag:
    // large_arc is false when the inner point is on the same side
    // of the center---initial point line as the final point, AND
    // is on the same side of the center---final point line as the
    // initial point.
    // Additionally, large_arc is always false when we have exactly
    // 1/2 of an arc, i.e. the cross product of the center -> initial point
    // and center -> final point vectors is zero.
    // Negating the above leads to the condition for large_arc being true.
    Point fv = fp - _center;
    Point iv = ip - _center;
    Point innerv = inner - _center;
    double ifcp = cross(fv, iv);

    if (ifcp != 0 && (sgn(cross(fv, innerv)) != sgn(ifcp) ||
                      sgn(cross(iv, innerv)) != sgn(-ifcp)))
    {
        large_arc_flag = true;
    }

    //cross(-iv, fv) && large_arc_flag
    

    // Determination of sweep flag:
    // For clarity, let's assume that Y grows up. Then the cross product
    // is positive for points on the left side of a vector and negative
    // on the right side of a vector.
    //
    //     cross(?, v) > 0
    //  o------------------->
    //     cross(?, v) < 0
    //
    // If the arc is small (large_arc_flag is false) and the final point
    // is on the right side of the vector initial point -> center,
    // we have to go in the direction of increasing angles
    // (counter-clockwise) and the sweep flag is true.
    // If the arc is large, the opposite is true, since we have to reach
    // the final point going the long way - in the other direction.
    // We can express this observation as:
    // cross(_center - ip, fp - _center) < 0 xor large_arc flag
    // This is equal to:
    // cross(-iv, fv) < 0 xor large_arc flag
    // But cross(-iv, fv) is equal to cross(fv, iv) due to antisymmetry
    // of the cross product, so we end up with the condition below.
    if ((ifcp < 0) ^ large_arc_flag) {
        sweep_flag = true;
    }

    EllipticalArc *ret_arc = new EllipticalArc(ip, ray(X), ray(Y), rotationAngle(),
                                               large_arc_flag, sweep_flag, fp);
    return ret_arc;
}

Ellipse &Ellipse::operator*=(Rotate const &r)
{
    _angle += r.angle();
    _center *= r;
    return *this;
}

Ellipse &Ellipse::operator*=(Affine const& m)
{
    Affine a = Scale(ray(X), ray(Y)) * Rotate(_angle);
    Affine mwot = m.withoutTranslation();
    Affine am = a * mwot;
    Point new_center = _center * m;

    if (are_near(am.descrim(), 0)) {
        double angle;
        if (am[0] != 0) {
            angle = std::atan2(am[2], am[0]);
        } else if (am[1] != 0) {
            angle = std::atan2(am[3], am[1]);
        } else {
            angle = M_PI/2;
        }
        Point v = Point::polar(angle) * am;
        _center = new_center;
        _rays[X] = L2(v);
        _rays[Y] = 0;
        _angle = atan2(v);
        return *this;
    } else if (mwot.isScale(0) && _angle.radians() == 0) {
        _rays[X] *= std::abs(mwot[0]);
        _rays[Y] *= std::abs(mwot[3]);
        _center = new_center;
        return *this;
    }

    std::vector<double> coeff = coefficients();
    Affine q( coeff[0],   coeff[1]/2,
              coeff[1]/2, coeff[2],
              0,          0   );

    Affine invm = mwot.inverse();
    q = invm * q ;
    std::swap(invm[1], invm[2]);
    q *= invm;
    setCoefficients(q[0], 2*q[1], q[3], 0, 0, -1);
    _center = new_center;

    return *this;
}

Ellipse Ellipse::canonicalForm() const
{
    Ellipse result(*this);
    result.makeCanonical();
    return result;
}

void Ellipse::makeCanonical()
{
    if (_rays[X] == _rays[Y]) {
        _angle = 0;
        return;
    }

    if (_angle < 0) {
        _angle += M_PI;
    }
    if (_angle >= M_PI/2) {
        std::swap(_rays[X], _rays[Y]);
        _angle -= M_PI/2;
    }
}

Point Ellipse::pointAt(Coord t) const
{
    Point p = Point::polar(t);
    p *= unitCircleTransform();
    return p;
}

Coord Ellipse::valueAt(Coord t, Dim2 d) const
{
    Coord sinrot, cosrot, cost, sint;
    sincos(rotationAngle(), sinrot, cosrot);
    sincos(t, sint, cost);

    if ( d == X ) {
        return    ray(X) * cosrot * cost
                - ray(Y) * sinrot * sint
                + center(X);
    } else {
        return    ray(X) * sinrot * cost
                + ray(Y) * cosrot * sint
                + center(Y);
    }
}

Coord Ellipse::timeAt(Point const &p) const
{
    // degenerate ellipse is basically a reparametrized line segment
    if (ray(X) == 0 || ray(Y) == 0) {
        if (ray(X) != 0) {
            return asin(Line(axis(X)).timeAt(p));
        } else if (ray(Y) != 0) {
            return acos(Line(axis(Y)).timeAt(p));
        } else {
            return 0;
        }
    }
    Affine iuct = inverseUnitCircleTransform();
    return Angle(atan2(p * iuct)).radians0(); // return a value in [0, 2pi)
}

Point Ellipse::unitTangentAt(Coord t) const
{
    Point p = Point::polar(t + M_PI/2);
    p *= unitCircleTransform().withoutTranslation();
    p.normalize();
    return p;
}

bool Ellipse::contains(Point const &p) const
{
    Point tp = p * inverseUnitCircleTransform();
    return tp.length() <= 1;
}

std::vector<ShapeIntersection> Ellipse::intersect(Line const &line) const
{

    std::vector<ShapeIntersection> result;

    if (line.isDegenerate()) return result;
    if (ray(X) == 0 || ray(Y) == 0) {
        // TODO intersect with line segment.
        return result;
    }

    // Ax^2 + Bxy + Cy^2 + Dx + Ey + F
    Coord A, B, C, D, E, F;
    coefficients(A, B, C, D, E, F);
    Affine iuct = inverseUnitCircleTransform();

    // generic case
    Coord a, b, c;
    line.coefficients(a, b, c);
    Point lv = line.vector();

    if (fabs(lv[X]) > fabs(lv[Y])) {
        // y = -a/b x - c/b
        Coord q = -a/b;
        Coord r = -c/b;

        // substitute that into the ellipse equation, making it quadratic in x
        Coord I = A + B*q + C*q*q;          // x^2 terms
        Coord J = B*r + C*2*q*r + D + E*q;  // x^1 terms
        Coord K = C*r*r + E*r + F;          // x^0 terms
        std::vector<Coord> xs = solve_quadratic(I, J, K);

        for (double x : xs) {
            Point p(x, q*x + r);
            result.emplace_back(atan2(p * iuct), line.timeAt(p), p);
        }
    } else {
        Coord q = -b/a;
        Coord r = -c/a;

        Coord I = A*q*q + B*q + C;
        Coord J = A*2*q*r + B*r + D*q + E;
        Coord K = A*r*r + D*r + F;
        std::vector<Coord> xs = solve_quadratic(I, J, K);

        for (double x : xs) {
            Point p(q*x + r, x);
            result.emplace_back(atan2(p * iuct), line.timeAt(p), p);
        }
    }
    return result;
}

std::vector<ShapeIntersection> Ellipse::intersect(LineSegment const &seg) const
{
    // we simply re-use the procedure for lines and filter out
    // results where the line time value is outside of the unit interval.
    std::vector<ShapeIntersection> result = intersect(Line(seg));
    filter_line_segment_intersections(result);
    return result;
}

std::vector<ShapeIntersection> Ellipse::intersect(Ellipse const &other) const
{
    // handle degenerate cases first
    if (ray(X) == 0 || ray(Y) == 0) {
        
    }
    // intersection of two ellipses can be solved analytically.
    // http://maptools.home.comcast.net/~maptools/BivariateQuadratics.pdf

    Coord A, B, C, D, E, F;
    Coord a, b, c, d, e, f;

    // NOTE: the order of coefficients is different to match the convention in the PDF above
    // Ax^2 + Bx^2 + Cx + Dy + Exy + F
    this->coefficients(A, E, B, C, D, F);
    other.coefficients(a, e, b, c, d, f);

    // Assume that Q is the ellipse equation given by uppercase letters
    // and R is the equation given by lowercase ones. An intersection exists when
    // there is a coefficient mu such that
    // mu Q + R = 0
    //
    // This can be written in the following way:
    //
    //                    |  ff  cc/2 dd/2 | |1|
    // mu Q + R = [1 x y] | cc/2  aa  ee/2 | |x| = 0
    //                    | dd/2 ee/2  bb  | |y|
    //
    // where aa = mu A + a and so on. The determinant can be explicitly written out,
    // giving an equation which is cubic in mu and can be solved analytically.

    Coord I, J, K, L;
    I = (-E*E*F + 4*A*B*F + C*D*E - A*D*D - B*C*C) / 4;
    J = -((E*E - 4*A*B) * f + (2*E*F - C*D) * e + (2*A*D - C*E) * d +
          (2*B*C - D*E) * c + (C*C - 4*A*F) * b + (D*D - 4*B*F) * a) / 4;
    K = -((e*e - 4*a*b) * F + (2*e*f - c*d) * E + (2*a*d - c*e) * D +
          (2*b*c - d*e) * C + (c*c - 4*a*f) * B + (d*d - 4*b*f) * A) / 4;
    L = (-e*e*f + 4*a*b*f + c*d*e - a*d*d - b*c*c) / 4;

    std::vector<Coord> mus = solve_cubic(I, J, K, L);
    Coord mu = infinity();
    std::vector<ShapeIntersection> result;

    // Now that we have solved for mu, we need to check whether the conic
    // determined by mu Q + R is reducible to a product of two lines. If it's not,
    // it means that there are no intersections. If it is, the intersections of these
    // lines with the original ellipses (if there are any) give the coordinates
    // of intersections.

    // Prefer middle root if there are three.
    // Out of three possible pairs of lines that go through four points of intersection
    // of two ellipses, this corresponds to cross-lines. These intersect the ellipses
    // at less shallow angles than the other two options.
    if (mus.size() == 3) {
        std::swap(mus[1], mus[0]);
    }
    for (double i : mus) {
        Coord aa = i * A + a;
        Coord bb = i * B + b;
        Coord ee = i * E + e;
        Coord delta = ee*ee - 4*aa*bb;
        if (delta < 0) continue;
        mu = i;
        break;
    }

    // if no suitable mu was found, there are no intersections
    if (mu == infinity()) return result;

    Coord aa = mu * A + a;
    Coord bb = mu * B + b;
    Coord cc = mu * C + c;
    Coord dd = mu * D + d;
    Coord ee = mu * E + e;
    Coord ff = mu * F + f;

    unsigned line_num = 0;
    Line lines[2];

    if (aa != 0) {
        bb /= aa; cc /= aa; dd /= aa; ee /= aa; /*ff /= aa;*/
        Coord s = (ee + std::sqrt(ee*ee - 4*bb)) / 2;
        Coord q = ee - s;
        Coord alpha = (dd - cc*q) / (s - q);
        Coord beta = cc - alpha;

        line_num = 2;
        lines[0] = Line(1, q, alpha);
        lines[1] = Line(1, s, beta);
    } else if (bb != 0) {
        cc /= bb; /*dd /= bb;*/ ee /= bb; ff /= bb;
        Coord s = ee;
        Coord q = 0;
        Coord alpha = cc / ee;
        Coord beta = ff * ee / cc;

        line_num = 2;
        lines[0] = Line(q, 1, alpha);
        lines[1] = Line(s, 1, beta);
    } else if (ee != 0) {
        line_num = 2;
        lines[0] = Line(ee, 0, dd);
        lines[1] = Line(0, 1, cc/ee);
    } else if (cc != 0 || dd != 0) {
        line_num = 1;
        lines[0] = Line(cc, dd, ff);
    }

    // intersect with the obtained lines and report intersections
    for (unsigned li = 0; li < line_num; ++li) {
        std::vector<ShapeIntersection> as = intersect(lines[li]);
        std::vector<ShapeIntersection> bs = other.intersect(lines[li]);

        if (!as.empty() && as.size() == bs.size()) {
            for (unsigned i = 0; i < as.size(); ++i) {
                ShapeIntersection ix(as[i].first, bs[i].first,
                    middle_point(as[i].point(), bs[i].point()));
                result.push_back(ix);
            }
        }
    }
    return result;
}

std::vector<ShapeIntersection> Ellipse::intersect(D2<Bezier> const &b) const
{
    Coord A, B, C, D, E, F;
    coefficients(A, B, C, D, E, F);

    Bezier x = A*b[X]*b[X] + B*b[X]*b[Y] + C*b[Y]*b[Y] + D*b[X] + E*b[Y] + F;
    std::vector<Coord> r = x.roots();

    std::vector<ShapeIntersection> result;
    for (double & i : r) {
        Point p = b.valueAt(i);
        result.emplace_back(timeAt(p), i, p);
    }
    return result;
}

bool Ellipse::operator==(Ellipse const &other) const
{
    if (_center != other._center) return false;

    Ellipse a = this->canonicalForm();
    Ellipse b = other.canonicalForm();

    if (a._rays != b._rays) return false;
    if (a._angle != b._angle) return false;

    return true;
}


bool are_near(Ellipse const &a, Ellipse const &b, Coord precision)
{
    // We want to know whether no point on ellipse a is further than precision
    // from the corresponding point on ellipse b. To check this, we compute
    // the four extreme points at the end of each ray for each ellipse
    // and check whether they are sufficiently close.

    // First, we need to correct the angles on the ellipses, so that they are
    // no further than M_PI/4 apart. This can always be done by rotating
    // and exchanging axes.
    Ellipse ac = a, bc = b;
    if (distance(ac.rotationAngle(), bc.rotationAngle()).radians0() >= M_PI/2) {
        ac.setRotationAngle(ac.rotationAngle() + M_PI);
    }
    if (distance(ac.rotationAngle(), bc.rotationAngle()) >= M_PI/4) {
        Angle d1 = distance(ac.rotationAngle() + M_PI/2, bc.rotationAngle());
        Angle d2 = distance(ac.rotationAngle() - M_PI/2, bc.rotationAngle());
        Coord adj = d1.radians0() < d2.radians0() ? M_PI/2 : -M_PI/2;
        ac.setRotationAngle(ac.rotationAngle() + adj);
        ac.setRays(ac.ray(Y), ac.ray(X));
    }

    // Do the actual comparison by computing four points on each ellipse.
    Point tps[] = {Point(1,0), Point(0,1), Point(-1,0), Point(0,-1)};
    for (auto & tp : tps) {
        if (!are_near(tp * ac.unitCircleTransform(),
                      tp * bc.unitCircleTransform(),
                      precision))
            return false;
    }
    return true;
}

std::ostream &operator<<(std::ostream &out, Ellipse const &e)
{
    out << "Ellipse(" << e.center() << ", " << e.rays()
        << ", " << format_coord_nice(e.rotationAngle()) << ")";
    return out;
}

}  // end namespace Geom


/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :