1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
#include "testing.h"
#include <iostream>
#include <2geom/bezier.h>
#include <2geom/sbasis.h>
#include <2geom/sbasis-to-bezier.h>
#include <vector>
#include <iterator>
#include <glib.h>
using namespace std;
using namespace Geom;
bool are_equal(SBasis const &A, SBasis const &B) {
int maxSize = max(A.size(), B.size());
double t = 0., dt = 1./maxSize;
for(int i = 0; i <= maxSize; i++) {
EXPECT_FLOAT_EQ(A.valueAt(t), B.valueAt(t));// return false;
t += dt;
}
return true;
}
class SBasisTest : public ::testing::Test {
protected:
friend class Geom::SBasis;
SBasisTest()
: zero(fragments[0])
, unit(fragments[1])
, hump(fragments[2])
, wiggle(fragments[3])
{
zero = SBasis(Bezier(0.0).toSBasis());
unit = SBasis(Bezier(0.0,1.0).toSBasis());
hump = SBasis(Bezier(0,1,0).toSBasis());
wiggle = SBasis(Bezier(0,1,-2,3).toSBasis());
}
SBasis fragments[4];
SBasis &zero, &unit, &hump, &wiggle;
};
TEST_F(SBasisTest, UnitTests) {
EXPECT_TRUE(Bezier(0,0,0,0).toSBasis().isZero());
EXPECT_TRUE(Bezier(0,1,2,3).toSBasis().isFinite());
// note: "size" of sbasis equals half the number of coefficients
EXPECT_EQ(2u, Bezier(0,2,4,5).toSBasis().size());
EXPECT_EQ(2u, hump.size());
}
TEST_F(SBasisTest, ValueAt) {
EXPECT_EQ(0.0, wiggle.at0());
EXPECT_EQ(3.0, wiggle.at1());
EXPECT_EQ(0.0, wiggle.valueAt(0.5));
EXPECT_EQ(0.0, wiggle(0.5));
}
TEST_F(SBasisTest, MultiDerivative) {
vector<double> vnd = wiggle.valueAndDerivatives(0.5, 5);
expect_array((const double[]){0,0,12,72,0,0}, vnd);
}
/*
TEST_F(SBasisTest, DegreeElevation) {
EXPECT_TRUE(are_equal(wiggle, wiggle));
SBasis Q = wiggle;
SBasis P = Q.elevate_degree();
EXPECT_EQ(P.size(), Q.size()+1);
//EXPECT_EQ(0, P.forward_difference(1)[0]);
EXPECT_TRUE(are_equal(Q, P));
Q = wiggle;
P = Q.elevate_to_degree(10);
EXPECT_EQ(10, P.order());
EXPECT_TRUE(are_equal(Q, P));
//EXPECT_EQ(0, P.forward_difference(10)[0]);
}*/
//std::pair<SBasis, SBasis > subdivide(Coord t);
SBasis linear_root(double t) {
return SBasis(Linear(0-t, 1-t));
}
SBasis array_roots(vector<double> x) {
SBasis b(1);
for(double i : x) {
b = multiply(b, linear_root(i));
}
return b;
}
/*TEST_F(SBasisTest, Deflate) {
SBasis b = array_roots(vector_from_array((const double[]){0,0.25,0.5}));
EXPECT_FLOAT_EQ(0, b.at0());
b = b.deflate();
EXPECT_FLOAT_EQ(0, b.valueAt(0.25));
b = b.subdivide(0.25).second;
EXPECT_FLOAT_EQ(0, b.at0());
b = b.deflate();
const double rootposition = (0.5-0.25) / (1-0.25);
EXPECT_FLOAT_EQ(0, b.valueAt(rootposition));
b = b.subdivide(rootposition).second;
EXPECT_FLOAT_EQ(0, b.at0());
}*/
TEST_F(SBasisTest, Roots) {
expect_array((const double[]){0, 0.5, 0.5}, roots(wiggle));
// The results of our rootfinding are at the moment fairly inaccurate.
double eps = 5e-4;
vector<vector<double> > tests;
tests.push_back(vector_from_array((const double[]){0}));
tests.push_back(vector_from_array((const double[]){0.5}));
tests.push_back(vector_from_array((const double[]){0.25,0.75}));
tests.push_back(vector_from_array((const double[]){0.5,0.5}));
tests.push_back(vector_from_array((const double[]){0, 0.2, 0.6,0.6, 1}));
tests.push_back(vector_from_array((const double[]){.1,.2,.3,.4,.5,.6}));
tests.push_back(vector_from_array((const double[]){0.25,0.25,0.25,0.75,0.75,0.75}));
for(auto & test : tests) {
SBasis b = array_roots(test);
std::cout << test << ": " << b << std::endl;
std::cout << roots(b) << std::endl;
EXPECT_vector_near(test, roots(b), eps);
}
vector<Linear> broken;
broken.emplace_back(0, 42350.1);
broken.emplace_back(-71082.3, -67071.5);
broken.emplace_back(1783.41, 796047);
SBasis b(broken);
Bezier bz;
sbasis_to_bezier(bz, b);
cout << "roots(SBasis(broken))\n";
for(int i = 0; i < 10; i++) {
double t = i*0.01 + 0.1;
cout << b(t) << "," << bz(t) << endl;
}
cout << roots(b) << endl;
EXPECT_EQ(0, bz[0]);
//bz = bz.deflate();
cout << bz << endl;
cout << bz.roots() << endl;
}
TEST_F(SBasisTest, Subdivide) {
std::vector<std::pair<SBasis, double> > errors;
for (unsigned i = 0; i < 10000; ++i) {
double t = g_random_double_range(0, 1e-6);
for (auto & input : fragments) {
std::pair<SBasis, SBasis> result;
result.first = portion(input, 0, t);
result.second = portion(input, t, 1);
// the endpoints must correspond exactly
EXPECT_EQ(result.first.at0(), input.at0());
EXPECT_EQ(result.first.at1(), result.second.at0());
EXPECT_EQ(result.second.at1(), input.at1());
// ditto for valueAt
EXPECT_EQ(result.first.valueAt(0), input.valueAt(0));
EXPECT_EQ(result.first.valueAt(1), result.second.valueAt(0));
EXPECT_EQ(result.second.valueAt(1), input.valueAt(1));
if (result.first.at1() != result.second.at0()) {
errors.emplace_back(input, t);
}
}
}
if (!errors.empty()) {
std::cout << "Found " << errors.size() << " subdivision errors" << std::endl;
for (unsigned i = 0; i < errors.size(); ++i) {
std::cout << "Error #" << i << ":\n"
<< "SBasis: " << errors[i].first << "\n"
<< "t: " << format_coord_nice(errors[i].second) << std::endl;
}
}
}
TEST_F(SBasisTest, Reverse) {
SBasis reverse_wiggle = reverse(wiggle);
EXPECT_EQ(reverse_wiggle.at0(), wiggle.at1());
EXPECT_EQ(reverse_wiggle.at1(), wiggle.at0());
EXPECT_EQ(reverse_wiggle.valueAt(0.5), wiggle.valueAt(0.5));
EXPECT_EQ(reverse_wiggle.valueAt(0.25), wiggle.valueAt(0.75));
EXPECT_TRUE(are_equal(reverse(reverse_wiggle), wiggle));
}
TEST_F(SBasisTest,Operators) {
//cout << "scalar operators\n";
//cout << hump + 3 << endl;
//cout << hump - 3 << endl;
//cout << hump*3 << endl;
//cout << hump/3 << endl;
//cout << "SBasis derivative(const SBasis & a);\n";
//std::cout << derivative(hump) <<std::endl;
//std::cout << integral(hump) <<std::endl;
EXPECT_TRUE(are_equal(derivative(integral(wiggle)), wiggle));
//std::cout << derivative(integral(hump)) << std::endl;
expect_array((const double []){0.5}, roots(derivative(hump)));
EXPECT_TRUE(bounds_fast(hump)->contains(Interval(0,hump.valueAt(0.5))));
EXPECT_EQ(Interval(0,hump.valueAt(0.5)), *bounds_exact(hump));
Interval tight_local_bounds(min(hump.valueAt(0.3),hump.valueAt(0.6)),
hump.valueAt(0.5));
EXPECT_TRUE(bounds_local(hump, Interval(0.3, 0.6))->contains(tight_local_bounds));
SBasis Bs[] = {unit, hump, wiggle};
for(auto B : Bs) {
SBasis product = multiply(B, B);
for(int i = 0; i <= 16; i++) {
double t = i/16.0;
double b = B.valueAt(t);
EXPECT_FLOAT_EQ(b*b, product.valueAt(t));
}
}
}
TEST_F(SBasisTest, ToCubicBezier)
{
vector<double> params = { 0, 1, -2, 3 };
D2<SBasis> sb(wiggle, wiggle);
vector<Point> bz;
sbasis_to_cubic_bezier(bz, sb);
for (int i = 0; i < params.size(); i++) {
EXPECT_FLOAT_EQ(bz[i][0], params[i]);
EXPECT_FLOAT_EQ(bz[i][1], params[i]);
}
}
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|