1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Sub-path Ordering functions for embroidery stitch LPE (Implementation)
*
* Copyright (C) 2016 Michael Soegtrop
*
* Released under GNU GPL v2+, read the file 'COPYING' for more information.
*/
#include "live_effects/lpe-embrodery-stitch-ordering.h"
#include <numeric>
namespace Inkscape {
namespace LivePathEffect {
namespace LPEEmbroderyStitchOrdering {
using namespace Geom;
// ==================== Debug Trace Macros ====================
// ATTENTION: both level and area macros must be enabled for tracing
// These macros are for enabling certain levels of tracing
#define DebugTrace1(list) // g_warning list
#define DebugTrace2(list) // g_warning list
// These macros are for enabling certain areas of tracing
#define DebugTraceGrouping(list) // list
#define DebugTraceTSP(list) // list
// Combinations of above
#define DebugTrace1TSP(list) DebugTraceTSP( DebugTrace1(list) )
#define DebugTrace2TSP(list) DebugTraceTSP( DebugTrace2(list) )
// ==================== Template Utilities ====================
// Delete all objects pointed to by a vector and clear the vector
template< typename T > void delete_and_clear(std::vector<T> &vector)
{
for (typename std::vector<T>::iterator it = vector.begin(); it != vector.end(); ++it) {
delete *it;
}
vector.clear();
}
// Assert that there are no duplicates in a vector
template< typename T > void assert_unique(std::vector<T> &vector)
{
typename std::vector<T> copy = vector;
std::sort(copy.begin(), copy.end());
assert(std::unique(copy.begin(), copy.end()) == copy.end());
}
// remove element(s) by value
template< typename T > void remove_by_value(std::vector<T> *vector, const T &value)
{
vector->erase(std::remove(vector->begin(), vector->end(), value), vector->end());
}
// fill a vector with increasing elements (similar to C++11 iota)
// iota is included in some C++ libraries, not in other (it is always included for C++11)
// To avoid issues, use our own name (not iota)
template<class OutputIterator, class Counter>
void fill_increasing(OutputIterator begin, OutputIterator end, Counter counter)
{
while (begin != end) {
*begin++ = counter++;
}
}
// check if an iterable sequence contains an element
template<class InputIterator, class Element>
bool contains(InputIterator begin, InputIterator end, const Element &elem)
{
while (begin != end) {
if (*begin == elem) {
return true;
}
++begin;
}
return false;
}
// Check if a vector contains an element
template<class Element>
bool contains(std::vector<Element> const &vector, const Element &elem)
{
return contains(vector.begin(), vector.end(), elem);
}
// ==================== Multi-dimensional iterator functions ====================
// Below are 3 simple template functions to do triangle/pyramid iteration (without diagonal).
// Here is a sample of iterating over 5 elements in 3 dimensions:
//
// 0 1 2
// 0 1 3
// 0 1 4
// 0 2 3
// 0 2 4
// 1 2 4
// 1 3 4
// 2 3 4
// end end end
//
// If the number of elements is less then the number of dimensions, the number of dimensions is reduced automatically.
//
// I thought about creating an iterator class for this, but it doesn't match that well, so I used functions on iterator vectors.
// Initialize a vector of iterators
template<class Iterator>
void triangleit_begin(std::vector<Iterator> &iterators, Iterator const &begin, Iterator const &end, size_t n)
{
iterators.clear();
// limit number of dimensions to number of elements
size_t n1 = end - begin;
n = std::min(n, n1);
if (n) {
iterators.push_back(begin);
for (int i = 1; i < n; i++) {
iterators.push_back(iterators.back() + 1);
}
}
}
// Increment a vector of iterators
template<class Iterator>
void triangleit_incr(std::vector<Iterator> &iterators, Iterator const &end)
{
size_t n = iterators.size();
for (int i = 0; i < n; i++) {
iterators[n - 1 - i]++;
// Each dimension ends at end-i, so that there are elements left for the i higher dimensions
if (iterators[n - 1 - i] != end - i) {
// Assign increasing numbers to the higher dimension
for (int j = n - i; j < n; j++) {
iterators[j] = iterators[j - 1] + 1;
}
return;
}
}
}
// Check if a vector of iterators is at the end
template<class Iterator>
bool triangleit_test(std::vector<Iterator> &iterators, Iterator const &end)
{
if (iterators.empty()) {
return false;
} else {
return iterators.back() != end;
}
}
// ==================== Trivial Ordering Functions ====================
// Sub-path reordering: do nothing - keep original order
void OrderingOriginal(std::vector<OrderingInfo> &infos)
{
}
// Sub-path reordering: reverse every other sub path
void OrderingZigZag(std::vector<OrderingInfo> &infos, bool revfirst)
{
for (auto & info : infos) {
info.reverse = (info.index & 1) == (revfirst ? 0 : 1);
}
}
// Sub-path reordering: continue with the neartest start or end point of yet unused sub paths
void OrderingClosest(std::vector<OrderingInfo> &infos, bool revfirst)
{
std::vector<OrderingInfo> result;
result.reserve(infos.size());
result.push_back(infos[0]);
result.back().reverse = revfirst;
Point p = result.back().GetEndRev();
infos[0].used = true;
for (unsigned int iRnd = 1; iRnd < infos.size(); iRnd++) {
// find closest point to p
unsigned iBest = 0;
bool revBest = false;
Coord distBest = Geom::infinity();
for (std::vector<OrderingInfo>::iterator it = infos.begin(); it != infos.end(); ++it) {
it->index = it - infos.begin();
it->reverse = (it->index & 1) != 0;
if (!it->used) {
Coord dist = distance(p, it->GetBegOrig());
if (dist < distBest) {
distBest = dist;
iBest = it - infos.begin();
revBest = false;
}
dist = distance(p, it->GetEndOrig());
if (dist < distBest) {
distBest = dist;
iBest = it - infos.begin();
revBest = true;
}
}
}
result.push_back(infos[iBest]);
result.back().reverse = revBest;
p = result.back().GetEndRev();
infos[iBest].used = true;
}
infos = result;
}
// ==================== Traveling Salesman k-opt Ordering Function and Utilities ====================
// A Few notes on this:
// - This is a relatively simple Lin-type k-opt algorithm, but the grouping optimizations done make it already quite complex.
// - The main Ordering Function is OrderingAdvanced
// - Lines which start at the end of another line are connected and treated as one (struct OrderingInfoEx)
// - Groups of zig-zag OrderingInfoEx are grouped (struct OrderingGroup) if both ends of the segment mutually agree with a next neighbor.
// These groups are treated as a unit in the TSP algorithm.
// The only option is to reverse the first segment, so that a group has 4 end points, 2 of which are used externally.
// - Run a k-opt (k=2..5) Lin like Traveling Salesman Problem algorithm on the groups as a unit and the remaining edges.
// See https://en.wikipedia.org/wiki/Travelling_salesman_problem#Iterative_improvement
// The algorithm uses a greedy nearest neighbor as start configuration and does not use repeated random starts.
// - The algorithm searches an open tour (rather than a closed one), so the longest segment in the closed path is ignored.
// - TODO: it might be faster to use k=3 with a few random starting patterns instead of k=5
// - TODO: it is surely wiser to implement e.g. Lin-Kenrighan TSP, but the simple k-opt works ok.
// - TODO(EASY): add a jump distance, above which threads are removed and make the length of this jump distance constant and large,
// so that mostly the number of jumps is optimized
// Find 2 nearest points to given point
void OrderingPoint::FindNearest2(const std::vector<OrderingInfoEx *> &infos)
{
// This implementation is not terribly elegant (unSTLish).
// But for the first 2 elements using e.g. partial_sort is not simpler.
Coord dist0 = Geom::infinity();
Coord dist1 = Geom::infinity();
nearest[0] = nullptr;
nearest[1] = nullptr;
for (auto info : infos) {
Coord dist = distance(point, info->beg.point);
if (dist < dist1) {
if (&info->beg != this && &info->end != this) {
if (dist < dist0) {
nearest[1] = nearest[0];
nearest[0] = &info->beg;
dist1 = dist0;
dist0 = dist;
} else {
nearest[1] = &info->beg;
dist1 = dist;
}
}
}
dist = distance(point, info->end.point);
if (dist < dist1) {
if (&info->beg != this && &info->end != this) {
if (dist < dist0) {
nearest[1] = nearest[0];
nearest[0] = &info->end;
dist1 = dist0;
dist0 = dist;
} else {
nearest[1] = &info->end;
dist1 = dist;
}
}
}
}
}
// Check if "this" is among the nearest of its nearest
void OrderingPoint::EnforceMutual()
{
if (nearest[0] && !(this == nearest[0]->nearest[0] || this == nearest[0]->nearest[1])) {
nearest[0] = nullptr;
}
if (nearest[1] && !(this == nearest[1]->nearest[0] || this == nearest[1]->nearest[1])) {
nearest[1] = nullptr;
}
if (nearest[1] && !nearest[0]) {
nearest[0] = nearest[1];
nearest[1] = nullptr;
}
}
// Check if the subpath indices of this and other are the same, otherwise zero both nearest
void OrderingPoint::EnforceSymmetric(const OrderingPoint &other)
{
if (nearest[0] && !(
(other.nearest[0] && nearest[0]->infoex == other.nearest[0]->infoex) ||
(other.nearest[1] && nearest[0]->infoex == other.nearest[1]->infoex)
)) {
nearest[0] = nullptr;
}
if (nearest[1] && !(
(other.nearest[0] && nearest[1]->infoex == other.nearest[0]->infoex) ||
(other.nearest[1] && nearest[1]->infoex == other.nearest[1]->infoex)
)) {
nearest[1] = nullptr;
}
if (nearest[1] && !nearest[0]) {
nearest[0] = nearest[1];
nearest[1] = nullptr;
}
}
void OrderingPoint::Dump()
{
// COMMENTED TO SUPPRESS WARNING UNUSED AUTHOR TAKE IT UNCOMMENTED
// Coord dist0 = nearest[0] ? distance(point, nearest[0]->point) : -1.0;
// Coord dist1 = nearest[1] ? distance(point, nearest[1]->point) : -1.0;
// int idx0 = nearest[0] ? nearest[0]->infoex->idx : -1;
// int idx1 = nearest[1] ? nearest[1]->infoex->idx : -1;
DebugTrace2(("I=%d X=%.5lf Y=%.5lf d1=%.3lf d2=%.3lf i1=%d i2=%d", infoex->idx, point.x(), 297.0 - point.y(), dist0, dist1, idx0, idx1));
}
// If this element can be grouped (has neighbours) but is not yet grouped, create a new group
void OrderingInfoEx::MakeGroup(std::vector<OrderingInfoEx *> &infos, std::vector<OrderingGroup *> *groups)
{
if (grouped || !beg.HasNearest() || !end.HasNearest()) {
return;
}
groups->push_back(new OrderingGroup(groups->size()));
// Add neighbors recursively
AddToGroup(infos, groups->back());
}
// Add this and all connected elements to the group
void OrderingInfoEx::AddToGroup(std::vector<OrderingInfoEx *> &infos, OrderingGroup *group)
{
if (grouped || !beg.HasNearest() || !end.HasNearest()) {
return;
}
group->items.push_back(this);
grouped = true;
// Note: beg and end neighbors have been checked to be symmetric
if (beg.nearest[0]) {
beg.nearest[0]->infoex->AddToGroup(infos, group);
}
if (beg.nearest[1]) {
beg.nearest[1]->infoex->AddToGroup(infos, group);
}
if (end.nearest[0]) {
end.nearest[0]->infoex->AddToGroup(infos, group);
}
if (end.nearest[1]) {
end.nearest[1]->infoex->AddToGroup(infos, group);
}
}
// Constructor
OrderingGroupNeighbor::OrderingGroupNeighbor(OrderingGroupPoint *me, OrderingGroupPoint *other) :
point(other),
distance(Geom::distance(me->point, other->point))
{
}
// Comparison function for sorting by distance
bool OrderingGroupNeighbor::Compare(const OrderingGroupNeighbor &a, const OrderingGroupNeighbor &b)
{
return a.distance < b.distance;
}
// Find the nearest unused neighbor point
OrderingGroupNeighbor *OrderingGroupPoint::FindNearestUnused()
{
for (auto & it : nearest) {
if (!it.point->used) {
DebugTrace1TSP(("Nearest: group %d, size %d, point %d, nghb %d, xFrom %.4lf, yFrom %.4lf, xTo %.4lf, yTo %.4lf, dist %.4lf",
it->point->group->index, it->point->group->items.size(), it->point->indexInGroup, it - nearest.begin(),
point.x(), 297 - point.y(),
it->point->point.x(), 297 - it->point->point.y(),
it->distance));
return ⁢
}
}
// it shouldn't happen that we can't find any point at all
assert(0);
return nullptr;
}
// Return the other end in the group of the point
OrderingGroupPoint *OrderingGroupPoint::GetOtherEndGroup()
{
return group->endpoints[ indexInGroup ^ 1 ];
}
// Return the alternate point (if one exists), 0 otherwise
OrderingGroupPoint *OrderingGroupPoint::GetAltPointGroup()
{
if (group->nEndPoints < 4) {
return nullptr;
}
OrderingGroupPoint *alt = group->endpoints[ indexInGroup ^ 2 ];
return alt->used ? nullptr : alt;
}
// Sets the rev flags in the group assuming that the group starts with this point
void OrderingGroupPoint::SetRevInGroup()
{
// If this is not a front point, the item list needs to be reversed
group->revItemList = !front;
// If this is not a begin point, the items need to be reversed
group->revItems = !begin;
}
// Mark an end point as used and also mark the two other alternating points as used
// Returns the used point
void OrderingGroupPoint::UsePoint()
{
group->UsePoint(indexInGroup);
}
// Mark an end point as unused and possibly also mark the two other alternating points as unused
// Returns the used point
void OrderingGroupPoint::UnusePoint()
{
group->UnusePoint(indexInGroup);
}
// Return the other end in the connection
OrderingGroupPoint *OrderingGroupPoint::GetOtherEndConnection()
{
assert(connection);
assert(connection->points[ indexInConnection ] == this);
assert(connection->points[ indexInConnection ^ 1 ]);
return connection->points[ indexInConnection ^ 1 ];
}
// Set the end points of a group from the items
void OrderingGroup::SetEndpoints()
{
assert(items.size() >= 1);
if (items.size() == 1) {
// A simple line:
//
// b0-front--e1
nEndPoints = 2;
endpoints[0] = new OrderingGroupPoint(items.front()->beg.point, this, 0, true, true);
endpoints[1] = new OrderingGroupPoint(items.front()->end.point, this, 1, false, true);
} else {
// If the number of elements is even, the group is
// either from items.front().beg to items.back().beg
// or from items.front().end to items.back().end:
// Below: b=beg, e=end, numbers are end point indices
//
// b0-front--e b0-front--e2
// | |
// b---------e b---------e
// | |
// b---------e b---------e
// | |
// b1-back---e b1-back---e3
//
//
// if the number of elements is odd, it is crossed:
//
// b0-front--e b--front--e2
// | |
// b---------e b---------e
// | |
// b--back---e1 b3-back---e
//
// TODO: this is not true with the following kind of pattern
//
// b--front--e
// b---------e
// b--------e
// b--back--e
//
// Here only one connection is possible, from front.end to back.beg
//
// TODO: also this is not true if segment direction is alternating
//
// TOTO: => Just see where you end up from front().begin and front().end
//
// the numbering is such that either end points 0 and 1 are used or 2 and 3.
int cross = items.size() & 1 ? 2 : 0;
nEndPoints = 4;
endpoints[0 ] = new OrderingGroupPoint(items.front()->beg.point, this, 0, true, true);
endpoints[1 ^ cross] = new OrderingGroupPoint(items.back() ->beg.point, this, 1 ^ cross, true, false);
endpoints[2 ] = new OrderingGroupPoint(items.front()->end.point, this, 2, false, true);
endpoints[3 ^ cross] = new OrderingGroupPoint(items.back() ->end.point, this, 3 ^ cross, false, false);
}
}
// Add all points from another group as neighbors
void OrderingGroup::AddNeighbors(OrderingGroup *nghb)
{
for (int iThis = 0; iThis < nEndPoints; iThis++) {
for (int iNghb = 0; iNghb < nghb->nEndPoints; iNghb++) {
endpoints[iThis]->nearest.emplace_back(endpoints[iThis], nghb->endpoints[iNghb]);
}
}
}
// Mark an end point as used and also mark the two other alternating points as used
// Returns the used point
OrderingGroupPoint *OrderingGroup::UsePoint(int index)
{
assert(index < nEndPoints);
assert(!endpoints[index]->used);
endpoints[index]->used = true;
if (nEndPoints == 4) {
int offs = index < 2 ? 2 : 0;
endpoints[0 + offs]->used = true;
endpoints[1 + offs]->used = true;
}
return endpoints[index];
}
// Mark an end point as unused and possibly also mark the two other alternating points as unused
// Returns the used point
void OrderingGroup::UnusePoint(int index)
{
assert(index < nEndPoints);
assert(endpoints[index]->used);
endpoints[index]->used = false;
if (nEndPoints == 4 && !endpoints[index ^ 1]->used) {
int offs = index < 2 ? 2 : 0;
endpoints[0 + offs]->used = false;
endpoints[1 + offs]->used = false;
}
}
// Add an end point
void OrderingSegment::AddPoint(OrderingGroupPoint *point)
{
assert(point);
assert(nEndPoints < 4);
endpoints[ nEndPoints++ ] = point;
// If both ends of a group are added and the group has 4 points, add the other two as well
if (nEndPoints == 2 && endpoints[0]->group == endpoints[1]->group) {
OrderingGroup *group = endpoints[0]->group;
if (group->nEndPoints == 4) {
for (int i = 0; i < 4; i++) {
endpoints[i] = group->endpoints[i];
}
nEndPoints = 4;
}
}
}
// Get begin point (taking swap and end bit into account
OrderingGroupPoint *OrderingSegment::GetBeginPoint(unsigned int iSwap, unsigned int iEnd)
{
int iPoint = ((iEnd >> endbit) & 1) + (((iSwap >> swapbit) & 1) << 1);
assert(iPoint < nEndPoints);
return endpoints[iPoint];
}
// Get end point (taking swap and end bit into account
OrderingGroupPoint *OrderingSegment::GetEndPoint(unsigned int iSwap, unsigned int iEnd)
{
int iPoint = (((iEnd >> endbit) & 1) ^ 1) + (((iSwap >> swapbit) & 1) << 1);
assert(iPoint < nEndPoints);
return endpoints[iPoint];
}
// Find the next unused point in list
std::vector<OrderingGroupPoint *>::iterator FindUnusedAndUse(std::vector<OrderingGroupPoint *> *unusedPoints, std::vector<OrderingGroupPoint *>::iterator const from)
{
for (std::vector<OrderingGroupPoint *>::iterator it = from; it != unusedPoints->end(); ++it) {
if (!(*it)->used) {
(*it)->UsePoint();
return it;
}
}
return unusedPoints->end();
}
// Find the shortest reconnect between the given points
bool FindShortestReconnect(std::vector<OrderingSegment> &segments, std::vector<OrderingGroupConnection *> &connections, std::vector<OrderingGroupConnection *> &allconnections, OrderingGroupConnection **longestConnect, Coord *total, Coord olddist)
{
// Find the longest connection outside of the active set
// The longest segment is then the longest of this longest outside segment and all inside segments
OrderingGroupConnection *longestOutside = nullptr;
if (contains(connections, *longestConnect)) {
// The longest connection is inside the active set, so we need to search for the longest outside
Coord length = 0.0;
for (auto & allconnection : allconnections) {
if (allconnection->Distance() > length) {
if (!contains(connections, allconnection)) {
longestOutside = allconnection;
length = allconnection->Distance();
}
}
}
} else {
longestOutside = *longestConnect;
}
// length of longestConnect outside
Coord longestOutsideLength = longestOutside ? longestOutside->Distance() : 0.0;
// We measure length without the longest, so subtract the longest length from the old distance
olddist -= (*longestConnect)->Distance();
// Assign a swap bit and end bit to each active connection
int nEndBits = 0;
int nSwapBits = 0;
for (auto & segment : segments) {
segment.endbit = nEndBits++;
if (segment.nEndPoints == 4) {
segment.swapbit = nSwapBits++;
} else {
// bit 32 should always be 0
segment.swapbit = 31;
}
}
unsigned int swapMask = (1U << nSwapBits) - 1;
unsigned int endMask = (1U << nEndBits) - 1;
// Create a permutation vector
std::vector<int> permutation(segments.size());
fill_increasing(permutation.begin(), permutation.end(), 0);
// best improvement
bool improved = false;
Coord distBest = olddist;
std::vector<int> permutationBest;
unsigned int iSwapBest;
unsigned int iEndBest;
int nTrials = 0;
// Loop over the permutations
do {
// Loop over the swap bits
unsigned int iSwap = 0;
do {
// Loop over the end bits
unsigned int iEnd = 0;
do {
// Length of all active connections
Coord lengthTotal = 0;
// Length of longest connection (active or inactive)
Coord lengthLongest = longestOutsideLength;
// Close the loop with the end point of the last segment
OrderingGroupPoint *prevend = segments[permutation.back()].GetEndPoint(iSwap, iEnd);
for (int & it : permutation) {
OrderingGroupPoint *thisbeg = segments[it].GetBeginPoint(iSwap, iEnd);
Coord length = Geom::distance(thisbeg->point, prevend->point);
lengthTotal += length;
if (length > lengthLongest) {
lengthLongest = length;
}
prevend = segments[it].GetEndPoint(iSwap, iEnd);
}
lengthTotal -= lengthLongest;
// If there is an improvement, remember the best selection
if (lengthTotal + 1e-6 < distBest) {
improved = true;
distBest = lengthTotal;
permutationBest = permutation;
iSwapBest = iSwap;
iEndBest = iEnd;
// Just debug printing
OrderingGroupPoint *prevend = segments[permutation.back()].GetEndPoint(iSwap, iEnd);
for (int & it : permutation) {
// COMMENTED TO SUPPRESS WARNING UNUSED AUTHOR TAKE IT UNCOMMENTED
//OrderingGroupPoint *thisbeg = segments[it].GetBeginPoint(iSwap, iEnd);
DebugTrace2TSP(("IMP 0F=%d %d %.6lf", thisbeg->group->index, thisbeg->indexInGroup, Geom::distance(thisbeg->point, prevend->point)));
DebugTrace2TSP(("IMP 0T=%d %d %.6lf", prevend->group->index, prevend->indexInGroup, Geom::distance(thisbeg->point, prevend->point)));
prevend = segments[it].GetEndPoint(iSwap, iEnd);
}
}
nTrials++;
// bit 0 is always 0, because the first segment is kept fixed
iEnd += 2;
} while (iEnd & endMask);
iSwap++;
} while (iSwap & swapMask);
// first segment is kept fixed
} while (std::next_permutation(permutation.begin() + 1, permutation.end()));
if (improved) {
DebugTrace2TSP(("Improvement %lf->%lf in %d", olddist, distBest, nTrials));
// change the connections
for (std::vector<OrderingGroupConnection *>::iterator it = connections.begin(); it != connections.end(); ++it) {
DebugTrace2TSP(("WAS 0F=%d %d %.6lf", (*it)->points[0]->group->index, (*it)->points[0]->indexInGroup, (*it)->Distance()));
DebugTrace2TSP(("WAS 0T=%d %d %.6lf", (*it)->points[1]->group->index, (*it)->points[1]->indexInGroup, (*it)->Distance()));
}
DebugTrace2TSP(("OLDDIST %.6lf delta %.6lf", olddist, olddist - (*longestConnect)->Distance()));
DebugTrace2TSP(("LONG =%d %d %.6lf", (*longestConnect)->points[0]->group->index, (*longestConnect)->points[0]->indexInGroup, (*longestConnect)->Distance()));
DebugTrace2TSP(("LONG =%d %d %.6lf", (*longestConnect)->points[1]->group->index, (*longestConnect)->points[1]->indexInGroup, (*longestConnect)->Distance()));
int perm = permutationBest.back();
for (std::vector<OrderingGroupConnection *>::iterator it = connections.begin(); it != connections.end(); ++it) {
(*it)->Connect(1, segments[ perm ].GetEndPoint(iSwapBest, iEndBest));
perm = permutationBest[ it - connections.begin() ];
(*it)->Connect(0, segments[ perm ].GetBeginPoint(iSwapBest, iEndBest));
}
for (std::vector<OrderingGroupConnection *>::iterator it = connections.begin(); it != connections.end(); ++it) {
DebugTrace2TSP(("IS 0F=%d %d %.6lf", (*it)->points[0]->group->index, (*it)->points[0]->indexInGroup, (*it)->Distance()));
DebugTrace2TSP(("IS 0T=%d %d %.6lf", (*it)->points[1]->group->index, (*it)->points[1]->indexInGroup, (*it)->Distance()));
}
(*longestConnect) = longestOutside;
for (auto & connection : connections) {
if (connection->Distance() > (*longestConnect)->Distance()) {
*longestConnect = connection;
}
}
DebugTrace2TSP(("LONG =%d %d %.6lf", (*longestConnect)->points[0]->group->index, (*longestConnect)->points[0]->indexInGroup, (*longestConnect)->Distance()));
DebugTrace2TSP(("LONG =%d %d %.6lf", (*longestConnect)->points[1]->group->index, (*longestConnect)->points[1]->indexInGroup, (*longestConnect)->Distance()));
}
return improved;
}
// Check if connections form a tour
void AssertIsTour(std::vector<OrderingGroup *> &groups, std::vector<OrderingGroupConnection *> &connections, OrderingGroupConnection *longestConnection)
{
for (auto & connection : connections) {
for (auto pnt : connection->points) {
assert(pnt->connection == connection);
assert(pnt->connection->points[pnt->indexInConnection] == pnt);
assert(pnt->group->endpoints[pnt->indexInGroup] == pnt);
}
}
Coord length1 = 0;
Coord longest1 = 0;
OrderingGroupPoint *current = connections.front()->points[0];
for (unsigned int n = 0; n < connections.size(); n++) {
DebugTrace2TSP(("Tour test 1 %p g=%d/%d c=%d/%d %p %p %.6lf %.3lf %.3lf %d %d %d", current, current->group->index, current->indexInGroup, current->connection->index, current->indexInConnection, current->connection->points[0], current->connection->points[1], current->connection->Distance(), current->point.x(), 297 - current->point.y(), current->begin, current->front, current->group->items.size()));
Coord length = current->connection->Distance();
length1 += length;
longest1 = std::max(length, longest1);
current = current->GetOtherEndConnection();
DebugTrace2TSP(("Tour test 2 %p g=%d/%d c=%d/%d %p %p %.6lf %.3lf %.3lf %d %d %d", current, current->group->index, current->indexInGroup, current->connection->index, current->indexInConnection, current->connection->points[0], current->connection->points[1], current->connection->Distance(), current->point.x(), 297 - current->point.y(), current->begin, current->front, current->group->items.size()));
current = current->GetOtherEndGroup();
}
DebugTrace2TSP(("Tour test 3 %p g=%d/%d c=%d/%d %p %p", current, current->group->index, current->indexInGroup, current->connection->index, current->indexInConnection, current->connection->points[0], current->connection->points[1]));
assert(current == connections.front()->points[0]);
// The other direction
Coord length2 = 0;
Coord longest2 = 0;
current = connections.front()->points[0];
for (unsigned int n = 0; n < connections.size(); n++) {
current = current->GetOtherEndGroup();
Coord length = current->connection->Distance();
length2 += length;
longest2 = std::max(length, longest2);
current = current->GetOtherEndConnection();
}
assert(current == connections.front()->points[0]);
DebugTrace1TSP(("Tour length %.6lf(%.6lf) longest %.6lf(%.6lf) remaining %.6lf(%.6lf)", length1, length2, longest1, longest2, length1 - longest1, length2 - longest2));
}
// Bring a tour into linear order after a modification
/* I would like to avoid this.
* It is no problem to travel a tour with changing directions using the GetOtherEnd functions,
* but it is difficult to know the segments, that is which endpoint of a connection is connected to which by the unmodified pieces of the tour.
* In the end it is probably better to implement the Lin-Kernighan algorithm which avoids this problem by creating connected changes. */
void LinearizeTour(std::vector<OrderingGroupConnection *> &connections)
{
OrderingGroupPoint *current = connections.front()->points[0];
for (unsigned int iNew = 0; iNew < connections.size(); iNew++) {
// swap the connection at location n with the current connection
OrderingGroupConnection *connection = current->connection;
unsigned int iOld = connection->index;
assert(connections[iOld] == connection);
connections[iOld] = connections[iNew];
connections[iNew] = connection;
connections[iOld]->index = iOld;
connections[iNew]->index = iNew;
// swap the points of a connection
assert(current == connection->points[0] || current == connection->points[1]);
if (current != connection->points[0]) {
connection->points[1] = connection->points[0];
connection->points[0] = current;
connection->points[1]->indexInConnection = 1;
connection->points[0]->indexInConnection = 0;
}
current = current->GetOtherEndConnection();
current = current->GetOtherEndGroup();
}
}
// Use some Traveling Salesman Problem (TSP) like heuristics to bring several groups into a
// order with as short as possible interconnection paths
void OrderGroups(std::vector<OrderingGroup *> *groups, const int nDims)
{
// There is no point in ordering just one group
if (groups->size() <= 1) {
return;
}
// Initialize the endpoints for all groups
for (auto & group : *groups) {
group->SetEndpoints();
}
// Find the neighboring points for all end points of all groups and sort by distance
for (std::vector<OrderingGroup *>::iterator itThis = groups->begin(); itThis != groups->end(); ++itThis) {
for (int i = 0; i < (*itThis)->nEndPoints; i++) {
// This can be up to 2x too large, but still better than incrementing the size
(*itThis)->endpoints[i]->nearest.reserve(4 * groups->size());
}
for (std::vector<OrderingGroup *>::iterator itNghb = groups->begin(); itNghb != groups->end(); ++itNghb) {
if (itThis != itNghb) {
(*itThis)->AddNeighbors(*itNghb);
}
}
for (int i = 0; i < (*itThis)->nEndPoints; i++) {
std::sort((*itThis)->endpoints[i]->nearest.begin(), (*itThis)->endpoints[i]->nearest.end(), OrderingGroupNeighbor::Compare);
}
}
// =========== Step 1: Create a simple nearest neighbor chain ===========
// Vector of connection points
std::vector<OrderingGroupConnection *> connections;
connections.reserve(groups->size());
// Total Jump Distance
Coord total = 0.0;
// Start with the first group and connect always with nearest unused point
OrderingGroupPoint *crnt = groups->front()->endpoints[0];
// The longest connection is ignored (we don't want cycles)
OrderingGroupConnection *longestConnect = nullptr;
for (unsigned int nConnected = 0; nConnected < groups->size(); nConnected++) {
// Mark both end points of the current segment as used
crnt->UsePoint();
crnt = crnt->GetOtherEndGroup();
crnt->UsePoint();
// if this is the last segment, Mark start point of first segment as unused,
// so that the end can connect to it
if (nConnected == groups->size() - 1) {
groups->front()->endpoints[0]->UnusePoint();
}
// connect to next segment
OrderingGroupNeighbor *nghb = crnt->FindNearestUnused();
connections.push_back(new OrderingGroupConnection(crnt, nghb->point, connections.size()));
total += nghb->distance;
crnt = nghb->point;
if (!longestConnect || nghb->distance > longestConnect->Distance()) {
longestConnect = connections.back();
}
}
DebugTrace1TSP(("Total jump distance %.3lf (closed)", total));
DebugTrace1TSP(("Total jump distance %.3lf (open)", total - longestConnect->Distance()));
AssertIsTour(*groups, connections, longestConnect);
// =========== Step 2: Choose nDims segments to clear and reconnect ===========
bool improvement;
int nRuns = 0;
int nTrials = 0;
int nImprovements = 0;
do {
improvement = false;
nRuns ++;
std::vector< std::vector<OrderingGroupConnection *>::iterator > iterators;
for (
triangleit_begin(iterators, connections.begin(), connections.end(), nDims);
triangleit_test(iterators, connections.end());
triangleit_incr(iterators, connections.end())
) {
nTrials ++;
Coord dist = 0;
std::vector<OrderingSegment> segments(iterators.size());
std::vector<OrderingGroupConnection *> changedconnections;
changedconnections.reserve(3);
OrderingGroupConnection *prev = *iterators.back();
for (size_t i = 0; i < iterators.size(); i++) {
dist += (*iterators[i])->Distance();
segments[i].AddPoint(prev->points[1]);
segments[i].AddPoint((*iterators[i])->points[0]);
prev = *iterators[i];
changedconnections.push_back(*iterators[i]);
}
if (FindShortestReconnect(segments, changedconnections, connections, &longestConnect, &total, dist)) {
nImprovements ++;
AssertIsTour(*groups, connections, longestConnect);
LinearizeTour(connections);
AssertIsTour(*groups, connections, longestConnect);
improvement = true;
}
}
} while (improvement && nRuns < 10);
DebugTrace1TSP(("Finished after %d rounds, %d trials, %d improvements", nRuns, nTrials, nImprovements));
// =========== Step N: Create vector of groups from vector of connection points ===========
std::vector<OrderingGroup *> result;
result.reserve(groups->size());
// Go through the groups starting with the longest connection (which is this way left out)
{
OrderingGroupPoint *current = longestConnect->points[1];
for (unsigned int n = 0; n < connections.size(); n++) {
result.push_back(current->group);
current->SetRevInGroup();
current = current->GetOtherEndGroup();
current = current->GetOtherEndConnection();
}
}
assert(result.size() == groups->size());
assert_unique(result);
delete_and_clear(connections);
*groups = result;
}
// Global optimization of path length
void OrderingAdvanced(std::vector<OrderingInfo> &infos, int nDims)
{
if (infos.size() < 3) {
return;
}
// Create extended ordering info vector and copy data from normal ordering info
std::vector<OrderingInfoEx *> infoex;
infoex.reserve(infos.size());
for (std::vector<OrderingInfo>::const_iterator it = infos.begin(); it != infos.end();) {
// Note: This assumes that the index in the OrderingInfo matches the vector index!
infoex.push_back(new OrderingInfoEx(*it, infoex.size()));
++it;
while (it != infos.end() && it->begOrig == infoex.back()->end.point) {
infoex.back()->end.point = it->endOrig;
infoex.back()->origIndices.push_back(it->index);
++it;
}
}
// Find closest 2 points for each point and enforce that 2nd nearest is not further away than 1.8xthe nearest
// If this is not the case, clear nearest and 2nd nearest point
for (std::vector<OrderingInfoEx *>::iterator it = infoex.begin(); it != infoex.end(); ++it) {
(*it)->beg.FindNearest2(infoex);
(*it)->end.FindNearest2(infoex);
}
DebugTraceGrouping(
DebugTrace2(("STEP1"));
for (std::vector<OrderingInfoEx *>::iterator it = infoex.begin(); it != infoex.end(); ++it) {
(*it)->beg.Dump();
(*it)->end.Dump();
}
)
// Make sure the nearest points are mutual
for (auto & it : infoex) {
it->beg.EnforceMutual();
it->end.EnforceMutual();
}
DebugTraceGrouping(
DebugTrace2(("STEP2"));
for (std::vector<OrderingInfoEx *>::iterator it = infoex.begin(); it != infoex.end(); ++it) {
(*it)->beg.Dump();
(*it)->end.Dump();
}
)
// Make sure the nearest points for begin and end lead to the same sub-path (same index)
for (auto & it : infoex) {
it->beg.EnforceSymmetric(it->end);
it->end.EnforceSymmetric(it->beg);
}
DebugTraceGrouping(
DebugTrace2(("STEP3"));
for (std::vector<OrderingInfoEx *>::iterator it = infoex.begin(); it != infoex.end(); ++it) {
(*it)->beg.Dump();
(*it)->end.Dump();
}
)
// The remaining nearest neighbors should be 100% non ambiguous, so group them
std::vector<OrderingGroup *> groups;
for (std::vector<OrderingInfoEx *>::iterator it = infoex.begin(); it != infoex.end(); ++it) {
(*it)->MakeGroup(infoex, &groups);
}
// Create single groups for ungrouped lines
std::vector<OrderingInfo> result;
result.reserve(infos.size());
int nUngrouped = 0;
for (auto & it : infoex) {
if (!it->grouped) {
groups.push_back(new OrderingGroup(groups.size()));
groups.back()->items.push_back(it);
nUngrouped++;
}
}
DebugTraceGrouping(
DebugTrace2(("Ungrouped lines = %d", nUngrouped));
DebugTrace2(("%d Groups found", groups.size()));
for (std::vector<OrderingGroup *>::iterator it = groups.begin(); it != groups.end(); ++it) {
DebugTrace2(("Group size %d", (*it)->items.size()));
}
)
// Order groups, so that the connection path gets shortest
OrderGroups(&groups, nDims);
// Copy grouped lines to output
for (auto & group : groups) {
for (unsigned int iItem = 0; iItem < group->items.size(); iItem++) {
unsigned int iItemRev = group->revItemList ? group->items.size() - 1 - iItem : iItem;
OrderingInfoEx *item = group->items[iItemRev];
// If revItems is false, even items shall have reverse=false
// In this case ( ( iItem & 1 ) == 0 )== true, revItems=false, (true==false) == false
bool reverse = ((iItem & 1) == 0) == group->revItems;
if (!reverse) {
for (int & origIndice : item->origIndices) {
result.push_back(infos[origIndice]);
result.back().reverse = false;
}
} else {
for (std::vector<int>::reverse_iterator itOrig = item->origIndices.rbegin(); itOrig != item->origIndices.rend(); ++itOrig) {
result.push_back(infos[*itOrig]);
result.back().reverse = true;
}
}
}
result.back().connect = true;
}
delete_and_clear(groups);
delete_and_clear(infoex);
infos = result;
}
} // namespace LPEEmbroderyStitchOrdering
} // namespace LivePathEffect
} // namespace Inkscape
|