1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
|
// SPDX-License-Identifier: GPL-2.0-or-later
/**
* @file
* PowerStroke LPE implementation. Creates curves with modifiable stroke width.
*/
/* Authors:
* Johan Engelen <j.b.c.engelen@alumnus.utwente.nl>
*
* Copyright (C) 2010-2012 Authors
*
* Released under GNU GPL v2+, read the file 'COPYING' for more information.
*/
#include <2geom/elliptical-arc.h>
#include <2geom/path-sink.h>
#include <2geom/path-intersection.h>
#include <2geom/circle.h>
#include "live_effects/lpe-powerstroke.h"
#include "live_effects/lpe-powerstroke-interpolators.h"
#include "live_effects/lpe-simplify.h"
#include "live_effects/lpeobject.h"
#include "live_effects/fill-conversion.h"
#include "desktop-style.h"
#include "style.h"
#include "display/curve.h"
#include "display/control/canvas-item-enums.h"
#include "helper/geom.h"
#include "object/sp-shape.h"
#include "svg/css-ostringstream.h"
#include "svg/svg-color.h"
// TODO due to internal breakage in glibmm headers, this must be last:
#include <glibmm/i18n.h>
namespace Geom {
// should all be moved to 2geom at some point
/** Find the point where two straight lines cross.
*/
static std::optional<Point> intersection_point( Point const & origin_a, Point const & vector_a,
Point const & origin_b, Point const & vector_b)
{
Coord denom = cross(vector_a, vector_b);
if (!are_near(denom,0.)){
Coord t = (cross(vector_b, origin_a) + cross(origin_b, vector_b)) / denom;
return origin_a + t * vector_a;
}
return std::nullopt;
}
static Geom::CubicBezier sbasis_to_cubicbezier(Geom::D2<Geom::SBasis> const & sbasis_in)
{
std::vector<Geom::Point> temp;
sbasis_to_bezier(temp, sbasis_in, 4);
return Geom::CubicBezier( temp );
}
/**
* document this!
* very quick: this finds the ellipse with minimum eccentricity
passing through point P and Q, with tangent PO at P and QO at Q
http://mathforum.org/kb/message.jspa?messageID=7471596&tstart=0
*/
static Ellipse find_ellipse(Point P, Point Q, Point O)
{
Point p = P - O;
Point q = Q - O;
Coord K = 4 * dot(p,q) / (L2sq(p) + L2sq(q));
double cross = p[Y]*q[X] - p[X]*q[Y];
double a = -q[Y]/cross;
double b = q[X]/cross;
double c = (O[X]*q[Y] - O[Y]*q[X])/cross;
double d = p[Y]/cross;
double e = -p[X]/cross;
double f = (-O[X]*p[Y] + O[Y]*p[X])/cross;
// Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0
double A = (a*d*K+d*d+a*a);
double B = (a*e*K+b*d*K+2*d*e+2*a*b);
double C = (b*e*K+e*e+b*b);
double D = (a*f*K+c*d*K+2*d*f-2*d+2*a*c-2*a);
double E = (b*f*K+c*e*K+2*e*f-2*e+2*b*c-2*b);
double F = c*f*K+f*f-2*f+c*c-2*c+1;
return Ellipse(A, B, C, D, E, F);
}
/**
* Find circle that touches inside of the curve, with radius matching the curvature, at time value \c t.
* Because this method internally uses unitTangentAt, t should be smaller than 1.0 (see unitTangentAt).
*/
static Circle touching_circle( D2<SBasis> const &curve, double t, double tol=0.01 )
{
//Piecewise<SBasis> k = curvature(curve, tol);
D2<SBasis> dM=derivative(curve);
if ( are_near(L2sq(dM(t)),0.) && (dM[0].size() > 1) && (dM[1].size() > 1) ) {
dM=derivative(dM);
}
if ( are_near(L2sq(dM(t)),0.) && (dM[0].size() > 1) && (dM[1].size() > 1) ) { // try second time
dM=derivative(dM);
}
if ( dM.isZero(tol) || (are_near(L2sq(dM(t)),0.) && (dM[0].size() > 1) && (dM[1].size() > 1) )) { // admit defeat
return Geom::Circle(Geom::Point(0., 0.), 0.);
}
Piecewise<D2<SBasis> > unitv = unitVector(dM,tol);
if (unitv.empty()) { // admit defeat
return Geom::Circle(Geom::Point(0., 0.), 0.);
}
Piecewise<SBasis> dMlength = dot(Piecewise<D2<SBasis> >(dM),unitv);
Piecewise<SBasis> k = cross(derivative(unitv),unitv);
k = divide(k,dMlength,tol,3);
double curv = k(t); // note that this value is signed
Geom::Point normal = unitTangentAt(curve, t).cw();
double radius = 1/curv;
Geom::Point center = curve(t) + radius*normal;
return Geom::Circle(center, fabs(radius));
}
} // namespace Geom
namespace Inkscape {
namespace LivePathEffect {
static const Util::EnumData<unsigned> InterpolatorTypeData[] = {
{Geom::Interpolate::INTERP_CUBICBEZIER_SMOOTH, N_("CubicBezierSmooth"), "CubicBezierSmooth"},
{Geom::Interpolate::INTERP_LINEAR , N_("Linear"), "Linear"},
{Geom::Interpolate::INTERP_CUBICBEZIER , N_("CubicBezierFit"), "CubicBezierFit"},
{Geom::Interpolate::INTERP_CUBICBEZIER_JOHAN , N_("CubicBezierJohan"), "CubicBezierJohan"},
{Geom::Interpolate::INTERP_SPIRO , N_("SpiroInterpolator"), "SpiroInterpolator"},
{Geom::Interpolate::INTERP_CENTRIPETAL_CATMULLROM, N_("Centripetal Catmull-Rom"), "CentripetalCatmullRom"}
};
static const Util::EnumDataConverter<unsigned> InterpolatorTypeConverter(InterpolatorTypeData, sizeof(InterpolatorTypeData)/sizeof(*InterpolatorTypeData));
enum LineJoinType {
LINEJOIN_BEVEL,
LINEJOIN_ROUND,
LINEJOIN_EXTRP_MITER,
LINEJOIN_MITER,
LINEJOIN_SPIRO,
LINEJOIN_EXTRP_MITER_ARC
};
static const Util::EnumData<unsigned> LineJoinTypeData[] = {
{LINEJOIN_BEVEL, N_("Beveled"), "bevel"},
{LINEJOIN_ROUND, N_("Rounded"), "round"},
// {LINEJOIN_EXTRP_MITER, N_("Extrapolated"), "extrapolated"}, // disabled because doesn't work well
{LINEJOIN_EXTRP_MITER_ARC, N_("Extrapolated arc"), "extrp_arc"},
{LINEJOIN_MITER, N_("Miter"), "miter"},
{LINEJOIN_SPIRO, N_("Spiro"), "spiro"},
};
static const Util::EnumDataConverter<unsigned> LineJoinTypeConverter(LineJoinTypeData, sizeof(LineJoinTypeData)/sizeof(*LineJoinTypeData));
LPEPowerStroke::LPEPowerStroke(LivePathEffectObject *lpeobject) :
Effect(lpeobject),
offset_points(_("Offset points"), _("Offset points"), "offset_points", &wr, this),
not_jump(_("No jumping handles"), _("Allow to move handles along the path without them automatically attaching to the nearest path segment"), "not_jump", &wr, this, false),
sort_points(_("Sort points"), _("Sort offset points according to their time value along the curve"), "sort_points", &wr, this, true),
interpolator_type(_("Interpolator type:"), _("Determines which kind of interpolator will be used to interpolate between stroke width along the path"), "interpolator_type", InterpolatorTypeConverter, &wr, this, Geom::Interpolate::INTERP_CENTRIPETAL_CATMULLROM),
interpolator_beta(_("Smoothness:"), _("Sets the smoothness for the CubicBezierJohan interpolator; 0 = linear interpolation, 1 = smooth"), "interpolator_beta", &wr, this, 0.2),
scale_width(_("Width factor:"), _("Scale the stroke's width uniformly along the whole path"), "scale_width", &wr, this, 1.0),
start_linecap_type(_("Start cap:"), _("Determines the shape of the path's start"), "start_linecap_type", LineCapTypeConverter, &wr, this, LINECAP_ZERO_WIDTH),
linejoin_type(_("Join:"), _("Determines the shape of the path's corners"), "linejoin_type", LineJoinTypeConverter, &wr, this, LINEJOIN_ROUND),
miter_limit(_("Miter limit:"), _("Maximum length of the miter (in units of stroke width)"), "miter_limit", &wr, this, 4.),
end_linecap_type(_("End cap:"), _("Determines the shape of the path's end"), "end_linecap_type", LineCapTypeConverter, &wr, this, LINECAP_ZERO_WIDTH)
{
show_orig_path = true;
/// @todo offset_points are initialized with empty path, is that bug-save?
interpolator_beta.addSlider(true);
interpolator_beta.param_set_range(0.,1.);
registerParameter(&offset_points);
registerParameter(¬_jump);
registerParameter(&sort_points);
registerParameter(&interpolator_type);
registerParameter(&interpolator_beta);
registerParameter(&start_linecap_type);
registerParameter(&linejoin_type);
registerParameter(&miter_limit);
registerParameter(&scale_width);
registerParameter(&end_linecap_type);
scale_width.param_set_range(0.0, std::numeric_limits<double>::max());
scale_width.param_set_increments(0.1, 0.1);
scale_width.param_set_digits(4);
recusion_limit = 0;
has_recursion = false;
}
LPEPowerStroke::~LPEPowerStroke() = default;
void
LPEPowerStroke::doBeforeEffect(SPLPEItem const *lpeItem)
{
offset_points.set_scale_width(scale_width);
if (has_recursion) {
has_recursion = false;
adjustForNewPath(pathvector_before_effect);
}
}
void LPEPowerStroke::applyStyle(SPLPEItem *lpeitem)
{
lpe_shape_convert_stroke_and_fill(SP_SHAPE(lpeitem));
}
void
LPEPowerStroke::doOnApply(SPLPEItem const* lpeitem)
{
if (auto shape = dynamic_cast<SPShape const *>(lpeitem)) {
SPLPEItem* item = const_cast<SPLPEItem*>(lpeitem);
std::vector<Geom::Point> points;
Geom::PathVector const &pathv = pathv_to_linear_and_cubic_beziers(shape->curve()->get_pathvector());
double width = (lpeitem && lpeitem->style) ? lpeitem->style->stroke_width.computed / 2 : 1.;
Inkscape::Preferences *prefs = Inkscape::Preferences::get();
Glib::ustring pref_path_pp = "/live_effects/powerstroke/powerpencil";
bool powerpencil = prefs->getBool(pref_path_pp, false);
bool clipboard = offset_points.data().size() > 0;
if (!powerpencil) {
applyStyle(item);
}
if (!clipboard && !powerpencil) {
item->updateRepr();
if (pathv.empty()) {
points.emplace_back(0.2,width );
points.emplace_back(0.5, width);
points.emplace_back(0.8, width);
} else {
Geom::Path const &path = pathv.front();
Geom::Path::size_type const size = path.size_default();
if (!path.closed()) {
points.emplace_back(0.2, width);
}
points.emplace_back(0.5 * size, width);
if (!path.closed()) {
points.emplace_back(size - 0.2, width);
}
}
offset_points.param_set_and_write_new_value(points);
}
offset_points.set_scale_width(scale_width);
} else {
if (!SP_IS_SHAPE(lpeitem)) {
g_warning("LPE Powerstroke can only be applied to shapes (not groups).");
}
}
}
void LPEPowerStroke::doOnRemove(SPLPEItem const* lpeitem)
{
auto lpeitem_mutable = const_cast<SPLPEItem *>(lpeitem);
auto shape = dynamic_cast<SPShape *>(lpeitem_mutable);
if (shape && !keep_paths) {
lpe_shape_revert_stroke_and_fill(shape, offset_points.median_width() * 2);
}
}
void
LPEPowerStroke::adjustForNewPath(Geom::PathVector const & path_in)
{
if (!path_in.empty()) {
offset_points.recalculate_controlpoints_for_new_pwd2(path_in[0].toPwSb());
}
}
static bool compare_offsets (Geom::Point first, Geom::Point second)
{
return first[Geom::X] < second[Geom::X];
}
static Geom::Path path_from_piecewise_fix_cusps( Geom::Piecewise<Geom::D2<Geom::SBasis> > const & B,
Geom::Piecewise<Geom::SBasis> const & y, // width path
LineJoinType jointype,
double miter_limit,
double tol=Geom::EPSILON)
{
/* per definition, each discontinuity should be fixed with a join-ending, as defined by linejoin_type
*/
Geom::PathBuilder pb;
Geom::OptRect bbox = bounds_fast(B);
if (B.empty() || !bbox) {
return pb.peek().front();
}
pb.setStitching(true);
Geom::Point start = B[0].at0();
pb.moveTo(start);
build_from_sbasis(pb, B[0], tol, false);
unsigned prev_i = 0;
for (unsigned i=1; i < B.size(); i++) {
// Skip degenerate segments. The number below was determined, after examining
// very many paths with powerstrokes of all shapes and sizes, to allow filtering out most
// degenerate segments without losing significant quality; it is close to 1/256.
if (B[i].isConstant(4e-3)) {
continue;
}
if (!are_near(B[prev_i].at1(), B[i].at0(), tol) )
{ // discontinuity found, so fix it :-)
double width = y( B.cuts[i] );
Geom::Point tang1 = -unitTangentAt(reverse(B[prev_i]),0.); // = unitTangentAt(B[prev_i],1);
Geom::Point tang2 = unitTangentAt(B[i],0);
Geom::Point discontinuity_vec = B[i].at0() - B[prev_i].at1();
bool on_outside = ( dot(tang1, discontinuity_vec) >= 0. );
if (on_outside) {
// we are on the outside: add some type of join!
switch (jointype) {
case LINEJOIN_ROUND: {
/* for constant width paths, the rounding is a circular arc (rx == ry),
for non-constant width paths, the rounding can be done with an ellipse but is hard and ambiguous.
The elliptical arc should go through the discontinuity's start and end points (of course!)
and also should match the discontinuity tangents at those start and end points.
To resolve the ambiguity, the elliptical arc with minimal eccentricity should be chosen.
A 2Geom method was created to do exactly this :)
*/
std::optional<Geom::Point> O = intersection_point( B[prev_i].at1(), tang1,
B[i].at0(), tang2 );
if (!O) {
// no center found, i.e. 180 degrees round
pb.lineTo(B[i].at0()); // default to bevel for too shallow cusp angles
break;
}
Geom::Ellipse ellipse;
try {
ellipse = find_ellipse(B[prev_i].at1(), B[i].at0(), *O);
}
catch (Geom::LogicalError &e) {
// 2geom did not find a fitting ellipse, this happens for weird thick paths :)
// do bevel, and break
pb.lineTo(B[i].at0());
break;
}
// check if ellipse.ray is within 'sane' range.
if ( ( fabs(ellipse.ray(Geom::X)) > 1e6 ) ||
( fabs(ellipse.ray(Geom::Y)) > 1e6 ) )
{
// do bevel, and break
pb.lineTo(B[i].at0());
break;
}
pb.arcTo( ellipse.ray(Geom::X), ellipse.ray(Geom::Y), ellipse.rotationAngle(),
false, width < 0, B[i].at0() );
break;
}
case LINEJOIN_EXTRP_MITER: {
Geom::D2<Geom::SBasis> newcurve1 = B[prev_i] * Geom::reflection(rot90(tang1), B[prev_i].at1());
Geom::CubicBezier bzr1 = sbasis_to_cubicbezier( reverse(newcurve1) );
Geom::D2<Geom::SBasis> newcurve2 = B[i] * Geom::reflection(rot90(tang2), B[i].at0());
Geom::CubicBezier bzr2 = sbasis_to_cubicbezier( reverse(newcurve2) );
Geom::Crossings cross = crossings(bzr1, bzr2);
if (cross.empty()) {
// empty crossing: default to bevel
pb.lineTo(B[i].at0());
} else {
// check size of miter
Geom::Point point_on_path = B[prev_i].at1() - rot90(tang1) * width;
Geom::Coord len = distance(bzr1.pointAt(cross[0].ta), point_on_path);
if (len > fabs(width) * miter_limit) {
// miter too big: default to bevel
pb.lineTo(B[i].at0());
} else {
std::pair<Geom::CubicBezier, Geom::CubicBezier> sub1 = bzr1.subdivide(cross[0].ta);
std::pair<Geom::CubicBezier, Geom::CubicBezier> sub2 = bzr2.subdivide(cross[0].tb);
pb.curveTo(sub1.first[1], sub1.first[2], sub1.first[3]);
pb.curveTo(sub2.second[1], sub2.second[2], sub2.second[3]);
}
}
break;
}
case LINEJOIN_EXTRP_MITER_ARC: {
// Extrapolate using the curvature at the end of the path segments to join
Geom::Circle circle1 = Geom::touching_circle(reverse(B[prev_i]), 0.0);
Geom::Circle circle2 = Geom::touching_circle(B[i], 0.0);
std::vector<Geom::ShapeIntersection> solutions;
solutions = circle1.intersect(circle2);
if (solutions.size() == 2) {
Geom::Point sol(0.,0.);
bool solok = true;
bool point0bad = false;
bool point1bad = false;
if ( dot(tang2, solutions[0].point() - B[i].at0()) > 0)
{
// points[0] is bad, choose points[1]
point0bad = true;
}
if ( dot(tang2, solutions[1].point() - B[i].at0()) > 0)
{
// points[1] is bad, choose points[0]
point1bad = true;
}
if (!point0bad && !point1bad ) {
// both points are good, choose nearest
sol = ( distanceSq(B[i].at0(), solutions[0].point()) < distanceSq(B[i].at0(), solutions[1].point()) ) ?
solutions[0].point() : solutions[1].point();
} else if (!point0bad) {
sol = solutions[0].point();
} else if (!point1bad) {
sol = solutions[1].point();
} else {
solok = false;
}
(*bbox).expandBy (bbox->width()/4);
if (!(*bbox).contains(sol)) {
solok = false;
}
Geom::EllipticalArc *arc0 = nullptr;
Geom::EllipticalArc *arc1 = nullptr;
bool build = false;
if (solok) {
arc0 = circle1.arc(B[prev_i].at1(), 0.5*(B[prev_i].at1()+sol), sol);
arc1 = circle2.arc(sol, 0.5*(sol+B[i].at0()), B[i].at0());
if (arc0) {
// FIX: Some assertions errors here
build_from_sbasis(pb,arc0->toSBasis(), tol, false);
build = true;
} else if (arc1) {
std::optional<Geom::Point> p = intersection_point( B[prev_i].at1(), tang1,
B[i].at0(), tang2 );
if (p) {
// check size of miter
Geom::Point point_on_path = B[prev_i].at1() - rot90(tang1) * width;
Geom::Coord len = distance(*p, point_on_path);
if (len <= fabs(width) * miter_limit) {
// miter OK
pb.lineTo(*p);
build = true;
}
}
}
if (build) {
build_from_sbasis(pb,arc1->toSBasis(), tol, false);
} else if (arc0) {
pb.lineTo(B[i].at0());
}
}
if (!solok || !(arc0 && build)) {
// fall back to miter
std::optional<Geom::Point> p = intersection_point( B[prev_i].at1(), tang1,
B[i].at0(), tang2 );
if (p) {
// check size of miter
Geom::Point point_on_path = B[prev_i].at1() - rot90(tang1) * width;
Geom::Coord len = distance(*p, point_on_path);
if (len <= fabs(width) * miter_limit) {
// miter OK
pb.lineTo(*p);
}
}
pb.lineTo(B[i].at0());
}
if (arc0) {
delete arc0;
arc0 = nullptr;
}
if (arc1) {
delete arc1;
arc1 = nullptr;
}
} else {
// fall back to miter
std::optional<Geom::Point> p = intersection_point( B[prev_i].at1(), tang1,
B[i].at0(), tang2 );
if (p) {
// check size of miter
Geom::Point point_on_path = B[prev_i].at1() - rot90(tang1) * width;
Geom::Coord len = distance(*p, point_on_path);
if (len <= fabs(width) * miter_limit) {
// miter OK
pb.lineTo(*p);
}
}
pb.lineTo(B[i].at0());
}
/*else if (solutions == 1) { // one circle is inside the other
// don't know what to do: default to bevel
pb.lineTo(B[i].at0());
} else { // no intersections
// don't know what to do: default to bevel
pb.lineTo(B[i].at0());
} */
break;
}
case LINEJOIN_MITER: {
std::optional<Geom::Point> p = intersection_point( B[prev_i].at1(), tang1,
B[i].at0(), tang2 );
if (p) {
// check size of miter
Geom::Point point_on_path = B[prev_i].at1() - rot90(tang1) * width;
Geom::Coord len = distance(*p, point_on_path);
if (len <= fabs(width) * miter_limit) {
// miter OK
pb.lineTo(*p);
}
}
pb.lineTo(B[i].at0());
break;
}
case LINEJOIN_SPIRO: {
Geom::Point direction = B[i].at0() - B[prev_i].at1();
double tang1_sign = dot(direction,tang1);
double tang2_sign = dot(direction,tang2);
Spiro::spiro_cp *controlpoints = g_new (Spiro::spiro_cp, 4);
controlpoints[0].x = (B[prev_i].at1() - tang1_sign*tang1)[Geom::X];
controlpoints[0].y = (B[prev_i].at1() - tang1_sign*tang1)[Geom::Y];
controlpoints[0].ty = '{';
controlpoints[1].x = B[prev_i].at1()[Geom::X];
controlpoints[1].y = B[prev_i].at1()[Geom::Y];
controlpoints[1].ty = ']';
controlpoints[2].x = B[i].at0()[Geom::X];
controlpoints[2].y = B[i].at0()[Geom::Y];
controlpoints[2].ty = '[';
controlpoints[3].x = (B[i].at0() + tang2_sign*tang2)[Geom::X];
controlpoints[3].y = (B[i].at0() + tang2_sign*tang2)[Geom::Y];
controlpoints[3].ty = '}';
Geom::Path spiro;
Spiro::spiro_run(controlpoints, 4, spiro);
pb.append(spiro.portion(1, spiro.size_open() - 1));
break;
}
case LINEJOIN_BEVEL:
default:
pb.lineTo(B[i].at0());
break;
}
build_from_sbasis(pb, B[i], tol, false);
} else {
// we are on inside of corner!
Geom::Path bzr1 = path_from_sbasis( B[prev_i], tol );
Geom::Path bzr2 = path_from_sbasis( B[i], tol );
Geom::Crossings cross = crossings(bzr1, bzr2);
if (cross.size() != 1) {
// empty crossing or too many crossings: default to bevel
pb.lineTo(B[i].at0());
pb.append(bzr2);
} else {
// :-) quick hack:
for (unsigned i=0; i < bzr1.size_open(); ++i) {
pb.backspace();
}
pb.append( bzr1.portion(0, cross[0].ta) );
pb.append( bzr2.portion(cross[0].tb, bzr2.size_open()) );
}
}
} else {
build_from_sbasis(pb, B[i], tol, false);
}
prev_i = i;
}
pb.flush();
return pb.peek().front();
}
Geom::PathVector
LPEPowerStroke::doEffect_path (Geom::PathVector const & path_in)
{
using namespace Geom;
Geom::PathVector path_out;
if (path_in.empty()) {
return path_in;
}
Geom::PathVector pathv = pathv_to_linear_and_cubic_beziers(path_in);
Geom::Piecewise<Geom::D2<Geom::SBasis> > pwd2_in = pathv[0].toPwSb();
if (pwd2_in.empty()) {
return path_in;
}
Piecewise<D2<SBasis> > der = derivative(pwd2_in);
if (der.empty()) {
return path_in;
}
Piecewise<D2<SBasis> > n = unitVector(der,0.00001);
if (n.empty()) {
return path_in;
}
n = rot90(n);
offset_points.set_pwd2(pwd2_in, n);
LineCapType end_linecap = static_cast<LineCapType>(end_linecap_type.get_value());
LineCapType start_linecap = static_cast<LineCapType>(start_linecap_type.get_value());
std::vector<Geom::Point> ts_no_scale = offset_points.data();
if (ts_no_scale.empty()) {
return path_in;
}
std::vector<Geom::Point> ts;
for (auto & tsp : ts_no_scale) {
Geom::Point p = Geom::Point(tsp[Geom::X], tsp[Geom::Y] * scale_width);
ts.push_back(p);
}
if (sort_points) {
sort(ts.begin(), ts.end(), compare_offsets);
}
// create stroke path where points (x,y) := (t, offset)
Geom::Interpolate::Interpolator *interpolator = Geom::Interpolate::Interpolator::create(static_cast<Geom::Interpolate::InterpolatorType>(interpolator_type.get_value()));
if (Geom::Interpolate::CubicBezierJohan *johan = dynamic_cast<Geom::Interpolate::CubicBezierJohan*>(interpolator)) {
johan->setBeta(interpolator_beta);
}
if (Geom::Interpolate::CubicBezierSmooth *smooth = dynamic_cast<Geom::Interpolate::CubicBezierSmooth*>(interpolator)) {
smooth->setBeta(interpolator_beta);
}
if (pathv[0].closed()) {
std::vector<Geom::Point> ts_close;
//we have only one knot or overwrite before
Geom::Point start = Geom::Point( pwd2_in.domain().min(), ts.front()[Geom::Y]);
Geom::Point end = Geom::Point( pwd2_in.domain().max(), ts.front()[Geom::Y]);
if (ts.size() > 1) {
end = Geom::Point(pwd2_in.domain().max(), 0);
Geom::Point tmpstart(0, 0);
tmpstart[Geom::X] = end[Geom::X] + ts.front()[Geom::X];
tmpstart[Geom::Y] = ts.front()[Geom::Y];
ts_close.push_back(ts.back());
ts_close.push_back(middle_point(tmpstart, ts.back()));
ts_close.push_back(tmpstart);
Geom::Path closepath = interpolator->interpolateToPath(ts_close);
end = closepath.pointAt(Geom::nearest_time(end, closepath));
end[Geom::X] = pwd2_in.domain().max();
start = end;
start[Geom::X] = pwd2_in.domain().min();
}
ts.insert(ts.begin(), start );
ts.push_back( end );
ts_close.clear();
} else {
// add width data for first and last point on the path
// depending on cap type, these first and last points have width zero or take the width from the closest width point.
ts.insert(ts.begin(), Point( pwd2_in.domain().min(),
(start_linecap==LINECAP_ZERO_WIDTH) ? 0. : ts.front()[Geom::Y]) );
ts.emplace_back( pwd2_in.domain().max(),
(end_linecap==LINECAP_ZERO_WIDTH) ? 0. : ts.back()[Geom::Y] );
}
// do the interpolation in a coordinate system that is more alike to the on-canvas knots,
// instead of the heavily compressed coordinate system of (segment_no offset, Y) in which the knots are stored
double pwd2_in_arclength = length(pwd2_in);
double xcoord_scaling = pwd2_in_arclength / ts.back()[Geom::X];
for (auto & t : ts) {
t[Geom::X] *= xcoord_scaling;
}
Geom::Path strokepath = interpolator->interpolateToPath(ts);
delete interpolator;
// apply the inverse knot-xcoord scaling that was applied before the interpolation
strokepath *= Scale(1/xcoord_scaling, 1);
D2<Piecewise<SBasis> > patternd2 = make_cuts_independent(strokepath.toPwSb());
Piecewise<SBasis> x = Piecewise<SBasis>(patternd2[0]);
Piecewise<SBasis> y = Piecewise<SBasis>(patternd2[1]);
// find time values for which x lies outside path domain
// and only take portion of x and y that lies within those time values
std::vector< double > rtsmin = roots (x - pwd2_in.domain().min());
std::vector< double > rtsmax = roots (x + pwd2_in.domain().max());
if ( !rtsmin.empty() && !rtsmax.empty() ) {
x = portion(x, rtsmin.at(0), rtsmax.at(0));
y = portion(y, rtsmin.at(0), rtsmax.at(0));
}
LineJoinType jointype = static_cast<LineJoinType>(linejoin_type.get_value());
if (x.empty() || y.empty()) {
return path_in;
}
Piecewise<D2<SBasis> > pwd2_out = compose(pwd2_in,x) + y*compose(n,x);
Piecewise<D2<SBasis> > mirrorpath = reverse( compose(pwd2_in,x) - y*compose(n,x));
Geom::Path fixed_path = path_from_piecewise_fix_cusps( pwd2_out, y, jointype, miter_limit, LPE_CONVERSION_TOLERANCE);
Geom::Path fixed_mirrorpath = path_from_piecewise_fix_cusps( mirrorpath, reverse(y), jointype, miter_limit, LPE_CONVERSION_TOLERANCE);
if (pathv[0].closed()) {
fixed_path.close(true);
path_out.push_back(fixed_path);
fixed_mirrorpath.close(true);
path_out.push_back(fixed_mirrorpath);
} else {
// add linecaps...
switch (end_linecap) {
case LINECAP_ZERO_WIDTH:
// do nothing
break;
case LINECAP_PEAK:
{
Geom::Point end_deriv = -unitTangentAt( reverse(pwd2_in.segs.back()), 0.);
double radius = 0.5 * distance(fixed_path.finalPoint(), fixed_mirrorpath.initialPoint());
Geom::Point midpoint = 0.5*(fixed_path.finalPoint() + fixed_mirrorpath.initialPoint()) + radius*end_deriv;
fixed_path.appendNew<LineSegment>(midpoint);
fixed_path.appendNew<LineSegment>(fixed_mirrorpath.initialPoint());
break;
}
case LINECAP_SQUARE:
{
Geom::Point end_deriv = -unitTangentAt( reverse(pwd2_in.segs.back()), 0.);
double radius = 0.5 * distance(fixed_path.finalPoint(), fixed_mirrorpath.initialPoint());
fixed_path.appendNew<LineSegment>( fixed_path.finalPoint() + radius*end_deriv );
fixed_path.appendNew<LineSegment>( fixed_mirrorpath.initialPoint() + radius*end_deriv );
fixed_path.appendNew<LineSegment>( fixed_mirrorpath.initialPoint() );
break;
}
case LINECAP_BUTT:
{
fixed_path.appendNew<LineSegment>( fixed_mirrorpath.initialPoint() );
break;
}
case LINECAP_ROUND:
default:
{
double radius1 = 0.5 * distance(fixed_path.finalPoint(), fixed_mirrorpath.initialPoint());
fixed_path.appendNew<EllipticalArc>( radius1, radius1, M_PI/2., false, y.lastValue() < 0, fixed_mirrorpath.initialPoint() );
break;
}
}
fixed_path.append(fixed_mirrorpath);
switch (start_linecap) {
case LINECAP_ZERO_WIDTH:
// do nothing
break;
case LINECAP_PEAK:
{
Geom::Point start_deriv = unitTangentAt( pwd2_in.segs.front(), 0.);
double radius = 0.5 * distance(fixed_path.initialPoint(), fixed_mirrorpath.finalPoint());
Geom::Point midpoint = 0.5*(fixed_mirrorpath.finalPoint() + fixed_path.initialPoint()) - radius*start_deriv;
fixed_path.appendNew<LineSegment>( midpoint );
fixed_path.appendNew<LineSegment>( fixed_path.initialPoint() );
break;
}
case LINECAP_SQUARE:
{
Geom::Point start_deriv = unitTangentAt( pwd2_in.segs.front(), 0.);
double radius = 0.5 * distance(fixed_path.initialPoint(), fixed_mirrorpath.finalPoint());
fixed_path.appendNew<LineSegment>( fixed_mirrorpath.finalPoint() - radius*start_deriv );
fixed_path.appendNew<LineSegment>( fixed_path.initialPoint() - radius*start_deriv );
fixed_path.appendNew<LineSegment>( fixed_path.initialPoint() );
break;
}
case LINECAP_BUTT:
{
fixed_path.appendNew<LineSegment>( fixed_path.initialPoint() );
break;
}
case LINECAP_ROUND:
default:
{
double radius2 = 0.5 * distance(fixed_path.initialPoint(), fixed_mirrorpath.finalPoint());
fixed_path.appendNew<EllipticalArc>( radius2, radius2, M_PI/2., false, y.firstValue() < 0, fixed_path.initialPoint() );
break;
}
}
fixed_path.close(true);
path_out.push_back(fixed_path);
}
if (path_out.empty()) {
return path_in;
// doEffect_path (path_in);
}
return path_out;
}
void LPEPowerStroke::transform_multiply(Geom::Affine const &postmul, bool /*set*/)
{
offset_points.param_transform_multiply(postmul, false);
}
void LPEPowerStroke::doAfterEffect(SPLPEItem const *lpeitem, SPCurve *curve)
{
if (pathvector_before_effect[0].size() == pathvector_after_effect[0].size()) {
if (recusion_limit < 6) {
Inkscape::LivePathEffect::Effect *effect =
sp_lpe_item->getFirstPathEffectOfType(Inkscape::LivePathEffect::SIMPLIFY);
if (effect) {
LivePathEffect::LPESimplify *simplify =
dynamic_cast<LivePathEffect::LPESimplify *>(effect->getLPEObj()->get_lpe());
double threshold = simplify->threshold * 1.2;
simplify->threshold.param_set_value(threshold);
simplify->threshold.write_to_SVG();
has_recursion = true;
}
}
++recusion_limit;
} else {
recusion_limit = 0;
}
}
/* ######################## */
} //namespace LivePathEffect
} /* namespace Inkscape */
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|