summaryrefslogtreecommitdiffstats
path: root/src/object/algorithms/unclump.cpp
blob: df59f887ad2c20cf621eead797e8b53c8ffbc57c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
// SPDX-License-Identifier: GPL-2.0-or-later
/**
 * @file
 * Unclumping objects.
 */
/* Authors:
 *   bulia byak
 *   Jon A. Cruz <jon@joncruz.org>
 *   Abhishek Sharma
 *
 * Copyright (C) 2005 Authors
 * Released under GNU GPL v2+, read the file 'COPYING' for more information.
 */

#include "unclump.h"

#include <2geom/transforms.h>
#include <algorithm>
#include <map>

#include "object/sp-item.h"

class Unclump
{
public:
    double dist(SPItem *item1, SPItem *item2);
    double average(SPItem *item, std::list<SPItem *> &others);
    SPItem *closest(SPItem *item, std::list<SPItem *> &others);
    SPItem *farthest(SPItem *item, std::list<SPItem *> &others);
    std::vector<SPItem *> unclump_remove_behind(SPItem *item, SPItem *closest, std::list<SPItem *> &rest);
    void push(SPItem *from, SPItem *what, double dist);
    void pull(SPItem *to, SPItem *what, double dist);

private:
    Geom::Point unclump_center(SPItem *item);
    Geom::Point unclump_wh(SPItem *item);

    // Taking bbox of an item is an expensive operation, and we need to do it many times, so here we
    // cache the centers, widths, and heights of items

    std::map<const gchar *, Geom::Point> c_cache;
    std::map<const gchar *, Geom::Point> wh_cache;
};

/**
Center of bbox of item
*/
Geom::Point Unclump::unclump_center(SPItem *item)
{
    std::map<const gchar *, Geom::Point>::iterator i = c_cache.find(item->getId());
    if (i != c_cache.end()) {
        return i->second;
    }

    Geom::OptRect r = item->desktopVisualBounds();
    if (r) {
        Geom::Point const c = r->midpoint();
        c_cache[item->getId()] = c;
        return c;
    } else {
        // FIXME
        return Geom::Point(0, 0);
    }
}

Geom::Point Unclump::unclump_wh(SPItem *item)
{
    Geom::Point wh;
    std::map<const gchar *, Geom::Point>::iterator i = wh_cache.find(item->getId());
    if (i != wh_cache.end()) {
        wh = i->second;
    } else {
        Geom::OptRect r = item->desktopVisualBounds();
        if (r) {
            wh = r->dimensions();
            wh_cache[item->getId()] = wh;
        } else {
            wh = Geom::Point(0, 0);
        }
    }

    return wh;
}

/**
Distance between "edges" of item1 and item2. An item is considered to be an ellipse inscribed into its w/h,
so its radius (distance from center to edge) depends on the w/h and the angle towards the other item.
May be negative if the edge of item1 is between the center and the edge of item2.
*/
double Unclump::dist(SPItem *item1, SPItem *item2)
{
    Geom::Point c1 = unclump_center(item1);
    Geom::Point c2 = unclump_center(item2);

    Geom::Point wh1 = unclump_wh(item1);
    Geom::Point wh2 = unclump_wh(item2);

    // angle from each item's center to the other's, unsqueezed by its w/h, normalized to 0..pi/2
    double a1 = atan2((c2 - c1)[Geom::Y], (c2 - c1)[Geom::X] * wh1[Geom::Y] / wh1[Geom::X]);
    a1 = fabs(a1);
    if (a1 > M_PI / 2)
        a1 = M_PI - a1;

    double a2 = atan2((c1 - c2)[Geom::Y], (c1 - c2)[Geom::X] * wh2[Geom::Y] / wh2[Geom::X]);
    a2 = fabs(a2);
    if (a2 > M_PI / 2)
        a2 = M_PI - a2;

    // get the radius of each item for the given angle
    double r1 = 0.5 * (wh1[Geom::X] + (wh1[Geom::Y] - wh1[Geom::X]) * (a1 / (M_PI / 2)));
    double r2 = 0.5 * (wh2[Geom::X] + (wh2[Geom::Y] - wh2[Geom::X]) * (a2 / (M_PI / 2)));

    // dist between centers minus angle-adjusted radii
    double dist_r = (Geom::L2(c2 - c1) - r1 - r2);

    double stretch1 = wh1[Geom::Y] / wh1[Geom::X];
    double stretch2 = wh2[Geom::Y] / wh2[Geom::X];

    if ((stretch1 > 1.5 || stretch1 < 0.66) && (stretch2 > 1.5 || stretch2 < 0.66)) {
        std::vector<double> dists;
        dists.push_back(dist_r);

        // If both objects are not circle-like, find dists between four corners
        std::vector<Geom::Point> c1_points(2);
        {
            double y_closest;
            if (c2[Geom::Y] > c1[Geom::Y] + wh1[Geom::Y] / 2) {
                y_closest = c1[Geom::Y] + wh1[Geom::Y] / 2;
            } else if (c2[Geom::Y] < c1[Geom::Y] - wh1[Geom::Y] / 2) {
                y_closest = c1[Geom::Y] - wh1[Geom::Y] / 2;
            } else {
                y_closest = c2[Geom::Y];
            }
            c1_points[0] = Geom::Point(c1[Geom::X], y_closest);
            double x_closest;
            if (c2[Geom::X] > c1[Geom::X] + wh1[Geom::X] / 2) {
                x_closest = c1[Geom::X] + wh1[Geom::X] / 2;
            } else if (c2[Geom::X] < c1[Geom::X] - wh1[Geom::X] / 2) {
                x_closest = c1[Geom::X] - wh1[Geom::X] / 2;
            } else {
                x_closest = c2[Geom::X];
            }
            c1_points[1] = Geom::Point(x_closest, c1[Geom::Y]);
        }

        std::vector<Geom::Point> c2_points(2);
        {
            double y_closest;
            if (c1[Geom::Y] > c2[Geom::Y] + wh2[Geom::Y] / 2) {
                y_closest = c2[Geom::Y] + wh2[Geom::Y] / 2;
            } else if (c1[Geom::Y] < c2[Geom::Y] - wh2[Geom::Y] / 2) {
                y_closest = c2[Geom::Y] - wh2[Geom::Y] / 2;
            } else {
                y_closest = c1[Geom::Y];
            }
            c2_points[0] = Geom::Point(c2[Geom::X], y_closest);
            double x_closest;
            if (c1[Geom::X] > c2[Geom::X] + wh2[Geom::X] / 2) {
                x_closest = c2[Geom::X] + wh2[Geom::X] / 2;
            } else if (c1[Geom::X] < c2[Geom::X] - wh2[Geom::X] / 2) {
                x_closest = c2[Geom::X] - wh2[Geom::X] / 2;
            } else {
                x_closest = c1[Geom::X];
            }
            c2_points[1] = Geom::Point(x_closest, c2[Geom::Y]);
        }

        for (int i = 0; i < 2; i++) {
            for (int j = 0; j < 2; j++) {
                dists.push_back(Geom::L2(c1_points[i] - c2_points[j]));
            }
        }

        // return the minimum of all dists
        return *std::min_element(dists.begin(), dists.end());
    } else {
        return dist_r;
    }
}

/**
Average dist from item to others
*/
double Unclump::average(SPItem *item, std::list<SPItem *> &others)
{
    int n = 0;
    double sum = 0;
    for (SPItem *other : others) {
        if (other == item)
            continue;

        n++;
        sum += dist(item, other);
    }

    if (n != 0)
        return sum / n;
    else
        return 0;
}

/**
Closest to item among others
 */
SPItem *Unclump::closest(SPItem *item, std::list<SPItem *> &others)
{
    double min = HUGE_VAL;
    SPItem *closest = nullptr;

    for (SPItem *other : others) {
        if (other == item)
            continue;

        double dist = this->dist(item, other);
        if (dist < min && fabs(dist) < 1e6) {
            min = dist;
            closest = other;
        }
    }

    return closest;
}

/**
Most distant from item among others
 */
SPItem *Unclump::farthest(SPItem *item, std::list<SPItem *> &others)
{
    double max = -HUGE_VAL;
    SPItem *farthest = nullptr;

    for (SPItem *other : others) {
        if (other == item)
            continue;

        double dist = this->dist(item, other);
        if (dist > max && fabs(dist) < 1e6) {
            max = dist;
            farthest = other;
        }
    }

    return farthest;
}

/**
Removes from the \a rest list those items that are "behind" \a closest as seen from \a item,
i.e. those on the other side of the line through \a closest perpendicular to the direction from \a
item to \a closest. Returns a newly created list which must be freed.
 */
std::vector<SPItem *> Unclump::unclump_remove_behind(SPItem *item, SPItem *closest, std::list<SPItem *> &rest)
{
    Geom::Point it = unclump_center(item);
    Geom::Point p1 = unclump_center(closest);

    // perpendicular through closest to the direction to item:
    Geom::Point perp = Geom::rot90(it - p1);
    Geom::Point p2 = p1 + perp;

    // get the standard Ax + By + C = 0 form for p1-p2:
    double A = p1[Geom::Y] - p2[Geom::Y];
    double B = p2[Geom::X] - p1[Geom::X];
    double C = p2[Geom::Y] * p1[Geom::X] - p1[Geom::Y] * p2[Geom::X];

    // substitute the item into it:
    double val_item = A * it[Geom::X] + B * it[Geom::Y] + C;

    std::vector<SPItem *> out;
    for (SPItem *other : rest) {
        if (other == item)
            continue;

        Geom::Point o = unclump_center(other);
        double val_other = A * o[Geom::X] + B * o[Geom::Y] + C;

        if (val_item * val_other <= 1e-6) {
            // different signs, which means item and other are on the different sides of p1-p2 line; skip
        } else {
            out.push_back(other);
        }
    }

    return out;
}

/**
Moves \a what away from \a from by \a dist
 */
void Unclump::push(SPItem *from, SPItem *what, double dist)
{
    Geom::Point it = unclump_center(what);
    Geom::Point p = unclump_center(from);
    Geom::Point by = dist * Geom::unit_vector(-(p - it));

    Geom::Affine move = Geom::Translate(by);

    std::map<const gchar *, Geom::Point>::iterator i = c_cache.find(what->getId());
    if (i != c_cache.end()) {
        i->second *= move;
    }

    // g_print ("push %s at %g,%g from %g,%g by %g,%g, dist %g\n", what->getId(), it[Geom::X],it[Geom::Y],
    // p[Geom::X],p[Geom::Y], by[Geom::X],by[Geom::Y], dist);

    what->set_i2d_affine(what->i2dt_affine() * move);
    what->doWriteTransform(what->transform);
}

/**
Moves \a what towards \a to by \a dist
 */
void Unclump::pull(SPItem *to, SPItem *what, double dist)
{
    Geom::Point it = unclump_center(what);
    Geom::Point p = unclump_center(to);
    Geom::Point by = dist * Geom::unit_vector(p - it);

    Geom::Affine move = Geom::Translate(by);

    std::map<const gchar *, Geom::Point>::iterator i = c_cache.find(what->getId());
    if (i != c_cache.end()) {
        i->second *= move;
    }

    // g_print ("pull %s at %g,%g to %g,%g by %g,%g, dist %g\n", what->getId(), it[Geom::X],it[Geom::Y],
    // p[Geom::X],p[Geom::Y], by[Geom::X],by[Geom::Y], dist);

    what->set_i2d_affine(what->i2dt_affine() * move);
    what->doWriteTransform(what->transform);
}

/**
Unclumps the items in \a items, reducing local unevenness in their distribution. Produces an effect
similar to "engraver dots". The only distribution which is unchanged by unclumping is a hexagonal
grid. May be called repeatedly for stronger effect.
 */
void unclump(std::vector<SPItem *> &items)
{
    Unclump unclump;

    for (SPItem *item : items) { //  for each original/clone x:
        std::list<SPItem *> nei;

        std::list<SPItem *> rest;
        for (size_t i = 0; i < items.size(); i++) {
            rest.push_front(items[items.size() - i - 1]);
        }
        rest.remove(item);

        while (!rest.empty()) {
            SPItem *closest = unclump.closest(item, rest);
            if (closest) {
                nei.push_front(closest);
                rest.remove(closest);
                std::vector<SPItem *> new_rest = unclump.unclump_remove_behind(item, closest, rest);
                rest.clear();
                for (size_t i = 0; i < new_rest.size(); i++) {
                    rest.push_front(new_rest[new_rest.size() - i - 1]);
                }
            } else {
                break;
            }
        }

        if ((nei.size()) >= 2) {
            double ave = unclump.average(item, nei);

            SPItem *closest = unclump.closest(item, nei);
            SPItem *farthest = unclump.farthest(item, nei);

            double dist_closest = unclump.dist(closest, item);
            double dist_farthest = unclump.dist(farthest, item);

            // g_print ("NEI %d for item %s    closest %s at %g  farthest %s at %g  ave %g\n", g_slist_length(nei),
            // item->getId(), closest->getId(), dist_closest, farthest->getId(), dist_farthest, ave);

            if (fabs(ave) < 1e6 && fabs(dist_closest) < 1e6 && fabs(dist_farthest) < 1e6) { // otherwise the items are
                                                                                            // bogus
                // increase these coefficients to make unclumping more aggressive and less stable
                // the pull coefficient is a bit bigger to counteract the long-term expansion trend
                unclump.push(closest, item, 0.3 * (ave - dist_closest));
                unclump.pull(farthest, item, 0.35 * (dist_farthest - ave));
            }
        }
    }
}

/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :